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Abstract 

The present paper introduces analytical model applicable for analysis 
of motion of water droplets injected into fire-generated plumes. The 
model is derived from Lagrangian equation of droplet motion. 
Application of the developed model to the practically important 
problem that is fire suppression by water sprays is discussed. A 
criterion for optimum spray dynamics is proposed. An analytical 
expression is provided for the optimum droplet size in the spray as a 
function of Heat Release Rate (HRR) of fire. The present approach 
provides a quick estimation of optimum spray parameters for a 
particular fire suppression application.  

Keywords: Droplet Dynamics, Fire Suppression, Lagrangian Model, 
Optimum Fire Fighting 

1 Introduction 

Droplet motion in flows of various configurations is of great theoretical and 

practical interest. Very little research is done, however, on this topic in terms of 

developing approximate analytical solutions. Morsi and Alexander [1] considered 

the problem of spherical particles movement in a one-dimensional and in some 

two-dimensional flows (around a circular cylinder and around a lifting aerofoil 

section). They were only able to solve equations analytically in the case of one-

dimensional flow. Recently, Novozhilov [2] presented analytical solutions for 

both non-evaporating and evaporating particles in the two-dimensional 

axisymmetrical case, with the flow parallel to the axis of symmetry and changing 

in the radial direction only. 

The present paper concerns with the specific case of spherical droplet 

movement in a flow generated by fire plume. Flow is approximated as one-



 

 

 

Optimum Droplet Motion in Fire Plumes 235 

 

 

 

dimensional but its velocity profile behaves in a peculiar manner, specific for 

convective plumes. 

The problem considered is of great practical interest for fire fighting which still 

mostly relies on fire suppression by different forms of water sprays. In particular, 

the effect of particle sixe is quite important. Droplet size distribution has a strong 

influence on spray/fire plume interaction; it controls the rate of spray evaporation 

in the flame and eventually the efficiency of flame suppression. These features 

have been extensively observed in fire suppression studies [3-5]. Fire suppression 

by water spray can occur in the two distinctive regimes [3]: via fuel cooling 

(surface suppression) or via flame cooling (gaseous suppression). First 

corresponds to relatively coarse sprinkler sprays, the second to fine water mists. 

The most efficient way of fire suppression is associated with the latter mode. 

These regimes are demonstrated qualitatively in Figure 1. 
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AA  – gas suppression
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Figure 1    Schematic of suppression regimes 

 

An efficient application of either of these strategies requires that the spray 

parameters are optimized to achieve maximum heat extraction rate. As explained 

above, the primary parameter that can be varied for such an optimization is 

droplet size. 

 

Several studies [6-9] attempted to define optimum droplet size in a different 

manner, and obtained numerical estimations corresponding to their definitions. 

Criteria for optimality and predicted optimum droplet diameters vary wildly. 

 

In the present study an entirely novel concept of optimum spray diameter is 

proposed. It is based on the strategy of flame suppression in the gaseous phase, 

and applies therefore, in general, to fire suppression regimes delivered by water 

mist systems. A distinguishing feature of this approach is that the estimation for 
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the optimum diameter is derived from exact equation of droplet motion and exact 

flow velocity profile in fire plume and flame. Starting from exact equations, the 

model however provides surprisingly simple formulas for optimum droplet 

diameter in fire fighting sprays.  

It is argued that a proper scientific definition of water mist sprays need be based 

on consideration of spray dynamics under specific fire conditions. 

 

2 Mathematical Model 

Consider the basics of water droplet interaction with flame and fire plume (Figure 

2). Fire-induced flow structure consists of three distinctive zones: continuous 

flame zone, intermittent flame zone (where luminous flame is appearing only for 

fraction of time), and fire plume zone (convective flow of inert combustion 

products mixed with surrounding air). 
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Figure 2  Schematic of droplet injection into fire plume 

The equation of droplet motion is taken in the form [10] 
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According to arrangements of Figure 2, components of the velocities obey      

V<0; U>0; V-U<0.  

 
Taking this into account, the equation (2) in components becomes  
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At this point, an approximation regarding the form of dependence of the drag 

coefficient on the particle Reynolds number is made. It is customary to 

characterize particle drag coefficient, for example, by the following correlation 

[11] 
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In the present analysis, this dependence is replaced by the following simplifying 

one 

 
410Re,Re/27  ppDC                                                                                     (5)  

 

It has been demonstrated [2] that the correlation (5) is quite reasonable, and 

certainly provides good practical results in the context of the present analysis. 

The use of a simple universal correlation (5) greatly simplifies the equation (3). 

Indeed, on the RHS of (3) one has 
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Finally, the basic approximate equation of the droplet motion used throughout the 

present paper is  
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with 
p




4

81
 . The profile  zU  in the above equation is assumed to be 

known, and is determined by a particular fire under consideration. 

