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Abstract 
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1. Introduction 

Time delay systems are important class of dynamical systems. 

Time delays are very often encountered in different technical sys-

tems such as electric, pneumatic and hydraulic networks, chemical 

processes, long transmission lines, control systems etc. [19], [20]. 

These delays are due to transportation of materials, energy or in-

formation, [54], [14]. The existence of time delays may cause 

undesirable system transient response and frequently the source of 

instability. Consequently, the question of stability of these class of 

systems is of theoretical and practical importance, see [2], [37], 

[56]. 

Numerous remarkable results relating to the stability of time delay 

systems have been published with particular emphasis on the ap-

plication of Frequency domain techniques [25], Lyapunov meth-

ods, or idea of matrix measure [33], [41], small-gain-base methods 

[17].  

In practice one is not only interested in system stability (in the 

sense of Lyapunov), but also in bounds of system trajectories. A 

system could be stable but still completely useless if it possesses 

undesirable transient performance. Thus, it may be useful to con-

sider the stability of such systems with respect to certain subset of 

the state space which are defined a priori in a given problem. Be-

sides that, it is of particular significance to consider the behavior 

of dynamical system only over a finite time interval. For this pur-

pose, the concept of finite time stability and practical stability has 

been used. A system is said to be finite time stable if, given a 

bound on the initial condition, its state does not exceed a certain 

threshold within a specified time interval. To verify the finite time 

stability of systems, several authors have developed different 

techniques to investigate stability criteria, see [1], [7], [8], [23], 

[24], [26], [36], [37], [42], [49] and references therein.  

Fractional calculus was first introduced 300 years ago and dates 

back to the works of Leibnitz, Liouville, Riemann, Grunwald, and 

Letnikov [28], [48]. Fractional calculus is a generalization of the 

traditional (integer order) calculus in which the order of the deriv-

atives and integers can be any real or complex number. In recent 

years, the study of fractional order derivative has attracted increas-

ing interest due to an important role it plays not only in mathemat-

ics, but also in physics, engineering, control systems, dynamical 

systems and in particular in the modeling of many natural phe-

nomena [24], [50], [28], [53]. There are two aspects that essential-

ly differentiates fractional order models and integer order, which 

makes it more realistic to characterize real world physical systems 

by fractional order state equation. First for the integer order deriv-

ative indicates a variation of a certain attributes at a particular time 

for a physical or mechanical process, while fractional order is 

concerned with the whole-time domain. Second, integer order 

derivatives describe the local properties of a certain position for 

physical process, while fractional order derivative is related to the 

whole space, [3], ]18].  

However, in many real world physical systems, fractional calculus 

is more feasible than integer calculus to model the behaviors of 

such system. For example, fractional electrical networks [39], 

fractional order Schrodinger equation [43], fractional oscillator 

equation [46], fractional Lotka-Volterra equation [18], robotics 

[15]. In particular, stability analysis is one of the most fundamen-

tal and important issues for systems. 

It is well known that the analysis of the stability of fractional sys-

tems is more complex than that of classical differential equation, 

since fractional derivatives are nonlocal and have more weakly 

singular kernels. Algebraic criteria for stability analysis of classi-

cal (integer order) system, such as Hurwitz and Routh criteria or 

Jury’s, cannot be used for fractional order system, because frac-

tional order systems do not have characteristics polynomials but 

pseudo polynomial with rational power multivalued function. 

Thus, there remain only geometric methods (Nyquist) which can 

be used for the stability check for bounded input bounded output.  

Different techniques have been proposed in the investigation of 

the stability for various fractional dynamical system, such as ana-

lytical approach [4], [27], fixed point theorem [9], [10], [51], the 

Lyapunov method [34], [35], linear matrix inequality [47], Gron-

wall inequality [12], [30].  

