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Abstract

This paper is to indicate a class of new exact solutions of the equations governing the two-dimensional steady motion of incompressible fluid
of variable viscosity in the presence of body force. The class consists of the stream function ψ characterized by equation θ = f (r)+aψ +b
in polar coordinates r, θ , where a continuously differentiable function is f (r) and a 6= 0,b are constants. The exact solutions are
determined for given one component of the body force, for both the cases when f (r) is arbitrary and when it is not. When f (r) is arbitrary,
we find a = 1 and we can construct an infinite set of streamlines and the velocity components, viscosity function, generalized energy
function and temperature distribution for the cases when RePr = 1 and when RePr 6= 1 where Re represents Reynolds number and Pr
Prandtl number. For the case when f (r) is not arbitrary we can find solutions for the cases RePr 6= a and RePr = a where ”a” remains arbitrary.

Keywords: Exact solutions to the flow equations of incompressible fluids; Variable viscosity fluids; Navier-Stokes equations with body force;
Exact solutions in the presence of body force; Martin’s coordinates system.

1. Introduction

A moving fluid element experiences forces, directly on its volumetric
mass as well as on its surface, named body forces and surface forces
respectively. The examples of body forces are gravitational force,
electric force or coriolis force etc. In a fluid flow model, we keep the
product of mass and acceleration of the moving fluid element in left-
hand side and net forces on it in right-hand side of the momentum
equation known as Navier-Stokes equations (NSE). The complex
mathematical structure of NSE offers a great difficulty in achieving
exact solutions; however, we find some transformation techniques
and dimension analysis method that were helpful in providing some
new exact solutions. We refer here [1-13] and reference therein
for some exact solutions of NSE with surface forces on right-hand
side of NSE using a variety of techniques/methods, however [14]
considered NSE with coriolis force and [15] gave a basic remark on
NSE with body force. We further mention here some attempts to the
problem of finding exact solutions of the equations describing the
steady plane flows of incompressible fluid of variable viscosity in
the presence of body force. Naeem R. K., Aurnangzeb et. al. [16]
made an effort for exact solutions of the problem mentioned above
with a new coordinate transformations technique but their technique
pressed them to drop the body force term at the end. Naeem R.
K., Razia Shaheen [17] tried the same problem but their technique
forced them to relax the variable viscosity condition.
Since here we want to keep the viscosity variable and body force
therefore, we apply the technique used in Mushtaq A. [18], planned
by Naeem R. K., which had successfully applied for exact solutions

of the equations describing the steady plane flows of incompressible
fluid of variable viscosity in the absence of body force [19]. To
achieve the aim of this communication we transform the basic flows
equations in Cartesian space (x,y) into a curvilinear coordinates
(ϕ,ψ) and follow Martin [20] where he defined the coordinate lines
ψ = const. as streamlines and left the coordinate lines ϕ = const. are
arbitrary. We will be calling this (ϕ,ψ) - system as Martin’s system.
As the coordinate ϕ is arbitrary in Martin’s system, therefore, we take
ϕ = r(x,y) to achieve our plan and we characterize the streamlines
of the class of flows under consideration by

θ − f (r)−b
a

= const. (1)

where f (r) is a continuously differentiable function, r,θ the polar
coordinates and a 6= 0 b are constants. The equation (1) implies

θ = f (r)+ν(ψ) (2)

where ν(ψ) = aψ +b
We organize this paper as follow: In section (2), we give basic flow
equations in non-dimensional form and transform them into Martin’s
system in section (3). In section (4), we find exact solution taking
ϕ = r(x,y). In section (5), we present conclusions.

