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Abstract 

 

A numerical investigation of unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically 

conducting and heat absorbing fluid past an impulsively moving vertical plate with ramped temperature embedded in a 

porous medium in the presence of thermal diffusion is carried out. The governing equations are solved numerically by 

Crank-Nicolson implicit finite difference scheme. The numerical solution for fluid velocity and fluid temperature are 

depicted graphically whereas the numerical values of skin friction and Nusselt number are presented in tabular form for 

various values of pertinent flow parameters. Natural convection flow near a ramped temperature plate is also compared 

with the flow near an isothermal plate. 
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1 Introduction 

Theoretical/Experimental investigation of hydrodynamic natural convection flow arising near solid bodies with 

different geometries embedded in a porous medium is of much significance due to its varied and wide applications in 

several areas of science and technology viz. chemical catalytic reactors, thermal insulators, heat exchanger devices, 

nuclear waste repositories, drying of porous solids, enhanced oil and gas recovery, underground energy transport etc. 

Several researchers investigated natural convection flow near a vertical plate embedded in a porous medium considering 

different aspects of the problem. Mention may be made of research studies of Cheng and Minkowycz [1], Nakayama 

and Koyama [2], Lai and Kulacki [3], Hsieh et al [4], Nield and Kuznetsov [5] and Gorla and Chamkha [6]. 

Comprehensive reviews of thermal convection in porous media along with its wide variety of engineering applications 

are well presented by Ingham and Pop [7], Vafai [8] and Nield and Bejan [9].  

Investigation of the problems of hydromagnetic natural convection flow of an electrically conducting fluid within a 

fluid saturated porous medium is of much significance due to considerable influence of magnetic field on boundary 

layer control, geothermal energy extraction, enhanced recovery of petroleum products, thermal insulation of buildings, 

sensible heat storage bed, plasma studies and on the performance of many engineering devices viz. MHD energy 

generators, MHD pumps, MHD accelerators, MHD flow-meters, Plasma jet engines, controlled thermo-nuclear reactors 

etc. Keeping in view the importance of such study, Raptis and Kafousias [10] analyzed the effects of magnetic field on 

steady free convection flow through a porous medium bounded by an infinite vertical plate. Raptis [11] investigated 

time varying two-dimensional natural convection flow of a viscous, incompressible and electrically conducting fluid 

past an infinite vertical porous plate embedded in a porous medium. Takhar and Ram [12] considered hydromagnetic 

free convection flow of water at 4
o
C through porous medium. Chamkha [13] studied MHD free convection from a 

vertical plate embedded in a thermally stratified porous medium. Chamkha and Khanafer [14] discussed non-similar 

combined convection flow past a vertical surface embedded in a variable porosity medium. Jha [15] investigated MHD 

free convection and mass transfer flow past a uniformly accelerated moving vertical plate through porous medium when 

applied magnetic field is fixed with the moving plate. Aldoss et al [16] studied combined free and forced convection 

flow past a vertical plate embedded in a porous medium in the presence of a magnetic field. Kim [17] considered 

hydromagnetic natural convection flow past a vertical moving plate embedded in a porous medium. Makinde and 

Sibanda [18] considered steady hydromagnetic heat transfer by mixed convection flow past a vertical plate embedded in 

a uniform porous medium in the presence of uniform transverse magnetic field. Makinde [19] studied MHD mixed 

convection flow and mass transfer past a vertical porous plate with constant heat flux embedded in a porous medium.  
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Fluid heat generation or absorption effects are of much significance in certain porous medium applications such as 

fluids undergoing exothermic and/ or endothermic chemical reaction (Vajravelu and Nayfeh [20]), applications in the 

field of nuclear energy (Crepeau and Clarksean [21]), convection in Earth’s mantle (Mc Kenzie et al. [22]), post 

accident heat removal (Baker et al. [23]), fire and combustion modeling (Delichatsios [24]), development of metal 

waste from spent nuclear fuel (Westphal et al. [25]) etc.  It is noticed that exact modeling of internal heat generation/ 

absorption is much complicated. It is found that some simple mathematical models yet idealized may express their 

average behavior for most of the physical situations. Taking into consideration this fact, investigation of such fluid flow 

problems is carried out by many researchers [26-30] in the past.  

In all these investigations, analytical or numerical solution is obtained assuming conditions for the temperature at the 

plate to be continuous and well defined. However, several problems of practical interest may require non-uniform or 

arbitrary thermal conditions. Keeping in view this fact, several researchers investigated free convection flow from a 

vertical plate considering step discontinuities in the plate temperature. Mention may be made of the research studies of 

Hayday et al [31], Kelleher [32], Kao [33], Lee and Yovanovich [34], Chandran et al [35] and Seth and Ansari [36]. 

