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Abstract 
 

Solving fractional differential equations have a prominent function in different science such as physics and engineering. Therefore, are 

different definitions of the fractional derivative presented in recent years. The aim of the current paper is to solve the fractional diffe-

rential equation by a semi-analytical method based on conformable fractional derivative. Fractional Bratu-type equations have been 

solved by the method and to show its capabilities. The obtained results have been compared with the exact solution. 
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1. Introduction 

Solving fractional differential equations is very important but 

there are many fractional differential equations, which can’t be 

solved analytically. Due to this fact, finding an approximate solu-

tion of fractional differential equations is clearly significant. In 

recent years, many effective methods have been proposed for find-

ing approximate solution to fractional differential equations [3-13], 

such as Adomian decomposition method [14,15], homotopy per-

turbation method [16-19], homotopy analysis method [20], varia-

tional iteration method [21], generalized, differential transform 

method [22], finite difference method [23], semi-discrete scheme 

and Chebyshev collocation method [24], Wavelet Operational [25], 

Perturbation-iteration algorithm [26], and other methods [27-29]. 

Definitions of the fractional derivative presented in different forms 

such as Caputo, Liouville, and so on. Most recently a novel defini-

tion called comfortable fractional has been suggested to obtain 

fractional Derivative [1, 2].]. The purpose of the paper is solving 

fractional equation by Adomian Decomposition method based on 

above-mentioned definition. 

The organization of the paper is as follows: In Section 2, the basic 

definitions' amenable fractional derivative and conformable frac-

tional integral are described. In section 3, extended Adomian de-

composition method [30-33], based on conformable fractional 

derivative is described. In Section 4, the method is used to solve 

fractional Bratu-type equations with different initial value. Finally, 

discussions are given, in section 4.  

2. Basic definitions 

In this section some basic definitions and properties of the com-

fortable fractional derivative and integral have been explained. 

2.1. Conformable fractional derivative 

Given a function 𝑓: [0, ∞) → ℝ . Then conformable fractional 

derivative of 𝑓 of order 𝛼 is defined as follows  

 

𝛵𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥+𝜀𝑥1−𝛼)−𝑓(𝑥)

𝜀
,                                             (1) 

 

For all 𝑥 > 0, 𝛼 ∈ (0,1) [1]. If 𝑓 is 𝛼 -differentiable in some 
(0, 𝑎), 𝑎 > 0, and provided that lim

𝑥→0+
Τ𝛼(𝑓)(𝑥) exists, then define 

Τ𝛼(𝑓)(0) = lim
𝑥→0+

Τ𝛼(𝑓)(𝑥). 

If the conformable derivative of 𝑓 of order 𝛼 exists, then we simp-

ly say that 𝑓is 𝛼 – differentiable [1, 2]. 

One can easily show that Τ𝛼satisfies all the properties in the fol-

lowing properties [1]: 

Let α ∈ (0, 1] and 𝑓, and 𝑔 be 𝛼 -differentiable at a point x > 0, 

Then. 

 

A. For 𝑎, 𝑏𝜖ℝ    Τ𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎 Τ𝛼(𝑓) + 𝑏 Τ𝛼(𝑔) ,  
 

B. For all 𝑝𝜖ℝ    Τ𝛼(𝑥𝑝) = 𝑝𝑥𝑝−𝛼, 

 

C. For all constant functions 𝑓(𝑥) = 𝜆,    Τ𝛼(𝜆) = 0, 
 

D. Τ𝛼(𝑓. 𝑔) = 𝑔. Τ𝛼(𝑓) + 𝑓 . Τ𝛼(𝑔), 

 

E. Τ𝛼(
𝑓

𝑔
) =

𝑔.Τ𝛼(𝑓)−𝑓 .Τ𝛼(𝑔)

𝑔2 , 

 

F. Τ𝛼(𝑓) = 𝑥1−𝛼 𝑑𝑓

𝑑𝑥
. 
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2.2. Conformable fractional integral 

Given a function 𝑓: [𝑎, ∞) → ℝ,   𝑎 ≥ 0. Then conformable frac-

tional integral of 𝑓 is defined as the following  

 

  𝐼𝛼
𝑎(𝑓)(𝑥) = ∫

𝑓(𝑡)

𝑡1−𝛼
𝑑𝑡 ,

𝑥

𝑎
                                                                (2) 

 

Where the integral is the usual Riemann improper integral, 

and 𝛼 ∈ (0,1)[1, 2]. 

