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Abstract

This paper deals with implementation of the variational homotopy pertubation method (VHPM) for solving the
K(2,2) compacton equation. The numerical results show that the approach is easy to implement and accurate when
it is compared with the exact solution. The suggested algorithm is quite efficient and is practically well suited
for use in the nonlinear problems. The fact that the proposed technique solves nonlinear problems without using
the Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.
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1 Introduction

Nonlinear differential equations are encountered in various fields in physics, chemistry, biology, mathematics and
engineering. For example, Burgers’ equation is used to describe various kinds of phenomena such as turbulence
and the approximation theory of flow through a shock wave traveling in a viscous fluid [2]. Numerical methods
which are commonly used such as finite difference [4], finite element or characteristics method need large size of
computational works and usually the effect of round-off error causes loss of accuracy in the results. Most nonlinear
models of real-life problems are still very difficult to solve either numerically or theoretically.

In recent years, several methods have drawn particular attention, such as the Adomian decomposition method
[1], the variational iteration method [5], the homotopy analysis method [13], and the homotopy perturbation method
[6, 7,8, 9]

In this paper we consider the following nonlinear dispersive K(m,n) equation:

ur +a(u™)y + (u")pge =0 (1)

developed in [10] for describing the compacton (m > 0, 1 < n < 3) which is a compact wave that preserves its shape
after the interaction with another compact wave.
In the case m = n = 1, this equation becomes

us + (u2)1: + (u2)xazm = Oa (2)
has
u(z,t) = (4¢/3) cos®((x — ct)/4) (3)

as exact solution and it is developed in [4] for describing the compacton solution. While taking w(z,0) =
(4/3) cos?(x/4), and considering Eq. (2), it derives the initial value problem

u(x,0) = (4/3) cos?(x/4) '
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In what follows, the variational iteration method is modified by introducing a transformation such that the solution
is expressed by the series approximation. Precisely, we couple the classical variational iteration method with He’s
polynomials [7, 9] and construct a new homotopy to solve (4). Our modification proposed in Section 4 extends the
variational iteration method with He’s polynomials. This modification provides an accurate approximation for the
K (2,2) equation. This implies that our method provides a new idea of the variational iteration method with He’s
polynomials for finding an approximation of the nonlinear differential equations. Observing the numerical results,
and comparing our approximation with the exact solution, the proposed method reveals to be very close to the
exact solution. The details of the comparison results are displayed in Table 1 and Table 2 in Section 5.

2 Variational iteration method

To illustrate the basic concepts of the VIM, we consider the following differential equation
L(u(z,t)) + N(u(z,t) = g(z,t) (5)

where L is a linear operator, N is a nonlinear operator and g(z,t) is an inhomogeneous term. Then we can construct
a correction functional as follows

Unt1 (2, t) = up (2, t) + /)\ {L(uw(z, 7)) + N(tu(z, 7)) — g(x, ) }dT (6)
0

where A is a general Lagrange multiplier, which can be identified optimally via variational theory. The second
term on the right hand side is called the correction and is considered as a restricted variation, i.e., da,, = 0. By
this method, it is required first to determine the Lagrangian multiplier A\ that will be identified optimally. The
successive approximations u,11(z,t), n > 0 of the solution u(x, t) will be readily obtained upon using the determined
Lagrangian multiplier and any selective function wug(x,t). Consequently, the solution is given by

u(z,t) = Um wu,(z,t). (7)

n—oo

3 Homotopy perturbation method

To illustrate the basic ideas of the HPM, we consider the following nonlinear differential equation
Alu) = f(r) =0, r€Q, (8)

with the boundary conditions

ou
B(u,an)—(), rerl, (9)

where A, is a general differential operator, B is a boundary operator, f(r) is a known analytical function and T is
the boundary of the domain €.