Even in the case of constant droplet diameter no analytical solutions for equation 

(7) are known, although the equation form itself is rather familiar. In the latter 

case (constant diameter) the equation (7) belongs to the class of Abel Equations of 

the Second Kind. Existence of closed-form solutions for these equations depend 

on the form of a known function on the RHS, in our case, essentially, on the form 

of the profile  zU . Unfortunately, the case of velocity profiles in fire plumes 

  3/1~ zzU  does not fall into the classified cases which admit integration [12]. 

 

3 Results and Discussion 

The basic idea of the analysis is that for the particular present application 

(optimum droplet movement), only the lowest point of the droplet trajectory is 

most important. This is explained in more detail below. This consideration allows 

the problem of non-integrable case of equation (7) to be circumvented. It will be 

demonstrated the closed model predicting the lowest point of the droplet 

trajectory can be obtained.  

3.1    Non-evaporating droplet 

To illustrate the method for estimating optimum diameter, consider movement of 

a non-evaporating particle first. This case illustrates essential properties of 

solution of the equation (7).  

 

In general, the optimum should be defined in the following way: droplet posses 

the optimum diameter if upon injection it evaporates exactly in the flame region 

(i.e. neither penetrates to the surface nor evaporates in inert fire plume). In 

application to a non-evaporating particle, it is sensible to impose the following 

criterion: zero-velocity point of the droplet’s trajectory is inside the flame. This 

point will also be a reversing point for a droplet trajectory, since upon achieving 

this point the droplet will still experience acceleration by fire plume, and will start 

to move upwards. The rationale for such a criterion is that if the droplet had a 

capability to evaporate, complete evaporation is likely to happen in the vicinity of 

a reversing point where the temperature is high (flame temperature) and droplet 

motion is slow (residence time large). 

It will be demonstrated below that a similar, slightly modified criterion is suitable 

for a general case of evaporating droplet. 

 

Using the identity 
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the equation (7) is transformed into 
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This equation can now be integrated between the initial ( maxz ) and final ( minz ) 

points of the trajectory (we remind that constd  at the moment) to get 
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The integral term containing plume velocity profile  zU  is a known function, 

obtained upon specification of the latter profile. 

 

The term involving unknown profile of the particle velocity  zV  needs, however, 

be estimated.  

 

This integral term can be written (using (8) again) as 
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and the simplest estimation (mean value theorem) yields 
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Therefore, the equation (10) gives 
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and 
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Finally, one arrives at the estimation:   
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At this point, plume velocity profile must be specified. The reference fire used for 

illustration is a methanol pool fire, which exhibits nearly constant burning rate 

over a wide range of pool diameters. 

 

For a particular fire HRR, a corresponding pool diameter can be found from the 

burning rate assuming complete combustion of the fuel. Then, flame heights, 

virtual origin position, and plume velocity profile can be predicted by well-known 

correlations of Heskestad [13].  

 

The plume velocity profile is given as  
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Velocity distribution in the flame zone is different. Velocity is nearly constant in 

the intermittent zone, and falls to zero following square-root dependence in the 

continuous zone [13]. Intermittent zone typically covers about 60% of the total 

flame height [13]. Based on these estimations, velocity profile (17) can be 

extended into the flame zone as 
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(19) 

This procedure uniquely relates fire HRR to the plume geometry and thermal 

properties. 

 

In the present example, half height of the flame is taken as a trajectory reverse 

point, i.e.     2/min fLz  . Upon integration of the profile (17-19), the following 

expression is obtained: 
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( 1 3/2 ; 2 1/2 ) 

 

The equations (16,20) provide required estimation for the optimum droplet 

diameter. 

 

Quality of prediction is tested against numerical solution of the equation of 

droplet motion, coupled to the mass transfer equation. Description of the 

Lagrangian method of particle (droplet) tracking is widely available in the 

literature, e.g. [3,4].   

 

Droplet initial velocity is kept constant at 0V =20 m/s. Initial droplet height is 3 m 

for the present case, and 5 m for the evaporating droplet analysis (below).  

 

Prediction results for a non-evaporating droplet are presented in Figure 3. There is 

an excellent agreement between the analytical estimation (16,20) and the solution 

obtained by numerical integration. 

3.2    Evaporating droplet 

Similar ideas are applicable for the droplet experiencing evaporation in fire plume 

and flame. 

 

The optimum is redefined here in the following way: droplet trajectory ends at the 

surface of the material due to complete evaporation. This ensures, first of all, that 

droplet is delivered into the flame zone and completely evaporates in this zone, i.e. 

it is not being carried away by the plume. Secondly, major part of evaporation 
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process is expected to occur in the flaming zone, since the droplet will 

significantly decelerate before it disappears at the surface. (Note that the point of 

complete evaporation is always also a point of zero velocity for the droplet 

trajectory). Therefore, the droplet will have large residence time in the flame. 