Recently there have been advances in control theory of fractional 

order dynamical systems for different kinds of stability. [38] con-

sidered the structural stability result of fractional differential equa-

tions with applications to control processing from both algebraic 

and analytical point of views. In their paper [11], they analyzed 

the stability of linear fractional differential system with multiple 
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time delays. Based on the characteristic equation defined by using 

Laplace transform, several stability criterions are derived.  

In [31], they extend some basic results of finite and practical sta-

bility of linear, continuous fractional order invariant time delay 

systems with delay in the state by proposing a stability test proce-

dure using Bellman-Gronwall theorem. [12] obtained sufficient 

condition for the finite time stability of a class of fractional singu-

lar time delay systems by giving the Mittag-Leffler estimate of the 

solution for an equivalent system. Also, finite time stability analy-

sis of fractional order time delay systems is studied in [30, 32]. 

Our aim in this paper is to develop sufficient condition for the 

finite time stability of a class of fractional order systems with time 

varying delays. 

2. Preliminaries 

Consider the equation 

 

              

     

0 1

, ,0
x M

x t A t x t A t x t t B t u t

x t t t



 

   

   
                         (2.1) 

 

Where   nx t R  is the state vector,   mu t R is the input control 

vector,    0 1
, n nA t A t R  ,   mB t R are matrices of bounded var-

iation,  t  is time varying delays,   ,0 , n

x
C R    is an ad-

missible initial state and   ,0 , n

M
C R  is a Banach space of con-

tinuous function mapping the interval  ,0
M
  into nR  which 

converges uniformly, and the norm defined by 

 

 
max 0

sup
 

  
  

  

 

The system behavior is defined over the time interval  0,I T , 

where T is a positive number.  

For the time invariant sets
 

S , used as bounds of the system tra-

jectories are assumed to be bounded, open and connected. Let S


be a given set of all allowable states of the system for t I  . Let 

S


be the set of all initial states of the system such that S S
 
  

and S


denote the set of all allowable control actions. The sets S


and S


are connected and a priori known. Generally, the set  

 

      
2

: , ,
Q

S x t x t


       

 

The time varying delay is assumed to satisfy the following condi-

tion 

 

 0
M

t                                                                                  (2.2) 

 

Where 
M
 represents the maximum delays. Before proceeding 

further, we will introduce the following definitions and theorems 

which will be used in the next section. 

Matrix measures have been extensively studied in [13, 21] and it is 

used to estimate upper bounds of matrix exponential. The follow-

ing theorem relates an upper bound of a matrix exponential to its 

matrix measures. 

Theorem 2.1: For any matrix n nA R   the estimate  

 

      exp expA t A t                                                        (2.3) 

 

Holds [12], [22]. 

 

Theorem 2.2: The matrix norm or Lozinskii logarithm norm of a 
n n matrix A is 

 

 
0

lim
h

I hA I
A

h




 
                                                                 (2.4) 

 

Where  . is any matrix norm compatible with some vector norm

 .
x . The matrix measure defined in theorem 2.2 has three variants 

depending on the norm utilized in the definition. 

It is assumed that the usual smoothness condition is satisfied by 

system (2.1) so that there will be no difficulty with the question of 

existence, uniqueness and continuity of solutions with respect to 

initial data. 

Before stating our results, we introduce the concept of finite-time 

stability for time-delay system (2.1). This concept can be formal-

ized through the following definition. 

 

Definition 2.1: Time delayed control system is finite time stable 

with respect to     0
, , , . , 0 ,S S T A

 
      if and only if; 

   , ,0
x

t S t


      

 

And 

 

  ,u t S t T


    

 

Implies 

 

   0 0
: , , 0,x t t x S t T


    

 

See [6], [31]. 

 

Definition 2.2: For any real matrix  ij n n
A a


 , its matrix measure 

is defined as  

 

 
0

1
lim

I A
A










 
                                                               (2.5) 

 

Where .


 denotes the matrix norm in n nR  , I is the identity ma-

trix and  1,2,    norm. the matrix norms are defined as follows 

 

 1
1

max
n

ij
j i

A a


  ,  max2

TA A A   

 

And 

 

 
1

max
n

ij
i j

A a




   

 

Lemma 2.1: For the definition of matrix measure, for any 

, , 1,2,n nA B R    , we have 

 

1)  A A A
 

    

 

2)    , 0A A
 

     
 

 

3)      A B A B
  

      

 

Definition 2.3: System given by eq. (2.1) satisfying the initial 

condition    , 0
x M

x t t t      is finite time stable w.r.t. 