2. Non-dimensional basic flow equations

Fluid flow with variable viscosity comprises of equation of continu-
ity, Navier-Stokes equations and energy equation. These equations,
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for the steady plane motion of incompressible fluid of variable vis-
cosity with constant thermal conductivity in the presence of unknown
external force with no heat addition, in non-dimensional form are
respectively following

ux + vy = 0 (3)

uux + vuy = F1− px +
1

Re
d(2µux)x +{µ(uy + vx)}ye (4)

uvx + vvy = F2− py +
1

Re
d(2µvy)y +{µ(uy + vx)}xe (5)

uTx + vTy =
1

RePr
(Txx +Tyy) (6)

+
Ec

Re
d2µ(u2

x + v2
y)+µ(uy + vx)

2e

Where u, v are the components of velocity,F1 ,F2 are the components
of the body force,µ the viscosity, p pressure and T is temperature.
All these seven quantities are function of x and y . The numbers
Re, Ec and Pr are the Reynolds number, the Ecart number and the
Prandtl number respectively.

The solution of the equation (3) of continuity provides a stream
function ψ(x,y) such that

u = ψy,v =−ψx (7)

Experience shows that the exact solution of equations (4-6 ) offers
a great difficulty because of the presence of the non-linear term,
therefore we write equation (4-6) in following manage able form by
introducing the vorticity function w and the total energy function L
defined by

w = vx−uy (8)

L = p+
1
2
(u2 + v2)− 2µux

Re
(9)

Differentiating equation (9) with respect to x and substituting the
resulting equation into equation (4), we get

−vw = F1−Lx +
µ(uy

+
vx)Re (10)

Similarly differentiating equation (9) with respect to y and substitut-
ing the resulting equation into equation (5), we get

uw = F2−Ly−
(4µux)y

Re
+

(µ(uy + vx))x

Re
(11)

Introducing further

A = µ(uy + vx),B = 4µux (12)

Substituting equation (12) in equations (10-11), we have

−vw = F1−Lx +
Ay

Re
(13)

uw = F2−Ly−
By

Re
+

Ax

Re
(14)

Utilizing equation (12) we find the second term on the right-hand
side of the equation (6) becomes (B2+4A2)

4µ
. Therefore, equation (6)

gives

uTx + vTy =
(Txx +Tyy)

RePr
+

Ec(B2 +4A2)

4Reµ
(15)

3. Transforming Basic flow equations into Mar-
tin’s system

Let us now introduced here a curvilinear coordinate system (ϕ,ψ)
in the (x,y)-plane through transformation

x = x(ϕ,ψ),y = y(ϕ,ψ) (16)

such that the Jacobian,J =
∂ (x,y)

∂ (ϕ,ψ)
of the transformation is non-zero

and finite.
Now following Martin [19], we define the function ψ(x,y) in (16) as
the stream function and leave the curves ϕ(x,y) = const. as arbitrary
thus the first fundamental form in Martin’s system is

ds2 = E(ϕ,ψ)dϕ
2 +2F(ϕ,ψ)dϕdψ +G(ϕ,ψ)dψ

2 (17)

wherein

E = x2
ϕ + y2

ϕ ,F = xϕ xψ + yϕ yψ ,G = x2
ψ + y2

ψ (18)

Differentiating equation (16) with respect to x and y, and solving the
resulting equations, we find

yϕ =−Jψx,yψ = Jϕx,xϕ = Jψy,xψ =−Jφy (19)

wherein

J =±
√

EG−F2 =±(xϕ yψ − yϕ xψ ) =±W (20)

At a pointP(x,y), let α be the angle between the tangent to the
coordinate lines ψ = const. and the curves ϕ = const. then we find

tan(α) =
yϕ

xϕ

(21)

Applying trigonometric identities and equation (18), we get

xϕ =
√

Ecos(α),xψ =
1√
E
[Fcos(α)− Jsin(α)], (22)

yϕ =
√

Esin(α),yψ =
1√
E
[Fsin(α)+ Jcos(α)]

The integribility conditions

xϕψ = xψϕ ,yϕψ = yψϕ , (23)

for x and y, yield

αϕ =
JΓ2

11
E

,αψ =
JΓ2

12
E

(24)

wherein
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Γ
2
11 =

1
2W 2 [−FEϕ +2EFϕ −EEψ ], (25)

Γ
2
12 =

1
2W 2 [EGϕ −FEψ ]