Seth and Ansari [36] investigated unsteady hydromagnetic natural convection flow of a viscous, incompressible, 

electrically conducting and heat absorbing fluid past an impulsively moving vertical plate with ramped temperature 

embedded in a fluid saturated porous medium taking into account the effect of thermal diffusion. Subsequently, Seth et 

al [37] considered the effects of Hall current on the problem studied by Seth and Ansari [36]. Patra et al [38] considered 

the effects of radiation on natural convection flow of a viscous and incompressible fluid near a stationary vertical flat 

plate with ramped temperature. Seth et al [39] studied effects of thermal radiation and rotation on unsteady 

hydromagnetic free convection flow past an impulsively moving vertical plate with ramped temperature in a porous 

medium. Recently, Nandkeolyar and Das [40] studied unsteady MHD free convection flow of a heat absorbing dusty 

fluid past a flat plate with ramped wall temperature. 

As per authors’ knowledge numerical solution for unsteady hydromagnetic natural convection flow past an impulsively 

moving vertical plate with ramped temperature in presence of thermal diffusion and heat absorption has not been 

obtained so far. Seth and Ansari [36] obtained analytical solution using Laplace transform technique. Therefore, aim of 

the present paper is to investigate the problem studied by Seth and Ansari [36] using numerical technique i.e. by Crank 

Nicolson implicit finite difference scheme. 

 

2 Formulation of the problem and its solution 

Consider unsteady flow of a viscous, incompressible, electrically conducting and heat-absorbing fluid past an infinite 

vertical plate embedded in a uniform porous medium. x  axis is taken along the plate in the upward direction and y 

axis normal to the plane of  plate in the fluid.  Fluid is permeated by a uniform transverse magnetic field 0B  applied 

parallel to y  axis. Initially, i.e. at time 0t  , both the fluid and plate are at rest and at a uniform temperature T
 . At 

time 0,t   plate starts moving in x  direction with uniform velocity 0U . When 00 t t  , temperature of the plate is 

raised or lowered to   0wT T T t t 
      and thereafter it is maintained at uniform temperature wT   i.e. when 0t t   ( 0t

being the characteristic time). Since plate is of infinite extent along x  and z  directions and electrically non-

conducting, all physical quantities, except pressure, depend on y  and t   only. It is assumed that the induced magnetic 

field generated by fluid motion is neglected in comparison to the applied one. This assumption is valid for liquid metals 

and partially ionized fluids [41]. Also no external electric field is applied so the effect of polarization of fluid is 

negligible. This corresponds to the case where no energy is added or extracted from the fluid by electrical means [41]. 

Keeping in view the assumptions made above, the governing equations for natural convection flow of a 

viscous, incompressible, electrically conducting and heat absorbing fluid in a uniform porous medium, under 

Boussinesq approximation, in the presence of thermal diffusion are given by 

 
22

0

2
,

Bu u
u u g T T

t Ky

 
 




  
        

  
        

(1) 

 
2

01

2
,

p p

QkT T
T T

t c cy 


  
   

  
          (2) 

where 0 1,  ,  , , , , and pu K Q k c     are, respectively, fluid velocity, permeability of porous medium, heat absorption 

coefficient, density, kinetic coefficient of viscosity, electrical conductivity, thermal conductivity and specific heat at 

constant pressure.  

The initial and boundary conditions are 
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0,        for 0 and 0,u T T y t
       

         
(3a)

0   at 0     for 0,u U y t                                                 (3b)

  0 0  at 0   for 0 ,wT T T T t t y t t 
                                                                                  (3c) 

0   at 0   for ,wT T y t t                                                                                                                      (3d) 

0,     as    for 0.u T T y t
                             (3e) 

Introducing the non dimensional variables and parameters 

   0 0 0 0,  ,  ,  ,wy y U t u u U t t t T T T T T 
             2 2

0 0 ,M B U    2 2

1 0 ,K K U   

  3

0 ,r wG g T T U  
     1r pP c k  and 

2

0 0 ,pQ c U                       (4) 

equations (1) and (2), in non dimensional form, become 
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where 
2

1, , , ,r rM K G P   and T are, respectively, magnetic parameter, permeability parameter, Grashof number, 

Prandtl number and dimensionless heat absorption coefficient and non-dimensional fluid temperature. 