 0
, , , , ,t J      if and only if 

x C
   and   ,

u
u t t J    

imply   ,x t t J   . 
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3. Fundamentals of fractional calculus 

At first, the differential and integral operators can be generalized 

into one fundamental 
t

D  operator t which is known as fractional 

calculus [5], [28], [44], [45]. 

 

 

 

   

0

1 0

0

a t

t

a

d

dt

D

d













 



 


  


 


 

 

There are many ways to define fractional derivatives and integrals. 

The definition generally used in recent studies are, Grunwald-

Letinkov, Riemann-Liouville and Caputo definitions. 

 

Definition 3.1: The Grunwald-Letnikov (GL) fractional derivative 

of order , 0    and fractional integral of order , 0   of a 

continuous function  f t  defined on the interval  ,a b  are de-

fined by 

 

     
 

 

   

/

0 0

1
lim 1 ,

1

t a h
kGL

a t h k

D f t f t kh
kh

k

k k







 



  

 

 
    

 

  
 
    

                               (3.1) 

 

And the fractional integral as  

 

 
   
 

 

   

 

1

0

1

0

1

1

k k
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a t
k

n

t

na

f t
D f t

k

f s
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n t s











 




 

 
   

 
  

                                     (3.2) 

 

Where a and t  are limits of the operator,  .   denotes the integer 

part of  .  and  .  is the Euler’s gamma function that generalizes 

factorial for non-integer arguments:  

 

     1

0
, 1 ,t zz e t dt z z z x iy

           

 

One basic property of the gamma function is that it satisfies the 

functional equation 

 

       , 1 1 ! !z z z n n n n         

 

Definition 3.2: Let  ,a b  be a finite interval, a b     , 

 ,a b R and  f t be a continuous function defined on  ,a b , the 

Riemann-Liouville fractional derivative of order   is given by 

 

 

 
 

 
1

1

a t

n

t

nan

D f t

f sd
ds

n dt t s






 

 
  

                                                      (3.3) 

 

For  1n a n    and  .  is Euler’s gamma function. 

Closely related to Riemann-Liouville Fractional order derivative is 

the fractional integral defined by  

 

 

 
 

 
1

1
, 0

a t

t

a

D f t

f s
ds

t s



 





 
 

                                  (3.4) 

 

In [3] it has been proposed that the integer order (classical) deriva-

tive of function x, as are commonly used in initial value problem 

with integer order equations be incorporated. 

Definition 3.3 [5]: The Caputo fractional derivative of order 

0   of a function  : 0,f R  can be written as  

 

 

 

   

 

0

10

1

C

t

n

t

n

d f
D f t

dt

f s
ds

n t s










 

  

 
  

                                  (3.5) 

 

   1 ,
n

n

n

d f
n n f s

ds
     

 

Some properties of Riemann-Liouville and Caputo derivatives are 

recalled here, [40], [55]. 

Property 3.1 

When 0 1  , we have 

 

   
 

 
 

0 0

0

0

1

C

t t t t

x t
D x t D x t t t

 





  
 

 

 

In particular, if    
0 0

C

t t t t
D x t D x t   

Property 3.2 

For 1,v   we have 

 

 
 

 
 

0 0 0

1

1

v v

t t

v
D t t t t

v





 
  

 
 

 

In particular, if 0 1   and    0

v

x t t t  then, from property 

3.1, we have 

 

 
 

 
 

0 0 0

1

1

v vC

t t

v
D t t t t

v





 
  

  
 

 

Property 3.3 

From the definition of Caputo derivation eq. (3.5) when 0 1   

we have 

 