The equation (21), applying the integrability condition αϕψ = αψϕ

for α(ϕ,ψ), yields

K =
1

W

(WΓ2
11

E

)
ψ

−

(
WΓ2

12
E

)
ϕ

 (26)

where K is called the Gausian curvature and equation (26) is called
Gaussian equation. This equation represents a necessary condition
that E(ϕ,ψ), F(ϕ,ψ) and G(ϕ,ψ) are coefficients of the first fun-
damental form in equation (18).
Now equations (13-14) on substituting equation (19), equation (22)
and equations (24-25) simplifies as follow

−RewJE = ReJ
√

Ed−F(F1 cosα +F2 sinα) (27)

+J(F1 sinα−F2 cosα)e+ReJELψ

+Aϕ ((F2− J2)cos2α−2FJ sin2α)

+EAψ (J sin2α−Fcos2α)

−Bϕd
1
2
((F2− J2)sin2α +FJ sin2αe

+EBψ (
1
2

F sin2α + J cos2
α)

and

0 = ReJ
√

EdF1 cosα +F2 sinα)e−ReJLϕ (28)

+EAψ cos2α−AϕdF cos2α− J sin2α)

+Bϕd
1
2

F sin2α− J sin2
αe−

EBψ

2
sin2α

Differential geometry [21] says that

Txx +Tyy =
1
J

[(
GTϕ −FTψ

J

)
ϕ

+

(
ETψ −FTϕ

J

)
ψ

]
(29)

and the expression uTx + vTy in the left-hand side of equation (15)
simplifies to Tϕ

J , thus the energy equation (15) becomes

1
JRePr

[(
GTϕ −FTψ

J

)
ϕ

+

(
ETψ −FTϕ

J

)
ψ

]
(30)

=−Ec(B2 +4A2)

4µRe
+

Tϕ

J

Let the magnitude of velocity vector q = (u,v) is q =
√

u2 + v2, then
substituting values from equation (18-19), we find

q =

√
E

J
(31)

The equation (12) on substituting equation (19), (22) and equations
(24-25), provides

A(ϕ,ψ) = µd− (F cosα− J sinα)

4E2J5 (32)

{Eϕ (2EJ3 cosα +F
√

E sinα)−4E2J2Jϕ cosα

−2E
√

EFϕ sinα +E
√

EEψ sinα}

+
cosα

2J3 {Eψ (F sinα + J cosα)

−2EJψ cosα−EGϕ sinα}

+
(F sinα + J cosα)

2EJ3 {(JEϕ −2EJϕ )sinα

+cosα(−FEϕ +2EFϕ −EEψ )}

− sinα

2J3 {Eψ (J sinα−F cosα)

−2EJψ sinα +EGϕ cosα}e

and

B(ϕ,ψ) =
4µ

EJ3 dEϕ (F sinα + J cosα)2 (33)

+E2(Jψ sin2α +Gϕ sin2
α)

−2E(F sinα + J cosα)(Fϕ sinα + Jϕ cosα)e

Equation (8) in Martin’s system is

w = vϕ ϕx + vψ ψx−uϕ ϕy−uψ ψy (34)

Substituting equation (19), (22) and equations (24-25), and equation
(31), we find

w =
(F sinα + J cosα)

2EJ3 d(JEϕ −2EJϕ )sinα (35)

+cosα(−FEϕ +2EFϕ −EEψ )e

− sinα

2J3 dEψ (J sinα−F cosα)

−2EJψ sinα +EGϕ cosαe

+
(F cosα− J sinα)

4E2J5 dEϕ (2EJ3 cosα +F
√

E sinα)

−4E2J2Jϕ cosα−2E
√

EFϕ sinα +E
√

EEψ sinαe

−cosα

2J3 dEψ (F sinα + J cosα)

−2EJψ cosα−EGϕ sinαe

Thus, the basic system of non-dimensional partial differential equa-
tions governing steady plane flow of an incompressible fluid of
variable viscosity, in the presence of external force with no heat addi-
tion are transformed into Martin’s system as equations (31), (27-30),
(32-33) and (35).