Generally speaking, the operator A can be divided into two parts L and N where L is the linear part, and N the
nonlinear part. Therefore Eq. (8) can be rewritten as

L(u) + N(u) — f(r) =0. (10)
By the homotopy perturbation technique, we construct a homotopy v(r,p) : Q x [0,1] — R which satisfies

H(v,p) = (1= p) [L(v) — L(uo)] + p[A(v) — f(r)] = 0, (11)

H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] =0, (12)

where p € [0,1] is an embedding parameter and ug is an initial approximation of equation (8) which satisfies the
boundary conditions. Considering equation (12) we will have

H(v,0) = L(v) — L(ug) =0 (13)
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and
H(v,1) = A(v) — f(r) = 0. (14)

The changing process of p from zero to unity is just that of v(r,p) from ug(r) to u(r). In topology this is called
deformation and L(v) — L(ug) and A(v) — f(r) are called homotopy. According to the homotopy perturbation
theory, we can first use the embedding parameter p as a small parameter and assume that the solution of equation
(11) can be written as a power series in p

v =1+ pv; + pPva+ ... (15)
Setting p = 1 one have the approximation solution of equation (8) as the following

uzlimlvzvo—I—vl—l—vg—I—... (16)
p*}

The convergence of series (16) is discussed in [3].

4 Variational homotopy perturbation method

In the homotopy perturbation method [11], the basic assumption is that the solutions can be written as a power
series in p

+oo
u:Zpiui:uo—l—pul—&—ﬁug—i—... (17)
i=0

To illustrate the concept of the variational homotopy perturbation method [14] [matinfar2] we consider the general
differential equation (5). We construct the correction functional (6) and apply the homotopy perturbation method
to obtain [12, 14].

t

00 ] +o00 )
Zplui(m,t) = ug(z,t) —i—p/)\ {N(Zp’ui(x,T)) —g(=, T)}dT. (18)

As we see, the procedure is formulated by the coupling of variational iteration method and homotopy perturbation
method. A comparison of like powers of p gives solutions of various orders.

5 Numerical results

In this section we will examine the nonlinear dispersive equation K (2, 2) defined in Eq. (2) and expressed in the form
of the initial value problem (4). We apply the VHPM developed in Section 4, construct the correction functional
and calculate the Lagrange multipliers optimally via variational theory.

The correction functional for (4) reads

t

Up41 = Up + /)‘(7—) {(un)T + ((ﬂn)2)T + ((an)2)rm}d'ra (19)
0
or
/ 0 0? 0 03
U, U, U, U,
Upp1 = Uy + /)\(7') {87 + <2un +6 522 ) s 4 2uy, 9 }dr (20)
0

and which yields the stationary conditions

1ATio ] @

Therefore, the general Lagrange multiplier can be readily identified as A = —1.
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Substituting this value of the Lagrangian multiplier into functional (19) or its equivalent

iteration formula

t

U1 (2, ) = (2, 1) _/{
0

+2uy, (2, 7) 783“3’i§’7)

Qun(e) (Qun(m,T) +

Applying the variational homotopy perturbation method, one obtains

Too
OZplui(a:,T)
+OO t = orT +
Zpulxt)—uoa:t p/
=0 0
+oo |
+2 3 pui(z,T)
=0

682u”(a:,‘r) Ounp (z,7)
Ox? oz dr
+oo | oo
2 Z plui(ma T)+ o Z piul(w,‘r)
=0 i=0
X Oz
Is] Z pru;(z,7)
i=0
6 oz?
+too
* > plui(z,7)
Ox3
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equation (20) gives the

(22)

dr. (23)

Comparing the coefficient of like powers of p we obtain the following set of linear partial differential equations

t
/{2u0 z,7T) ug(gg .7)
0
63211,0(1 7) Ouq (z,7) +2

Buw (z,7) 8 uﬁ (r T)
+6 0(’99: 0,

+2Uo (J?, 7_) Bula(:z T) + 28u06(;,‘r)

B3 ug (x,7)
Ox3

+ 2uO (37, T)

ug(z,t) = —

o—_ .

9 u0(z.7) Bus(z.7)
ox

2 + 2uq (z,7)

+2us (2, 7)% + 2ua(x, T)
+68uo(ac ,T) o uazégc ,T) + 2’[1,0(33, 7_)
+6———

us(x,t) = —

o

Bul(x 7) 8%uy (x,7)
Ox2

+ (Quo(ac, T)+6

82 7] (J?, T)
0z

Oug(z,T)
ox

)y

up(x,T)
33u1(z,'r)
Ox3

dr

uy(x,7)

9%us (z,7)

Ox3

+2g(e, )220 | gun (g, 7) 2]
Oug (x,7)

e dr

83“2(53,7')

Ox3

(26)

and so on, in the same manner the rest of components can be obtained using the Maple package.

