Advanced Transform Techniques for the One-Dimensional Non-Homogeneous Heat Equation with Non-Homogeneous BCs and IC

Authors

  • RAPHEAL OLADIPO FIFELOLA

    DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, NIGERIAN DEFENCE ACADEMY
  • OKAFOR UCHENWA LINUS

    DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCES, NIGERIAN DEFENCE ACADEMY.
  • ADEDAPO KEHINDE FEMI

    DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES,FEDERAL UNIVERSITY OF HEALTH SCIENCES
  • JOHNSON SUNDAY EGBEJA

    DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCES, NIGERIAN DEFENCE ACADEMY.

How to Cite

FIFELOLA, R. O., OKAFOR UCHENWA LINUS, ADEDAPO KEHINDE FEMI, & JOHNSON SUNDAY EGBEJA. (2024). Advanced Transform Techniques for the One-Dimensional Non-Homogeneous Heat Equation with Non-Homogeneous BCs and IC. International Journal of Applied Mathematical Research, 13(2), 96-102. https://doi.org/10.14419/kyyb9f56

Received date: August 6, 2024

Accepted date: August 31, 2024

Published date: September 22, 2024

DOI:

https://doi.org/10.14419/kyyb9f56

Keywords:

Heat Equation, Boundary Conditions, Fourier Series, Non-Homogeneous PDE, Transformation Method.

Abstract

This study addresses the one-dimensional non-homogeneous heat equation with non-homogeneous boundary conditions using a transformation method. We introduce a new dependent variable V(x,t) and a function ψ(x) to simplify the PDE into a homogeneous form, solving it analytically. The solution involves separating variables and applying Fourier series, leading to:

Numerical simulations confirm the theoretical results, illustrating the method’s robustness for modeling heat conduction problems.

References

  1. Agarwal, R. P., & O'Regan, M. (2009). Generalized Integral Transformations. Springer.
  2. Berger, M. J., & Colella, J. O. (1989). Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82(1), 64–84
  3. Çengel, Y. A. (2018). Heat Transfer: A Practical Approach. McGraw-Hill Education.
  4. Chung, T. J. (2002). Computational Fluid Dynamics. Cambridge University Press.
  5. d'Alembert, J. le Rond. (1747). Réflexions sur la cause générale des vents. Histoire de l'Académie Royale des Sciences.
  6. Duffy, D. G. (2015). Boundary Value Problems and Partial Differential Equations. Springer.
  7. Fourier, J. B. J. (1822). Théorie analytique de la chaleur. Firmin Didot.
  8. Ghosh, S., & Khanna, A. (2012). Mathematical Methods for Engineers and Scientists. Springer.
  9. Incropera, F. P., & DeWitt, D. P. (2002). Introduction to Heat Transfer. Wiley.
  10. Laplace, P. S. (1799). Mémoire sur la théorie des probabilités. Bachelier.
  11. Moin, P. (2010). Fundamentals of Computational Fluid Dynamics. Cambridge University Press.
  12. MIT OpenCourseWare. (2023). Linear Partial Differential Equations. Massachusetts Institute of Technology.
  13. Smith, B. A., Abel, T. W., & Howe, D. A. T. (2018). High-Performance Computing: An Introduction. CRC Press.
  14. Strauss, W. A. (2007). Partial Differential Equations: An Introduction. John Wiley & Sons.
  15. Wazwaz, A. M. (2011). Nonlinear Partial Differential Equations and Applications. Springer.
  16. Yagdjian, K. B. (2016). Integral Transforms and Special Functions. Springer.
  17. Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The Finite Element Method: Its Basis and Fundamentals. Elsevier.

Downloads

How to Cite

FIFELOLA, R. O., OKAFOR UCHENWA LINUS, ADEDAPO KEHINDE FEMI, & JOHNSON SUNDAY EGBEJA. (2024). Advanced Transform Techniques for the One-Dimensional Non-Homogeneous Heat Equation with Non-Homogeneous BCs and IC. International Journal of Applied Mathematical Research, 13(2), 96-102. https://doi.org/10.14419/kyyb9f56

Received date: August 6, 2024

Accepted date: August 31, 2024

Published date: September 22, 2024