Strict mathematical proof of the above criterion is yet to follow in subsequent 

publications. 
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Figure 3  Comparison between optimum droplet diameters predicted by analytical 

formulae (16, 20) and by numerical analysis 

 - analytical;   - numerical 

 

The equation (9) is modified slightly to give  
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A 2d -law of evaporation [14] is a good approximation for the droplet diameter 

history. Relevance of this approximation for droplets moving in fire plumes can 

be confirmed, for example, by numerical analysis of the droplet motion. 

 

Specifically, the d
2
-law implies that the droplet surface area diminishes at a 

constant rate: 
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The evaporation constant evk is estimated as follows [14]  
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Integration of the equation (21) from the initial point down to the fuel surface 

gives an approximate relation 
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(Integration by parts is performed on the LHS, with the relation (23) being taken 

into account. Further, we made an approximation  
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Estimating the last two integrals on the RHS of (25) gives 
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and, finally 
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The integrated gas velocity profile for the present case takes the following form 
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Comparison with the numerical integration results are presented in Figure 4 for a 

range of fire sizes spanning nearly order of magnitude in HRR. The agreement is 

particularly good for smaller fires (~1 MW) with the optimum diameter starting to 

be slightly under-predicted for larger fires. Overall, deviation of the analytical 

estimation from “exact” (numerical) solution does not exceed 13%. 

 

Of the particular interest is a dependence of an optimum diameter on the fire HRR. 

The rate of the diameter increase with fire size is easily deducible from (27) in the 

form 
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In reality, the rate is slightly bigger, as suggested by Figure 4. It is intended to 

perform more sophisticated analysis of the equation (21) in order to improve 

predictions.  
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Figure 4    Comparison between optimum droplet diameters predicted by 

analytical formulae (27, 28) and by numerical analysis 

1 - analytical;  2 - numerical 

 

The proposed concept of optimum droplet diameter allows scientifically clear 

definition of water mist to be proposed. At the present, definitions used in the 

literature are rather arbitrary. One can define water mist spray as such that aims at 

gaseous flame suppression, rather than surface suppression. In this mode, droplets 

will evaporate above the surface of the burning material. If such a definition is 

adopted then it becomes clear that the actual droplet size in water mist spray 
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cannot be specified without referring to a particular fire. Indeed, minimum 

diameter of droplets penetrating through the flame towards surface is a function of 

fire Heat Release rate (Figure 4). With the help of the estimation of optimum 

droplet diameter proposed in the present paper, one can quantitatively define 

water mist spray for a particular fire with a specific HRR as such that droplet 

diameters in the spray satisfy  

 

 optd d Q                                                                                                          (30) 

 

4 Conclusion 

Equations of droplet motion and evaporation in fire plumes do not admit exact 

solutions. Despite of this fact, it is possible to derive a range of useful quantitative 

results in an analytical manner. One possible application of the analysis, 

demonstrated in the present paper, is the concept of an optimum droplet diameter 

for fire fighting. 

 

A new concept of an optimum diameter has been proposed, based on the strategy 

of complete droplet evaporation in the flame. Such definition would be of 

particular importance for water mist suppression systems, relying on gaseous 

flame suppression. 

 

The proposed definition of the optimum droplet requires analysis of the droplet 

motion and evaporation within fire plume and flame. The analysis has been 

performed using Lagrangian equation of droplet dynamics. Despite the absence of 

exact solutions, the nature of applied optimum criterion allowed quantitative 

results to be derived. 

 

An optimum diameter has been predicted analytically for fires in the range from 

250 to 2000 kW to within 13% of the accurate numerical solution. An optimum 

diameter has turned out to be a weak function of the fire Heat Release Rate. The 

form of the latter dependence has been derived. 

Results are encouraging in a sense that a rather complicated problem has been 

solved with a good accuracy by fairly simple considerations. It is planned to 

perform more sophisticated analysis in order to improve results further. 

 

5 Notation  

DC  drag coefficient 

pc
 

gas specific heat 



 

 

 

246 V. Novozhilov 

 

d
 

droplet diameter 

0d
 

initial droplet diameter 

optd
 

optimum droplet diameter 

gF
 

gravity force 

g
 gravity acceleration 

evk
 

evaporation constant 

gk
 

gas thermal conductivity 

L
 

latent heat of vaporization 

fL
 

mean flame height 

m  droplet mass 

Q
 

fire Heat Release Rate  

cQ
 

fire convective Heat Release Rate 

pRe
 

particle (droplet) Reynolds number  

T
 

ambient temperature 

gT
 

gas temperature 

sT
 

droplet surface temperature 

t
 time 

U
 

fire plume velocity 
V  droplet velocity 

0V
 

initial droplet velocity  

z  height 

maxz  initial droplet height 

minz  bottom point of droplet trajectory 

0z  fire plume virtual origin 

  

Greek symbols  


 
gas kinematic viscosity 


 gas density 

p  
particle (droplet) density 

  
ambient density 
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