For simplicity, we have, 𝐼𝛼
0(𝑓)(𝑥) = 𝛪𝛼(𝑓)(𝑥).  

One of the well results is the following [1]: 

For all 𝑥 ≥ 𝑎, and any continuous function in the domain of Ι𝛼
𝑎, we 

have Τ𝛼(Ι𝛼
𝑎𝑓(𝑥)) = 𝑓(𝑥). 

3. Modify adomian decomposition method 

based on conformable fractional derivative 

Consider a fractional nonlinear differential equation in the form  

 

𝛵𝛼
𝑛(𝑢)(𝑥) − 𝒩(𝑢(𝑥)) = 𝑓(𝑥),  

 

𝛵𝛼
𝑘(𝑢)(0) = 𝑐𝑘 , 𝑘 = 0,1,2, … , 𝑛 − 1,                                           (3) 

 

Where 𝛵𝛼
𝑛 = 𝛵𝛼𝛵𝛼𝛵𝛼 … 𝛵𝛼 , n time, 𝒩 is a nonlinear operator, and 

𝑓(𝑥) is a known analytic function. 

It is assumed that the unknown function 𝑢(𝑥) can be expressed by 

an infinite series in the following form 

 

𝑢(𝑥) = ∑ 𝑢𝑚(𝑥),∞
𝑚=0                                                                     (4) 

 

And the nonlinear term 𝒩(𝑢) can be presented as an infinite se-

ries of polynomials, say  

 

𝒩(𝑢) = ∑ 𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚),∞
𝑚=0                                               (5) 

 

Where 𝒜𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)are called the Adomian polynomials and 

are defined by 

 

Am =
1

m!
[Τα

m[N(∑ ui(
1

α
 λα)i)]]λ=0,∞

i=0     m = 0,1,2, …             (6) 

 

By applying the inverse operator, 

 

(𝛵𝛼
𝑛)−1 = 𝛪𝛼

𝑛 = 𝛪𝛼𝛪𝛼 … 𝛪𝛼 = ∫ ∫ … ∫ (. )𝑑𝑡𝑛𝑑𝑡𝑛−1 … 𝑑𝑡1
𝑡𝑛−1

0

𝑡1

0

𝑥

0
  

 

On both sides of Eq. (3), the following equation has been derived, 

 

𝑢(𝑥) = ∑
(𝛵𝛼

𝑘𝑢)(0)

𝑘!
𝑛−1
𝑘=0 (

1

𝛼
𝑥𝛼)𝑘 + 𝛪𝛼

𝑛(𝑓) + 𝛪𝛼
𝑛(𝒩(𝑢(𝑥)).               (7) 

 

Considering (4) and (5), we obtain 

 

∑ 𝑢𝑚
∞
𝑚=0 = ∑

(𝛵𝛼
𝑘𝑢)(0)

𝑘!
𝑛−1
𝑘=0 (

1

𝛼
𝑥𝛼)𝑘 + 𝛪𝛼

𝑛(𝑓) +

∑ 𝛪𝛼
𝑛(𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚))∞

𝑚=0 . (8) 

 

Now, let us to define the following iterative equations, as 

Adomian scheme 

 

𝑢0 = ∑
(Τ𝛼

𝑘𝑢)(0)

𝑘!
𝑛−1
𝑘=0 (

1

𝛼
𝑥𝛼)𝑘 + Ι𝛼

𝑛(𝑓),  

 

𝑢𝑚+1 = 𝛪𝛼
𝑛(𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚),    𝑚 = 1,2, …                              (9) 

 

If the equation (3) has an analytic solution, the series (4) would be 

Taylor expansion of fractional order, and one may recognize the 

exact solution, otherwise the partial sum 

 

𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥),𝑀−1
𝑚=1                                                                  (10) 

 

Demonstrates the Mth-order approximation of the problem. 