4. Exact Solutions

Since our objective is to determine a class of exact solution to flow
equations for which the streamlines are characterizes by equation (2)
and the coordinate ϕ is arbitrary in Martin’s system therefore we set

ϕ = r(x,y) (36)

where

x = r cosα,y = r sinα (37)

Utilizing equation (36- 37) in equations (31), (27-30), (32-33) and
(35), we get
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q =

√
1+M2

ar
,M(r) = r f ′(r) (38)

−Rew =−Re(arF2)+ReLψ −arAr (39)

+MAψ +Bψ

0 = Re(F1 +MF2)−ReLr +
Aψ (1−M2)

ar
(40)

+MAr−
MBψ

ar

arTrr−2MTψr +
(1+M2)

ar
Tψψ +(a−RePr)Tr (41)

+M′Tψ =−arEcPr

4µ
(B2 +4A2)

w =
M′

ar
(42)

A =
µ(rM′−2M)

ar2 (43)

B =
−4µ

ar2 (44)

E = 1+M2 (45)

J = ar (46)

cosα =
1√
E

(47)

The natural integrability condition Lrψ = Lψr utilizing equation (39)
and (40) yields

arArr−2MAψr−
(1−M2)

ar
Aψψ (48)

+aAr−M′Aψ −dBr−
f ′Bψ

a
eψ

= Rewr +Re(F1 +MF2)ψ −Re(arF2)r

Once we discover a solution of equation (48), the generalized energy
function L and temperature distribution T are determined from equa-
tions (39-41). By back substitution we can find the viscosity µ from
either equation (43) or equation (44), the velocity components from
(7), the pressure p from (9), and streamlines from (2).
The compatibility equation (48) involves the body force components
F1,F2 and functions A and B which depends upon the viscosity func-
tion µ , f (r) and derivatives of f (r) which in general are extremely
difficult to solve analytically, however we indicated in [19] that the
equation resulting from compatibility condition provide solutions
on eliminating µ from the function A and B. Following [19] we
eliminate µ from equation (43) and equation (44) by introducing
function X(r) through

A = X(r)B (49)

where

X(r) =
−1
4

(rM′−2M) (50)

provided (rM′−2M) 6= 0.
Inserting equation (49) in equation (48), we get

arXBrr− (1+2MX)Bψr (51)

+
M−X(1−M2)

ar
Bψψ +aBr(2rX ′+X)

−Bψ (2MX ′+M′X)+aB(rX ′)′

= Re(
M′

ar
)′+Re(F1 +MF2)ψ −Re(arF2)r

In equation (51) the coefficients of the derivative
Brr,Brψ ,Bψψ ,Br,Bψ and B are all functions of r only, this
suggests to seek a solution of equation (51) of the form

B(r,ψ) = R(r)+S(ψ) (52)

Equation (51), on substituting (52), becomes

{r(XR)′}′+ M−X(1−M2)

ar
S′′ (53)

−S′(2MX ′+M′X)+a(rX ′)′S

= Re{
M′

ar
}′+Re(F1 +MF2)ψ −Re(arF2)r

Here equation (53) is to provide the function R(r) and S(ψ) , but it
involves the components of unknown body force F1 and F2 therefore,
its solution will depend upon the form of F1 and F2. We can select
many possible forms of F1 and F2 leading to the solution of equation
(53) for R(r) and S(ψ) , however we find that arbitrarily selected
forms does not lead to the solution of the momentum equations (39-
40) for the function L and the energy equation (41) for T . Our search
for the appropriate form of F1 and F2 revealed that the solution of
our equations (39-40) is obtainable if the function F2 is a solution of
the following differential equation

Re(arF2)r = Re

(
M′

ar

)′
−
(
r(XR)′

)′ (54)

or

ReF2 = Re

(
M′

a2r2

)
− (XR)′+

G1(ψ)

ar
(55)

where G1(ψ) is function of integration. On substituting (55) in (53)
we find that equation(53) is satisfied for arbitrary R(r) and S(ψ)
when F1 is

