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Abstract 

 

The purpose of this paper is to indicate a class of exact solutions of the system of partial differential equations governing the steady, 

plane motion of incompressible fluid of variable viscosity with body force term to the right-hand side of Navier-Stokes equations. The 

class consists of the stream function  characterized by the equation ( ) ( )f r     in polar coordinates r  and   where f  and   are 

continuously differentiable functions and the function ( )   is such that 2( ) ( )c      where a non-zero constant is c  and overhead 

prime represents derivative with respect to . When 0c   or 0c   we show exact solutions for given one component of the body force 

for both the cases when the function ( )f r  is arbitrary and when it is not. For the arbitrary function case, ( )f r  appears in the coefficient 

of a linear second order ordinary differential equation showing a large numbers of solutions of this equation. This in turn establishes an 

infinite set of exact solutions to the problem concerned however; we show three examples of such exact solutions. The alternate case 

fixes ( )f r  and provides viscosity as derivative of temperature function for 0c   and 0c  . Anyhow, we find an infinite set of stream-

lines, the velocity components, viscosity function, generalized energy function and temperature distribution. 

 

Keywords: Some Exact Solutions in the Presence of Body Force; Exact Solutions to the Flow Equations of Incompressible Fluids; Exact 

Solutions of Variable Viscosity Fluids; Navier-Stokes Equations with Body Force. 

 

1. Introduction 

The basic system of partial differential equations (PDE) for the 

motion of a viscous fluid consists of the equation of continuity, 

Navier-Stokes equations (NSE) and energy equation. As the Na-

vier-Stokes equations have base on Newton’s law, therefore it 

allows us to add body forces term to right-hand side of it in addi-

tion to surface force. The examples of the body forces are constant 

gravity force, coriolis force, centrifugal force etc. In the presence 

of body force the basic dimensionless form of system of PDE’s for 

the steady motion of incompressible fluid of variable viscosity in 

tensor notation are  
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where  1 2 3
( ), ( ), ( )

i i i
F x F x F xF is the body force per unit mass, 

 1 2 3
( ), ( ), ( )

i i i
v x v x v xv  the fluid velocity, ( )

i
p p x  is pressure, 

( )
i

x   the fluid density, the coefficients of viscosity 0  , the 

space coordinates 
i

x and , {1, 2, 3}i j  . The dimensionless quanti-

ties
e

R , 
r

P  and 
c

E  are the Reynolds number, the Prandtl number 

and the Eckert number respectively. The non-dimensional parame-

ters used in equations (2-3) with constant thermal conductivity k  

are mentioned in [1-2].  

For the plane Cartesian space case we take , {1, 2}i j  ,
1

x x , 

2
x y , 

1
( , )v u x y , 

2
( , )v v x y , 

1 1
( , )F F x y , 

2 2
( , )F F x y  in 

equations (1-3) and obtain 
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The solution of the equation (4) demands the existence of a stream 

function ( , )x y  such that 
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However the nonlinear terms in equations (5-7) offers a great dif-

ficulty for exact solutions. In order to handle nonlinearities some 

coordinates transformation techniques and dimension analysis 

methods have proved helpful for some exact solutions of NSE 

with surface force. The readers interested in these meth-

ods/techniques may refer to [3]-[16] and the references therein. 

For a class of some exact solutions of NSE with body force we 

refer [2] and the references therein. 

The objective of this communication is to obtain a class of exact 

solutions of the problem of the steady plane motion of incom-

pressible fluid of variable viscosity in the presence of body force 

with a new characterization of streamlines. To achieve the aim we 

transform the fundamental flows equations from Cartesian space 

( , )x y  into a curvilinear coordinates ( , )  with Martin’s definition. 

Martin [17] defined the curvilinear coordinate lines const.   as 

streamlines and left the curvilinear coordinate lines const.   

arbitrary. We will refer it as Martin’s system – ( , )  . As the coor-

dinate   is arbitrary in Martin’s system, therefore, we take 

( , )r x y   to achieve our plan and we characterize the stream-

lines of the class of flows under consideration by 

 

( ) const.f r                                                                                (9) 

 

Where ( )f r  is a continuously differentiable function, r ,   the 

polar coordinates. As const.   are the streamlines therefore, for 

the class of flows under consideration of this communication we 

take 

 

( ) ( )f r                                                                                (10) 

 

With  as a continuously differentiable function of   such that 
2( ) ( )c      where a non-zero constant is c  and overhead 

prime represents derivative with respect to .  

We organize this paper as follow: In section (2), we transform the 

fundamental non-dimensional flow equations from Cartesian 

space ( , )x y  into Martin’s system ( , )  . In section (3), we find 

exact solution taking ( , )r x y  . In last section, we present con-

clusion.  