4. Examples 

We solve fractional Bratu-type equation with different initial con-

dition by the presented method in this section. 

Example 1 Consider fractional Bratu-type equation with the fol-

lowing initial condition [15] 

 

Τ𝛼
2(𝑢)(𝑥) − 2𝑒𝑢(𝑥) = 0 ,       0 < 𝛼 ≤ 1, 0 ≤ 𝑥 < 1 ,      𝑢(0) =

Τ𝛼(𝑢)(0) = 0.                                                                              (11) 

 

The exact solution of Eq. (11) is 𝑢(𝑥) = −2ln (cos (
1

𝛼
𝑥𝛼). 

To solve this equation by ADM according to (7), we have 

 

𝑢(𝑥) = 𝑢(0) + (Τ𝛼𝑢)(0) (
1

𝛼
𝑥𝛼) + Ι𝛼

2 (2𝑒𝑢(𝑥)).                         (12) 

 

By substituting (4) and (5) into (12), we derive:  

 
∑ 𝑢𝑚
∞
𝑚=0 = 0 + ∑ 𝛪𝛼

2(𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚)∞
𝑚=0 .  

 

So, the solution by ADM consists of following scheme 

 

𝑢0(𝑥) = 0,  
 

um+1(x) = Ια
2(Am(u0, u1, … , um)), 

 

Where 

 

𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚) =
1

𝑚!
(Τ𝛼

𝑚 (2𝑒
∑ 𝑢𝑚(

1

𝛼
 𝜆𝛼)𝑚∞

𝑚=0 )) (𝜆 = 0).  

 

So  

 

𝒜0(𝑢0) = 2𝑒𝑢0, 

 

𝒜1(𝑢0, 𝑢1) = 2𝑢1𝑒𝑢0 ,  
 

𝒜2(𝑢0, 𝑢1, 𝑢2) =
1

2!
(2(2𝑢2𝑒𝑢0 + 𝑢1 

2 𝑒𝑢0)),  

 

⋮  
First few terms will be obtained as follows 

 

𝑢1 = (
1

𝛼
𝑥𝛼)2, 

 

𝑢2 =
1

6
(

1

𝛼
𝑥𝛼)4,  

 

𝑢3 =
2

45
(

1

𝛼
𝑥𝛼)6,  

 

⋮  
Therefore, the following solution will be obtained 

 

𝑢(𝑥) = (
1

𝛼
𝑥𝛼)

2
+

1

6
(

1

𝛼
𝑥𝛼)

4
+

2

45
(

1

𝛼
𝑥𝛼)

6
+ ⋯ =

−2 ln (cos (
1

𝛼
𝑥𝛼))  

 

Which is the exact solution. 

Example 2 Consider fractional Bratu-type equation with as fol-

lows initial condition [15] 

 

Τ𝛼
2(𝑢)(𝑥) − 𝜋2𝑒𝑢(𝑥) = 0 ,       0 < 𝛼 ≤ 1,    

 

0 ≤ 𝑥 < 1 ,      𝑢(0) = 0,   Τ𝛼(𝑢)(0) = 𝜋.                                  (13) 

 

The exact solution of Eq. (13) is 𝑢(𝑥) = −ln (1 − sin (
𝜋

𝛼
𝑥𝛼). 
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By using  Ι𝛼

2 = ∫ ∫ (. )𝑑𝑡2𝑑𝑡1
𝑡1

0

𝑥

0
, we obtain: 

 

𝑢(𝑥) = 𝑢(0) + (𝛵𝛼𝑢)(0) (
1

𝛼
𝑥𝛼) + 𝛪𝛼

2(𝜋2𝑒𝑢(𝑥)). 