Consequently, while taking the initial value u(z,0) =

3 cos?(%), and according to Eqgs.

(24)-(26), the first few

components of the variational homotopy perturbation solution for Eq. (19) are derived as follows

uo(x,t)

u(z,0) = 3 cos?(%)
uy (z,t) = 2 cos(%) sin(£)t

us(w,t) = 33 (=14 2cos?(%)) 12

361 (cos(%) sin(%)) 3

uz(x,t)

The other components of the VHPM can be determined in a similar way. Finally, the approximate solution of Eq.

(19) in a series form is

w(w,t) ~ ug(z,t) + uy(z,t) + ug(x,t) + . ..

(27)
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Consequently, the third-order term approximate solution for Eq. (19) is given by
u(z,t) = 4 cos?(£) + 2 cos(%) sin(%)t
— 5 (—1+2cos?(%)) t? — 55 (cos(%) sin(%)) ¢3 (28)

and this will, in the limit of infinitely many terms, yield the closed form solution

4 —t
u(e,t) = (5) cos* () (29)
which is represented in Fig. 1.
On the other hand, a development of the exact solution (29) in Taylor series over t=0 to order 3 gives:
_ 4 2(x 2 T\ o x
u(z,t) = 5 cos®(§) + 5 cos()sin(§)t (30)

— 15 (—142c05*(§)) 2 — 55 (cos(§) sin(§)) £* + O(t*)

which confirms our result.

2,
S 2
L
SF

Figure 2: Approximate solution (27) of the Eq. (19) given by the VHPM method with third order.

In figure 1, we have represented the graph of the exact solution of Eq. (20). As we see, there is practically
no difference between the graph of the approximate series solution in Fig. 2 and the exact solution in Fig. 1.
Additionally, we see in table 1 and table 2, that the calculation of error between the exact solution and that
obtained by the VHPM method shows that the resulting value is very close to the exact solution.

6 Conclusion
In this paper, we have studied the one-dimensional K(2,2) equation by using the variational homotopy perturbation

method. The results show that the proposed method is powerful for finding the numerical solutions and can be
used to obtain the series solution for the general case K(m,n) equations, where m and n can be different from
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Table 1: The VHPM results for 3 iterations in comparison with the exact solution of the K(2,2) equation with initial
conditions of Eq. (4).

t/x 0.1 0.2 0.3 0.4 0.5

0.1 1.73466 107 1.72903+10~7 1.71907 107 1.70481%10~7 1.68629 x 10—~

0.2 277616 x107% 2.76852 %1076 2.75397% 1076 2.73253 % 106  2.70427 + 10~°

0.3 0.0000140555 0.0000140239 0.0000139572 0.0000138556 0.0000137194

0.4  0.0000444185 0.0000443408 0.0000441522 0.0000438533 0.0000434448

0.5 0.000108417 0.000108281 0.000107875 0.000107199 0.000106255

Table 2: The VHPM results for 6 iterations in comparison with the exact solution of the K(2,2) equation with initial
conditions of Eq. 4.

t/x 0.1 0.2 0.3 0.4 0.5

0.1 1.44542%10~T7 1.44051 %10~ T 1.43199% 10~ 1T 1.41993 %10~ 1T 1.40423 % 10~ 1T

0.2 9.25265% 10710  9.22456 % 10710  9.17342% 10710  9.09935 %« 10~1°  9.00253 % 1010

0.3 1.05408 *10~%  1.05125%10~%  1.0458 x10~%  1.03774%10"%  1.02708 * 108

0.4 5.92275 %1078 5.909 % 10~8 5.88049 x+ 1078 5.83727 %1073  5.77947 % 108

0.5 2.25925% 1077  2.25481 % 10~7  2.24474% 107 222906 % 10~7  2.2078 % 10~ 7

2. We have seen that the VHPM method requires the evaluation of the Lagrangian multiplier A, while the ADM
method requires the evaluation of the Adomian polynomials. As the evaluation of the Adomian polynomials for
every nonlinear terms requires more and more algebraic calculations, it should be better to used the VHPM method
to overcome this difficulty. We can integrate the equation directly without use calculation of Adomian polynomials.
Moreover, an observation of the error analysis in Table 1 and 2 shows that more accuracy can be obtained by adding
terms in the series.
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