2. Fundamental flow equations in Martin’s 

system 

Following [1-3], we reduce the basic system Eqs. (5-7) to a con-

venient form by introducing the vorticity function w  and the total 

energy function L  defined by 
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Where 

 

A  = ( )
y x

u v   B = 4
x
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Now we transform Eqs. (13-15) into Martin’s system ( , )   

through transformation 

 

( , )x x    , ( , )y y                                                                (17) 

 

Such that the Jacobian 
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of the transformation is 

finite. At a common point ( , )P x y  let   be the angle between the 

tangents to the streamlines lines .const   and the 

curves .const   then we have shown in [1-2] that Eqs. (13-15) in 

Martin’s system are following  
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Where the coefficients of first fundamental form are 
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Thus, the basic transformed equations into Martin’s system are 

Eqs. (18-25).  

3. Exact solutions 

As the coordinate   is arbitrary in Martin’s system ( , )  , there-

fore, we take 

 

( , )r x y                                                                                    (26) 

 

Where 

 

Cosx r  , Siny r                                                                 (27) 

 

Utilizing equations (26-27) and writing the fundamental equations 

equation (18-25) in terms of independent variables r  and   , we 

get 
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We are using q is the magnitude of velocity vector ( , )u vq  for the 

plane motion. 

In order to determine the solution of the flow equations (28-39), 

we follow [1-3] and construct the following equation using the 

natural integrability condition
r r

L L
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  on equations (29) and (30).  
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This equation involves the functions ( )f r , ( )  , the body force 

components 
1
( , )F r  , 

2
( , )F r   and the viscosity  . Once a solu-

tion of this equation (40) is determined, the function L  and tem-

perature distribution T are determined from equations (29-30) and 

(31), respectively, the pressure from equation (12) and velocity 

components from (8). 

In order to attempt for solution of equation (40) the first inspira-

tion that we take is from [2] which guides to focus on the vorticity 

function w  and write it as a product function of independent vari-

ables r  and   through 
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( ) ( )M r r f r                                                                             (46) 

 

Other observation about the compatibility equation (40) is that it 

involves functions A , B  which depends upon the viscosity func-

tion  , the function ( )f r  and derivative of ( )f r  therefore it is 

extremely difficult to solve it analytically. The second guidance 

that we take from [2] is that the equation resulting from compati-

bility condition provide solution on eliminating   from the func-

tions A  and B . Therefore we eliminate   from equation (44) and 

(45) by introducing function ( )Y r  through  
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Since the solution of equation (49) is to lead us for the function L  

from equations (29–30) and temperature distribution T from 
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Here equation (51) is to provide the function ( )R r , but it involves 
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therefore its solution depends upon the form of 
1

F  and
2

F . We can 

select many possible forms of 
1

F  and 
2

F  leading to the solution of 

equation (49) for ( )R r , however we find that not all arbitrarily 

selected forms lead to the solution of the momentum equations 

(29-30) for the function L  and the energy equation (31) for T . 

Our search for the appropriate form of 
1

F  and
2

F  revealed that the 

solution of the momentum equations (29-30) and energy equation 

(31) is obtainable when the function 
2 2
( , ) ( )F r F r   is a solution 

of the following differential equation 

   2
[ ]

e r
R a r F r Y R


                                                                (52) 

 

Or 

 

2e
R F = – ( )Y R  + 1

h

r
                                                                 (53) 

 

Where 
1

h  is constant. 

On substituting equation (53) in equation (51) utilizing equation 

(41) and solving for
1

F , we obtain 

 

1e
R F =  

1

( )e r
R P cr Y R e
c K

    
 

 

 

+
1

e r

cR P e

K

 2(1 )
(1 2 ) 2

c M Y cM
M Y R R M Y Y M

r r

  
         

  
 

 

2

2 2

1

2
(1 )

2

e

cR e M c M

cK r r

            

+ ( )H r                                       (54) 

 

On substituting equations (53–54), in equations (29–30) and solv-

ing for the function L , we find 

 

e
R L = 

2 2

1 2 2

1

(1 )

2

c

e
R e M c M

h
cK r r




    

    
  

 + 
1

[ ( ) ]
c

e r
R P er Y R

c K

 
 
 

 

 

1

( 1)
c

e r
R P e

M Y R
K

 
   

 
+ 

 

2 2 ( ) ( )
M h

M Y R H r dr
r

 
   

 
+ 

2
h                                             (55) 

 

Where 
2

h  is constant.  