ReF1 =
M−X(1−M2)

ar
S′−S(2MX ′+M′X) (56)

+a(rX ′)′
∫

Sdψ +H1(r)

−M
[

Re{
M′

a2r2 − (XR)′+
G1(ψ)

ar

]
where P1(r) is function of integration. Substituting equations (55-
56), in equation (39-40) and solving for L, we have

ReL =
∫

G1(ψ)dψ +a(rX ′)
∫

Sdψ− (MX +1)S (57)

+er
∫

e−rM(XR)′dr+ erh1
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provided

a = 1 (58)

In equation (57), R(r) and S(ψ) are arbitrary functions and h1 is
constant of integration.
Utilizing equation (52), the viscosity function is found from equation
(43) or (44)

µ =− r2

4
[R(r)+S(ψ)] (59)

The energy equation (41), utilizing equations (49),(52), (58-59) be-
comes

rTrr−2MTψr +
(1+M2)

r
Tψψ +(1−RePr)Tr (60)

−M′Tψ = EcPr

(
1+4X2)

r
[R(r)+S(ψ)]

The right-hand side of equation (60) suggests seeking solution of the
form

T (r,ψ) = R1(r)+R2(r)H(ψ) (61)

Inserting equation (61) in equation (60), we find

rR′′1 +(1−RePr)R′1 +H(ψ)
[
R′′2 +(1−RePr)R′2

]
(62)

+H ′(ψ)
[
−2MR′2−M′R2

]
+

(1+M2)R2

r
H ′′(ψ)

= EcPr

(
1+4X2)

r
[R(r)+S(ψ)]

Differentiating equation (62) with respect to ψ , we get

H ′(ψ)
[
R′′2 +(1−RePr)R′2

]
(63)

+H ′′(ψ)
[
−2MR′2−M′R2

]
+

(1+M2)R2

r
H ′′′(ψ)

= EcPr

(
1+4X2)

r
S′(ψ)

Since r and ψ are independent variables therefore the right-hand
side of equation (63) demands

H ′′(ψ) = 0 (64)

and

S′(ψ) = s1 = const. (65)

which implies

H(ψ) = h2ψ +h3 (66)

and

S(ψ) = s1ψ + s2 (67)

where h1,h2 and s2 are constant of integration. Inserting equation
(66-67) in equation (63), we get

rR′′2 +(1−RePr)R′2 =
EcPrs1

h1

(
1+4X2)

r
(68)

Utilizing equation (52), equations (66-67) in equation (62), we get

rR′′1 +(1−RePr)R′1 = h1
[
2MR′2 +M′R2

]
(69)

−h2
[
rR′′2 +(1−RePr)R′2

]
+EcPr

(
1+4X2)

r
[R(r)+ s2]

when (1−RePr) 6= 0, the solution of equations (68-69)are

R2(r) =
∫ [

r−(1−RePr)
∫

r(1−RePr)Z2(r)dr
]

dr (70)

+Q1

∫
r−(1−RePr)dr+Q2

and

R1(r) =
∫ [

r−(1−RePr)
∫

r(1−RePr)Z1(r)dr
]

dr (71)

+Q3

∫
r−(1−RePr)dr+Q4

where Q1,Q2,Q3 and Q4 are constant of integration and

Z2(r) =
EcPrs1

h1

(
1+4X2)

r2 (72)

Z1(r) = h1
[
2MR′2 +M′R2

]
−h2

[
rR′′2 +(1−RePr)R′2

]
(73)

+EcPr

(
1+4X2)

r
[R(r)+ s2]

Utilizing equations (70-73) in equation(61) we get the temperature
T for the case (1−RePr) 6= 0, then by back substitution we can find
the viscosity µ from equation (59), the velocity components from
equation(7), the pressure p from equation(9) using equation(58),
and streamlines from equation(2) for arbitrary f (r).