According to the above non-dimensionalisation process, characteristic time 0t  can be defined as           

2

0 0 .t U                      (7) 

Using (4) and (7) the initial and boundary conditions (3a) to (3e), in non-dimensional form, become 

0,    0     for 0 and 0,u T y t                                              (8a) 

1   at 0     for 0,u y t                                               (8b) 

   at 0   for 0 1,T t y t                                               (8c) 

1   at 0   for 1,T y t                                                           (8d) 

0,    0   as    for 0u T y t                                                                  (8e) 

It is evident from equations (5) and (6) that energy equation (6) is uncoupled from the momentum equation (5). 

Therefore, we obtain first the solution for fluid temperature  ,T y t  by solving equation (6) and then using it in 

equation (5) solution for the fluid velocity  ,u y t  is obtained. 

 

3  Numerical solution  

Equations (5) and (6) subject to the conditions (8a) to (8e) are solved by employing Crank-Nicolson implicit finite 

difference scheme. The method is unconditionally stable and it is second order accurate in space and time [42]. Region 

of integration considered is a rectangle with ymax=6 (corresponding to y  ) and tmax=2 where 

0.05 and 0.01y t    such that the computational domain is divided into 121 201 grid points. Assumption of 

max 6y   is justified since boundary conditions (8e) is satisfied within tolerance limit of 510 . Mesh size 

0.05 with time step 0.01y t     is finalized after comparing results in this case with the results obtained when mesh 

size is reduced to 50% of the present case and it is noticed that the difference between these two results is less than half 

a unity in the fourth decimal place. Numerical solutions are obtained for both ramped temperature and isothermal plates 

for required number of iterations. It has been found that the absolute difference between the numerical values of u and T 

obtained for two consecutive time steps is less than 410 . Hence the scheme designed is stable. Moreover, Crank-

Nicolson scheme has local truncation error of     2 2
O y t    which tends to zero as andy t  tend to zero which 

justifies consistency. Stability and consistency together ensure convergence of the scheme.  
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4 Results and discussion 

In order to analyze the effects of magnetic field, thermal buoyancy force, heat absorption, thermal diffusion and time on 

the flow-field, numerical solution of fluid velocity u for both ramped temperature and isothermal plates, is depicted 

graphically versus boundary layer coordinate y in Figures 1 to 5 for various values of magnetic parameter 2M , Grashof 

number rG , heat absorption coefficient ,  Prandtl number rP  and
 
time t keeping permeability parameter fixed at 

K1=0.4. Figure 1 displays a comparison between exact solution obtained by Seth and Ansari [36] and the present 

numerical solution. It is evident from Figure 1 that there is an excellent agreement between the two solutions. Figure 1 

also demonstrates the effects of magnetic field on the fluid velocity u for both ramped temperature and isothermal 

plates. It is noticed from Figure 1 that, for both ramped temperature and isothermal plates, u decreases on increasing 
2M . This implies that magnetic field has a tendency to retard fluid velocity for both ramped temperature and isothermal 

plates. This is due to the fact that application of a magnetic field to an electrically conducting fluid gives rise to a 

resistive force, known as Lorentz force, which has a tendency to retard the fluid motion. Figure 2 illustrates the 

influence of thermal buoyancy force on fluid velocity u for both ramped temperature and isothermal plates. It is 

perceived from Figure 2 that, for both ramped temperature and isothermal plates, u increases on increasing rG . This 

implies that thermal buoyancy force tends to accelerate fluid velocity for both ramped temperature and isothermal 

plates. Figure 3 depicts the influence of heat absorption coefficient on fluid velocity u for both ramped temperature and 

isothermal plates. It is evident from Figure 3 that, for both ramped temperature and isothermal plates, u decreases on 

increasing  . This implies that heat absorption tends to retard fluid velocity for both ramped temperature and 

isothermal plates. Figure 4 demonstrates the effects of Prandtl number on fluid velocity u for both ramped temperature 

and isothermal plates. It is noticed from Figure 4 that, for both ramped temperature and isothermal plates, u increases on 

decreasing rP . Prandtl number rP  represents the relative strength of viscosity to thermal diffusivity of the fluid, Prandtl 

number rP  decreases on increasing thermal diffusivity of the fluid. This implies that thermal diffusion tends to 

accelerate fluid velocity for both ramped temperature and isothermal plates. Figure 5 presents the influence of time on 

fluid velocity u for both ramped temperature and isothermal plates. As time t increases fluid velocity u increases for 

both ramped temperature and isothermal plates. This implies that, fluid velocity is getting accelerated with the progress 

of time for both ramped temperature and isothermal plates. 