We can obtain viscosity from either of equations (32) or (33) 

 

  = 
2

4( 1 )

r

cM

 


 
1 ( )e r

R P
R r



 
  

                                             (56) 

 

The energy equation (31) on using (35), (38), (47), (50) and (56) 

becomes 

 

( )
r r

r T 2M
r

T

 +

2(1 )
( )

M
T

r
 



 +  e r r

R P T M  T

  

 

= –  2( 1 )
1 4 1 ( )c r e r

E P cM R P
Y R r

r 

   
   

                                (57) 

 

Right-hand side of equation (57) suggests searching for solution of 

the type 

 

( )
( , )

K r
T r 





                                                                            (58) 

 

Where ( )K r  is unknown function to be determined. Utilizing 

equation (58) in equation (57) we find 

 

r K  2c M K  +  
2

2(1 )M
c K

r


+ 1 e r

R P
K



 
  

c K M   

= –  2( 1 )
1 4 1 ( )c r e r

E P cM R P
Y R r

r 

   
   

                                (59) 
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Comparing the coefficient of 1 e r
R P



 
  

 on both side of equation 

(59), we get 

 

( )R r = –
 2( 1 ) 1 4

c r

r K

E P cM Y



  
                                                (60) 

 

And 

 
2r K  2c r M K  + 2 2(1 )K c M crM      =0                             (61) 

 

The value of the unknown function ( )R r  is to be determined from 

equation (60) but it involves another unknown function ( )K r  

satisfying equation (61). The coefficients of this equation depends 

on the function ( ) ( )M r r f r  and for one arbitrary choice of 

( )f r  the solution of equation (61) could be found using computer 

algebra system (CAS) software in terms of special functions. Find-

ing ( )K r  from equation (61) we find ( )R r  from equation (60), 

T  from equation (58), viscosity   from equation (56), pressure 

p  from (12) using (55) and velocity components from (8) for the 

components of body force 
1

F  and 
2

F  from (53-54). This indicates 

an infinite set of exact solutions however; we present here three 

examples of such exact solutions.  

Example 1: 

The equation (61) reduces to a Cauchy-Euler equation for 

 

1
.M m Const                                                                            (62) 

 

Or 

 

1 2
( ) lnf r m r m                                                                         (63) 

 

Where 
2

m  is constant of integration. Taking equation (62) in 

equation (61), we get 

 
2r K  2m r K  + 2 2( )c m K  =0                                               (64) 

 

Where 

 

1
.m c m Const                                                                           (65) 

 

Whose solution is 

 
1 2

3 4
( )K r k r k r

 
                                                                       (66) 

 

Where 

 
2

1

(2 1) 1 4( )

2

m m c


    
                                                       (67) 

 
2

2

(2 1) 1 4( )

2

m m c


    
                                                      (68) 

 

Inserting equation (66-68) in equation (58), we get 

 

 1 2

3 4

1

( , )
c

k r k r
T r

k e

 





                                                                (69) 

 

Thus for ( )K r  from equation (66) we find ( )R r  from equation 

(60) , pressure p  using (55), viscosity   from equation (56) and 

T  from equation (69) , viscosity   from equation (56), pressure 

p  from (12) using (55) and velocity components from (8) for the 

components of body force 
1

F  and 
2

F  from (53-54). 

Example 2: 

In order to reduce the order of equation (61) we set  

 
2(1 ) 0c M rM                                                                          (70) 

 

Or 

 

3
( ) Tan( ln )M r m c r                                                                 (71) 

 

Substituting (71) in equation (46) and solving the resulting differ-

ential equation, we find 

 

3 4

1
( ) ln cos ( ln )f r m c r m

c
                                                        (72) 

 

Taking equation (72) in equation (61), we get 

 
2

3
2 Tan( ln ) 0r K c r m c r K                                                   (73) 

 

Whose solution is 

 
2

5 3 6
( ) sec ( ln )K r k m c r dr k                                                   (74) 

 

Inserting equation (74) in equation (58), we get 

 
2

5 3 6

1

( ln )
( , )

c

k sce m c r dr k
T r

k e 


 
                                              (75) 

 

Thus finding ( )K r  from equation (74) we find T  from equation 

(75), ( )R r  from equation (60), viscosity   from equation (56), 

pressure p  from (12) using (55) for the components of body force 

1
F  and 

2
F  from (53-54).  

Example 3: 

Here we let solution of equation (61) is 

 

( ) ( ) ( )K r U r V r                                                                         (76) 

 

Taking (76) in equation (61) and removing the first derivative 

term [18], we find 

 
( )( ) c f rU r e                                                                                  (77) 

 

And 

 

 2 2 0r V V c crf                                                                    (78) 

 

A solution of (78) is 

 

7 8
( ) Cos SinV r k r k r                                                                (79) 

 

When 

 
2

( ) ln
2

r
f r c r

c
                                                                           (80) 

 

Therefore inserting (77) and (79) in (76), we get 

 

 
2

2
2

7 8
( ) Cos Sin

r

cK r r e k r k r


                                                    (81) 

 

And inserting equation (81) in equation (58), we find 

 

 
2

2
2

7 8

1

Cos Sin
( , )

r

c

c

r e k r k r
T r

k e 





                                                (82) 
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Where , {1,2,3,4,5,6,7,8}

i
k i   and , {1,2,3,4}

i
m i   are constants. 