Now when (1−RePr) = 0 the equations (68-69) give

R2(r) =
∫ [∫

Z2(r)dr
]

dr+Q5r+Q6 (74)

and

R1(r) =
∫ [∫

Z1(r)dr
]

dr+Q5r+Q6 (75)

Utilizing equations (72-75) in equation(61) we get the temperature
T for the case (1−RePr) = 0, then by back substitution we can find
the viscosity µ from equation (59), the velocity components from
equation(7), the pressure p from equation(9) using equation(58),
and streamlines from equation(2) for arbitrary f (r).

Supplying M(r) from (38) in (rM′ − 2M) = 0, we find that the
function f (r) is no more arbitrary but

f (r) =
c1r2

2
+ c2 (76)

where c1 and c2 are constants. For this case the equation (51) be-
comes

−Bψr +
MBψψ

ar
= Re(F1 +MF2)ψ −Re(arF2)r (77)
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Here equation (77) is to provide the function B(r,ψ) but it involves
the components of unknown body force F1(r,ψ) and F2(r,ψ) there-
fore its solution will depend upon the form of F1 and F2 . We can
select many possible forms of F1 and F2 leading to the solution of
equation (77) for B(r,ψ) , however we find that all the selected arbi-
trary forms does not lead to the solution of the momentum equations
(39-40) for the function L and the energy equation (41) for T . We
find that the solution of the equations (39-41) is obtainable if the
function F2 is a solution of the following differential equation

Re(arF2)r = 0 (78)

or

ReF2 =
G2(ψ)

ar
(79)

where the function of integration is G2(ψ). On substituting equation
(79) in (77), we find that arbitrary function B(r,ψ) satisfies equation
(77) when the remaining component of the unknown body force is

ReF1 =−
c1rG2

a
−Br +

c1rBψ

a
+P2(r) (80)

where the function of integration is P2(r). Utilizing equations (79-
80), in equation (39-40) and solving for the function L, we have

ReL =−2c1Reψ

a
+
∫

G2(ψ)dψ−B(r,ψ) (81)

+
∫

P2(r)dr

The energy equation (41), becomes

ar2Trr−2c1r3Tψr +
(1+ c2

1r4)

a
Tψψ (82)

+r(a−RePr)Tr +2c1r2Tψ = EcPrB(r,ψ)

On substituting values from equation (44) in equation (82), the
viscosity µ is obtained in terms of temperature T

µ =

(
−ar2

4EcPr

)
[ar2Trr−2c1r3Tψr +

(1+ c2
1r4)

a
Tψψ (83)

+r(a−RePr)Tr +2c1r2Tψ ]

for both the cases when RePr = a or RePr 6= a, keeping a arbitrary.
We can find the velocity components from equation(7), the pressure
from equation(9) using equation(81), and streamlines from equa-
tion(2) for f (r) given by equation (76).

5. Results and Discussion

We have found a class of new exact solutions of the non-dimensional
equations governing the two-dimensional steady motion of incom-
pressible fluid of variable viscosity in the presence of body force
using following dimensionless parameters
x∗ = x

L0
,y∗ = y

L0
,u∗ = x

U0
,v∗ = v

U0

µ∗ = µ

µ0
, p∗ = p

p0
,F∗1 = F1

F0
,F∗1 = F1

F0
The thermal conductivity k = k0 = const. , ρ = ρ0 = const. and
cv = cp = const. where cv is specific heat at constant volume and cp
is specific heat at constant pressure.
The class specifies the stream function characterized by the equa-
tion θ = f (r)+ aψ + b in polar coordinates r, θ , where a contin-
uously differentiable function is f (r) and a 6= 0, b are constants.

The exact solutions are found for given one component of the body
force, for both the cases when f (r) is arbitrary and when f (r) is
quadratic function of r . For arbitrary f (r) the streamlines are
θ − f (r)− b = ψ = Const. and for f (r) = 1

2 c1r2 + c2 the stream-
lines are 1

a
[
θ − 1

2 c1r2 + c2−b
]
= ψ =Const. where c1 and c2 are

constants. In both the cases an infinite set of velocity components,
viscosity function, generalized energy function and temperature dis-
tribution can be constructed and graph of streamlines can be drawn
to observe the streamline patterns.
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