The numerical solution of fluid temperature T is displayed graphically in Figures 6 to 8 for different values of ,rP    

and t. It is found from Figures 6 to 8 that, for both ramped temperature and isothermal plates, fluid temperature T 

decreases on increasing
 rP  and   while it increases on increasing t. This implies that thermal diffusion tends to 

enhance fluid temperature whereas heat absorption has a reverse effect on it for both ramped temperature and 

isothermal plates. There is an enhancement in fluid temperature with the progress of time for both ramped temperature 

and isothermal plates. From Figures 1 to 8 it is also evident that both fluid velocity u and fluid temperature T attain a 

distinctive maximum value near the surface of plate and then decrease properly on increasing boundary layer coordinate 

y to approach free stream value. It is also perceived from Figures 1 to 8 that fluid velocity is slower and fluid 

temperature is lower in case of ramped temperature plate than that of isothermal plate. 

Numerical values of skin friction ,  for both ramped temperature and isothermal plates, are presented in tabular form in 

Tables 1 and 2 for various values 2 , rM G ,   and t  taking 1 0.4K   and 0.71rP   while those of Nusselt number Nu  

are given in Tables 3 and 4 for different values of ,   and rt P . It is found from Tables 1 and 2 that, for both ramped 

temperature and isothermal plates, skin friction   increases on increasing 2M and  whereas it decreases on increasing 

rG and t. This implies that, for both ramped temperature and isothermal plates, magnetic field and heat absorption tend 

to enhance skin friction whereas thermal buoyancy force has a reverse effect on it and skin friction is getting reduced 

with the progress of time. It is noticed from Tables 3 and 4 that, for both ramped temperature and isothermal plates, 

Nusselt number Nu increases on increasing  and rP  whereas it increases for ramped temperature plate and decreases 

for isothermal plate on increasing t. This implies that, for both ramped temperature and isothermal plates, thermal 

diffusion tends to reduce rate of heat transfer at the plate whereas heat absorption has a reverse effect on it. Rate of heat 

transfer at ramped temperature plate is getting enhanced whereas, at isothermal plate, it is getting reduced with the 

progress of time. 
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Table 1: Skin friction  when 0.5and 2.t    

 

2
r    GM 

 

Ramped Temperature Plate Isothermal Plate 

2 4 6 2 4 6 

       3 2.1409 1.9315 1.7221 1.8232 1.2962 0.7691 

       5 2.5411 2.3442 2.1472 2.2547 1.7713 1.2880 

       7 2.8928 2.7062 2.5195 2.6302 2.1811 1.7319 

 

 

Table 2: Skin friction  when 
2 5and 4rM G   

 

           t 
 

Ramped Temperature Plate Isothermal Plate 

0.3 0.5 0.7 0.3 0.5 0.7 

2 2.5478 2.3442 2.1458 1.8603 1.7713 1.7428 

4 2.5561 2.3668 2.1866 1.9155 1.8532 1.8393 

6 2.5633 2.3853 2.2182 1.9615 1.9149 1.9071 

 

 

Table 3: Nusselt number –Nu when 0.71rP   

 

           t 
 

Ramped Temperature Plate Isothermal Plate 

0.3 0.5 0.7 0.3 0.5 0.7 

2 0.6170 0.8741 1.1205 1.3562 1.2540 1.2201 

4 0.7038 1.0464 1.3848 1.7501 1.6996 1.6890 

6 0.7832       1.1977 1.6106 2.0933 2.0670 2.0638 

              

 

Table 4: Nusselt number –Nu when 2   

 

     
    trP 

 

Ramped Temperature Plate Isothermal Plate 

0.3 0.5 0.7 0.3 0.5 0.7 

0.33 0.4807 0.7136 0.9443 1.2458 1.1659 1.1527 

0.71 0.7038 1.0464 1.3848 1.7501 1.6996 1.6890 

1 0.8350       1.2416 1.6432 2.0722 2.0167 2.0042 
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5 Conclusions 

For both ramped temperature and isothermal plates, 

 Magnetic field and heat absorption tend to retard fluid velocity whereas thermal buoyancy force and thermal 

diffusion have reverse effect on it.  

 Fluid velocity is getting accelerated with the progress of time. 

 Thermal diffusion tends to enhance fluid temperature whereas heat absorption has a reverse effect on it.  

 There is an enhancement in fluid temperature with the progress of time. 

 Magnetic field and heat absorption tend to enhance skin friction whereas thermal buoyancy force has a reverse 

effect on it.  

 Skin friction is getting reduced with the progress of time. 

 Thermal diffusion tends to reduce rate of heat transfer at the plate whereas heat absorption has a reverse effect on it. 

Rate of heat transfer at ramped temperature plate is getting enhanced whereas, at isothermal plate, it is getting reduced 

with the progress of time. 
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