Thus finding ( )K r  from equation (81) we find T  from equation 

(82), ( )R r  from equation (60), viscosity   from equation (56), 

pressure p  from (12) using (55) for the components of body force 

1
F  and 

2
F  from (53-54). The streamline patterns can be drawn to 

observe the effect of various parameters for 0c   and 0c  . 

For the case ( ) 0Y r   , the equation (48) implies 

 
22 (1 ) 0rM M c M                                                                  (83) 

 

Since here, either 0c   or 0c   therefore we provide solution of 

equation (83) for 1c    and 1c   as an example and likewise 

one can find for 0c   or 0c  . When 1c    and 1c   , the 

equation (83) on utilizing equation (46) provides 

 

 2 1
( ) ln ln cosh 2 ( ln )f r c r c r    

 
                                       (84) 

 

And 

 

 2 1
( ) ln ln cosh 2 ( ln )f r c r c r    

 
                                       (85) 

 

Respectively. Inserting equation (83) in equation (44), we find  

 
0A                                                                                            (86) 

 

Using (86) in (40), we get 

 

– 
r

f B
B






 
 

 
= 

e r
R w  +  1 2

( )
e

R F F r f


   2e r
R r F          (87) 

 

Here equation (87) is to provide the function B , but it involves the 

components of unknown body force
1
( , )F r  , 

2
( , )F r   and vortici-

ty function w  therefore its solution will depend upon the form of 

these functions. We can select many possible forms of these func-

tions leading to the solution of equation (87) for B . However, we 

find that arbitrarily selected forms of these functions do not lead to 

the solution of the momentum equations (29-30) for the func-

tion L  and the energy equation (31) forT . One successful search 

for the form of the functions 
2
( , )F r  is to take 

2 2
( , ) ( )F r F r   

satisfying 

 

 2e e rr
R r F R w                                                                       (88) 

 

Or 

 

 2
( )

e e
R r F R w G                                                                (89) 

 

Where ( )G   is function of integration and vorticity function w  is 

arbitrary. Utilizing (89) in (87), we get 

 

 1 2
( )

e r

f B
R F F r f B








 
    

 
                                              (90) 

 

Or 

 

1 2 1
( ) ( )

e e r

f B
R F R F r f B H r





 
     

 
                                      (91) 

Where
1
( )H r is a function of integration. On substituting equations 

(89) and (91), in equations (29–30) and solving for the function L , 

we have 

 

1 3
( ) ( )

e
R L B G d H r dr h                                                (92) 

 

Where 
3

h  is constant of integration.  

Now the energy equation (30) on using equation (86), becomes 

 

 

2

2

(1 )
2

1
4

r r r

e r c r

r

M
r T M T T

r

R P r E P
T M T B

 


 


 

 
      

                                          (93) 

 

Substituting equation (45) in equation (93), we find a relation for 

viscosity in terms of the derivative of the temperature function T  

 

 

3 2 2

2

2

( ) (1 )

4 1

1

r r r

c r

e r

r

r T M T

r M
T

rE P c M

R P
T M T



 








 
 
 

    
        

  
       

                          (94) 

 

Where the function ( ) ( )M r r f r  is according to the equations 

(84) and (85). 

The streamline patterns can be drawn to observe the effect of vari-

ous parameters for 0c   and 0c  . 

4. Results and discussion 

We have found some new exact solutions of the system of partial 

differential equations governing the steady, plane motion of in-

compressible fluid of variable viscosity with body force term to 

the right-hand side of Navier-Stokes equations of a class. The 

class consists of the stream function   characterized by 

1 2

1 1
( ) ln

( )
f r

c c k k




 
   

 
 in polar coordinates r  and  where a 

continuously differentiable function is f  and the constant 0c   

or 0c  . For both values of the constant c , we found solutions for 

given one component of the body force for arbitrary ( )f r  which 

indicates an infinite set of exact solutions to the problem con-

cerned however, we mentioned three example exact solutions. 

When the case fixes the function ( )f r  we find viscosity as deriva-

tive of function of temperature for 0c   or 0c   and mention 

such relation for 1c    and 1c    as an example. In both the 

cases when ( )f r  is arbitrary and when it is not , we indicated an 

infinite set of streamlines, the velocity components, viscosity 

function, generalized energy function and temperature distribu-

tion. For 0c   and 0c   the streamline patterns can be drawn 

using CAS to observe the effect of various parameters. 
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