 

By substituting 𝑢(𝑥) = ∑ 𝑢𝑚
∞
𝑚=0 , into this equation, we get 

 

∑ 𝑢𝑚
∞
𝑚=0 = 𝜋

1

𝛼
𝑥𝛼 + ∑ 𝛪𝛼

2(𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚)∞
𝑚=0 , 

 

So, the Adomian scheme would be as follows  

 

𝑢0(𝑥) = 𝜋
1

𝛼
𝑥𝛼 , 𝑢𝑚+1(𝑥) = Ι𝛼

2 (𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚)),   𝑚 =

0,1,2, …  

 

Where 

 

𝒜0(𝑢0) = 𝜋2𝑒𝑢0 ,  
 

𝒜1(𝑢0, 𝑢1) = 𝜋2𝑢1𝑒𝑢0, 

 

𝒜2(𝑢0, 𝑢1, 𝑢2) =
1

2!
(𝜋2(2𝑢2𝑒𝑢0 + 𝑢1 

2 𝑒𝑢0)), 

 

⋮ 
 

Therefore, the following results will be derived  

 

𝑢1 = 𝑒𝜋(
1

𝛼
𝑥𝛼) − 𝜋 (

1

𝛼
𝑥𝛼) − 1, 

 

𝑢2 = −
5

4
−

𝜋

2
(

1

𝛼
𝑥𝛼) +

1

4
𝑒

2𝜋(
1

𝛼
𝑥𝛼)

− 𝜋 (
1

𝛼
𝑥𝛼) 𝑒

𝜋(
1

𝛼
𝑥𝛼)

+ 𝑒𝜋(
1

𝛼
𝑥𝛼)

,  

 

𝑢3 = −
11

6
+

𝜋2

2
(

1

𝛼
𝑥𝛼)

2
𝑒

𝜋(
1

𝛼
𝑥𝛼)

−
𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

2𝜋(
1

𝛼
𝑥𝛼)

−
3𝜋

2
𝑒

𝜋(
1

𝛼
𝑥𝛼)

 

 

−
𝜋

2
(

1

𝛼
𝑥𝛼) +

1

2
𝑒

2𝜋(
1

𝛼
𝑥𝛼)

+
5

4
𝑒

𝜋(
1

𝛼
𝑥𝛼)

+
1

12
𝑒

3𝜋(
1

𝛼
𝑥𝛼)

, 

 

⋮  
 

Four-terms approximation to the solution will be obtained as the 

following form  

 

𝑢(𝑥) ≈ −
49

12
− 𝜋 (

1

𝛼
𝑥𝛼) +

3

4
𝑒

2𝜋(
1

𝛼
𝑥𝛼)

−
5𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

𝜋(
1

𝛼
𝑥𝛼)

+

13

4
𝑒

𝜋(
1

𝛼
𝑥𝛼)

  

 

+
𝜋2

2
(

1

𝛼
𝑥𝛼)

2
𝑒

𝜋(
1

𝛼
𝑥𝛼)

−
𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

2𝜋(
1

𝛼
𝑥𝛼)

+
1

12
𝑒

3𝜋(
1

𝛼
𝑥𝛼)

  

 

In Figure 1, the exact and approximate solutions of fractional Bra-

tu-type equation for 𝛼 = 0.5, up to 1.0, is plotted, It can be con-

cluded from the result that whatever 𝛼 is closer to 1, the conver-

gence as well as the accuracy of approximate solution will be 

better. 

 

 

 

 

 

 

 

 

  
  

  
  

  
(exact solution (------), ADM solution (…..)) 

Fig. 1: The Comparison 4th-Order Approximation of ADM and Exact 
Solution for Example 2. 

 

Example 3 Consider fractional Bratu-type equation [15]  

 

Τ𝛼
2(𝑢)(𝑥) + 𝜋2𝑒−𝑢(𝑥) = 0 , 0 < 𝛼 ≤ 1, 0 ≤ 𝑥 < 1,                (14) 

 

With initial condition 𝑢(0) = 0,   Τ𝛼(𝑢)(0) = 𝜋. 

The exact solution of Eq. (14) is 𝑢(𝑥) = 𝑙𝑛 (1 + 𝑠𝑖𝑛 (
𝜋

𝛼
𝑥𝛼). 