     
0 0 0

C

t t t
I D x t x t x t     

 

Where 

 

  
 

 

 0 0
1 0

1
,

t

t t

f s
I f t ds t t

t s








 
 

 

 

Property 3.4 

Fractional order differentiation is a linear operator: 

 

        D f t g t D f t D g t         

 

Also, the chain rule has the form  

 

  
  

0

k k

k k
k

d f g t d d
I f g t

kdt dt dt

 

 

 







   
    

  
 

 

Where k N and 
k





 
 
 

are the coefficients of the generalized 

binomial 

 

 
   

1

1 1k k k

 




  
 
     

 

There are also two functions that play an important role in the 

study of stability of FDE’s 

 

Definition 3.4: The Mittag-Leffler function is defined by  
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 
 0 1

k

k

z
E z

k








 
 

 

 

Where  Re 0, .z z C  the two parameter Mittag-Leffler function 

is defined by 

 

 
 ,

0

k

k

z
E z

k
 

 





 
 

 

 

Where  Re 0,z  and ,C z C    

 

Definition 3.5: The   exponential function is defined by 

 

 1

,

ze z E z  

  
  

 

Where  \ 0, Re 0z C   and  ,
. .C E

 
  is the two parameter 

Mittag-Leffler function. Mittage-Leffler function is frequently 

used in the solution of fractional order system and is a generaliza-

tion of the exponential function. 

4. Main result 

Here, a class of linear dynamical system with time varying delays 

in the state of the form  

 

      0 1

t

d
D

dt

A x t A x t t Bu t











   

                                 (4.1) 

 

With initial condition    x
x t t , where the time varying delays 

satisfy eq. (2.2) and 
t

D  denotes Caputo fractional derivative of 

order , 0 1    is considered. 

 

Lemma 4.1: (Bellman-Gronwall inequality [16], [52]) 

 

Suppose  x t and  a t are nonnegative and locally integrable on 

0 t t  , T  , and  g t  is nonnegative continuous function 

defined on 0 t t  ,   ,g t M M a constant, 0   with 

 

         
1

0

t

x t a t g t t s x s ds


    

 

On this interval, then: 

 

   

    
 

 
1

0
, 0

nt

x t a t

g t
t s ds t T

n









 
       

 

 

Theorem 4.1: The dynamical system eq. (4.1) satisfying the initial 

condition    x
x t t , 0

M
t    is finite time stable w.r.t. 

 , , , ,
u

J      if the following condition is satisfied  

 

 
 

 

 

 

 

0

10

0

1
1

/
1

t t

M

t t
e

b t t

 





 
 



 

 

• 

 
 

   

    
 

 

 

Where 
0
/

u
   •  ,  .  Euler’s gamma function. 

Proof 

In accordance with the property of fractional order 0 1  , the 

solution can be obtained in the form of an equivalent Volterra 

integral equation:  
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To obtain an estimate of the solution we apply the norm  . to eq. 

(4.2) and using appropriate property of the norm, the following 

applies: 
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                                          (4.3) 

 

Also, applying the norm  .  to eq. (4.1), it holds: 
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Where A  denotes the induced norm of matrix A, considering  
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Applying the inequality eq. (4.5), eq. (4.4) can be written as  
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So, 
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Where 
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Combining eq. (4.7) with eq. (4.3) yields  
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Let 
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By eq. (4.8), we have 
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Obviously, the right-hand side of eq. (4.10) is a nondecreasing 

continuous function defined on [0, T], hence 
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Applying the generalized Gronwall inequality, lemma 4.1, leads to 
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And the relation 
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Hence by the basic conditions of theorem (4.1), eq. (4.1) yields 

 

 x t t J    

 

This completes the proof. 

5. Conclusion 

In this article, stability results of a class of linear fractional order 

systems with time varying delays in the state was considered. 

Stability criteria for this class of system was derived by applying 

Bellman-Gronwall theorem where sufficient conditions of finite 

time stability are obtained. 
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