By using Eq. (7), Eq. (13) can be written as follows: 

 

𝑢(𝑥) = 𝑢(0) + (𝛵𝛼𝑢)(0) (
1

𝛼
𝑥𝛼) − 𝛪𝛼

2(𝜋2𝑒−𝑢(𝑥)).  

 

By substituting 𝑢(𝑥) = ∑ 𝑢𝑚
∞
𝑚=0 , we get 

 

𝑢0(𝑥) = 𝜋
1

𝛼
𝑥𝛼, 

 

𝑢𝑚+1(𝑥) = −Ι𝛼
2 (𝒜𝑚(𝑢0, 𝑢1, … , 𝑢𝑚)), 𝑚 = 0,1,2, …  

 

Where Adomian polynomial will be obtained as the following 

form  

 

𝒜0(𝑢0) = 𝜋2𝑒−𝑢0, 

 

𝒜1(𝑢0, 𝑢1) = −𝜋2𝑢1𝑒−𝑢0 , 

 

𝒜2(𝑢0, 𝑢1, 𝑢2) =
1

2!
(𝜋2(−2𝑢2𝑒−𝑢0 + 𝑢1 

2 𝑒−𝑢0)),  

 

⋮  
 

So, we have 

𝑢1 = −𝑒
−𝜋(

1

𝛼
𝑥𝛼)

− 𝜋 (
1

𝛼
𝑥𝛼) + 1, 
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𝑢2 =
5

4
−

𝜋

2
(

1

𝛼
𝑥𝛼) −

1

4
𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

− 𝜋 (
1

𝛼
𝑥𝛼) 𝑒

−𝜋(
1

𝛼
𝑥𝛼)

− 𝑒−𝜋(
1

𝛼
𝑥𝛼)

, 

 

𝑢3 =
11

6
−

𝜋2

2
(

1

𝛼
𝑥𝛼)

2
𝑒

−𝜋(
1

𝛼
𝑥𝛼)

−
𝜋

2
(

1

𝛼
𝑥𝛼) −

1

2
𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

−

3𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

2𝜋(
1

𝛼
𝑥𝛼)

  

 

−
𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

−
5

4
𝑒

−𝜋(
1

𝛼
𝑥𝛼)

−
1

12
𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

,  

 

⋮  
 

Consciously, four-terms approximations to the solution will be as 

follows: 

 

𝑢(𝑥) ≈
49

12
−

𝜋

2
(

1

𝛼
𝑥𝛼) − 2𝑒

−𝜋(
1

𝛼
𝑥𝛼)

− 𝜋 (
1

𝛼
𝑥𝛼) 𝑒

−𝜋(
1

𝛼
𝑥𝛼)

−

1

4
𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

  

 

−
𝜋2

2
(

1

𝛼
𝑥𝛼)

2
𝑒

−𝜋(
1

𝛼
𝑥𝛼)

−
𝜋

2
(

1

𝛼
𝑥𝛼) −

1

2
𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

−

3𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

2𝜋(
1

𝛼
𝑥𝛼)

  

 

−
𝜋

2
(

1

𝛼
𝑥𝛼) 𝑒

−2𝜋(
1

𝛼
𝑥𝛼)

−
5

4
𝑒

−𝜋(
1

𝛼
𝑥𝛼)

−
1

12
𝑒

−2𝜋(
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Figures 2 confirmed previous results. 

 

  
  

  
  

  
(exact solution (------), ADM solution (…..)) 

Fig. 2: The Comparison 4th-Order Approximation of ADM and Exact 
Solution for Example 3. 

5. Conclusion 

In this paper, Adomian Decomposition method has been applied to 

obtain the solutions of fractional differential equations. To this 

aim, a conformable fractional derivative has been used to find the 

solution. The results showed that the definition is the simplest tool 

to obtain the approximation solutions of nonlinear fractional dif-

ferential equations in comparison to the other definitions. To show 

the effectiveness and simplicity of the method, fractional Bratu-

type equations as an example have been solved with form con-

formable fractional derivative and Adomian Decomposition meth-

od. 
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