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1 Introduction 

The concept of fuzzy sets was coined by Zadeh [7] in his seminal paper in 1965. 

Since then, to use this concept in topology and analysis many authors  have 

expansively developed the theory of fuzzy sets and application. Zadeh  [8] 

anticipated that medical diagnosis would be the most likely application domain of 

Fuzzy set theory. The theory of fuzzy set is of fundamental  

importance  in  Medical  diagnosis,  effect  of  drugs,  diagnosis  process. 

Recently, a number of fixed point theorems and their applications in fuzzy set 

theory have been proved by several authors. George and Veeramani[1] and 

Kramosil and Michalek[6] have introduced the concept of fuzzy metric spaces. The 

concepts of semi-compatibility and weak-compatibility in fuzzy metric space are 

given by Singh and Jain [3] which is generalization of commuting and 

compatible maps. Many authors [2, 4, 11] have proved fixed point  theorem  in  

fuzzy(probabilistic)  metric  spaces.  Recently,  Dorel Mihet[5] proved a common 

fixed point theorem in  Non- Archimedean fuzzy metric space. The purpose of this 

paper is to prove common fixed point theorems in Non- Archimedean fuzzy 
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metric space using the concept of semi-compatibility and weak compatibility of 

pair of self maps.  

2 Preliminary Notes 

Definition 2.1 A binary operation * : [0, 1] × [0, 1] → [0,1] 

is a continuous t-norm if it satisfies the following conditions:  

(1) * is associative and commutative,  

(2) * is continuous,  

(3) a * 1 = a for all a  [0, 1],  

(4) a * b ≤ c * d whenever a ≤ c and b ≤ d,  for each a, b, 

c, d  [0, 1]  

Two typical examples of continuous t-norm are a * b = ab 

and a * b = min(a, b).  

Definition 2.2.  The 3-tuple (X, M, *) is called a non-Archimedean fuzzy metric 

space (shortly, N.A. FM-space) if X is an arbitrary set, * is a continuous t-norm 

and M is a fuzzy set in 2X  [0,) satisfying the  following conditions: 

For all x,y,z X and s,t > 0, 

(NFM-1) M(x, y, 0) = 0, 

(NFM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y, 

(NFM-3) M(x, y, t) = M(y, x, t), 

(NFM-4) M(x, y, t) * M(y, z, s) M(x, z, max{t, s}) 

Or equivalently M(x, y, t) * M(y, z, t) M(x, z, t) 

(NFM-5) M(x, y, .) : [0, ) [0, 1] is left continuous. 

Definition 2.3. For t (0,) , we define the closed ball B[x, r, t] with centre xX 

and radius r (0,1) as  

B[x, r, t] = {y X ,M( x, y, t) > 1 r}. 

Definition 2.4. Let (X, M, ) be a non-Archimedean fuzzy metric space: 

(i) A sequence  nx  in X is said to be convergent to a point xX (denoted by 

xx
n

n 


lim
), if 

n

lim
M( nx  , x, t)  = 1, for all t > 0. 

(ii) A sequence  nx  in X is said to be Cauchy sequence if 

n

lim
 M( pnx  , nx  , t) = 1, for all t > 0, p>0. 

(iii) A non-Archimedean fuzzy metric space in which every Cauchy sequence is 

convergent is said to be complete . 

Definition 2.5. A N.A. FM-space (X, M, ) is said to be of type (C)g if 

there exists a gsuch that 

g(M(x,y, t )) g(M(x,z , t )) + g(M(z,y , t )) 

for all x,y,z X and t 0, where = {g : g : [0,1] [0,) is continuous, 
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strictly decreasing , g(1) = 0 and g(0) < }. 

Definition 2.6.  A N. A. FM-space (X, M, ) is said to be of type (D)g if 

there exists a g such that g((s,t)) g(s) + g(t) for all s,t [0,1]. 

Definition 2.7.  Let A and B be mappings from N.A. FM-space (X, M, ) in 

to itself. The mappings A and B are said to be compatible if 

n

lim
g(M(ABxn , BAxn, t)) = 0, 

for all t > 0, whenever  nx  is a sequence in X such that 

n

lim
Axn =

n

lim
Bxn = z for some z X. 

Definition 2.8.  A pair of maps A and B is called weakly compatible pair if 

they commute at coincidence points i.e., Ax = Bx if and only if ABx = BAx. 

Definition 2.9.  Let A and S be mappings from an N.A. FM-space (X, M, ) 

into itself. Then the mappings are said to be semi-compatible if 

n

lim
g(M(ASxn , Sx, t)) = 0, for all t > 0,whenever nx  is a sequence in X 

such that 

n

lim
Axn =

n

lim
Bxn = x for some x X. 

It follows that if (A, S) is semi-compatible and Ay = Sy, then ASy = SAy. 

Thus if the pair (A, S) is semi-compatible, then it is weak compatible. The 

converse is not true as shown in Example 3.2. 

3. Propositions and Lemmas 

These are some propositions and lemmas useful in proving the main results of the 

paper. 

Proposition 3.1 : Let A and S be self-maps on an N.A. FM-space(X, M, ). 

If S is continuous, then (A,S) is semi-compatible if and only if (A, S) is 

compatible. 

Proof : Consider a sequence {xn} in X such that {Axn} and {Sxn} converges 

to u X. Suppose that (A, S) is compatible, then 

g(M(ASxn , Su, t)) g(M(ASxn, SAxn , t)) + g(M(SAxn, Su t)) 

letting n, Since (A, S) is compatible, we have 

n

lim
g(M(ASxn , Su, t)) = 0. Hence ASxn  Su ,i.e., (A,S) is semicompatible. 

Conversely, Suppose that (A,S) is semi-compatible, then 

g(M(ASxn , SAxn , t)) g(M(ASxn , Su , t)) + g(M(SAxn , Su t)). 

letting n, Since (A, S) is semi-compatible and S is continuous, we have 

SAxn  Su and this implies 
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n

lim
g(M(ASxn, Su, t)) = 0. 

Hence the pair (A, S) is compatible. 

The following is an example of a pair of self-maps (A, S) which is compatible but 

not semi-compatible. Further, it is also seen here that the semi-compatibility of the 

pair (A, S) need not imply the semi-compatibility of (S,A). 

Example 3.2: Let X = [0, 1] and let  (X, M,  ) be the N.A. FM-space with  

g(M(x, y, t)) = g

1

exp










 

t

yx
 for all x, y X, t > 0. Define self-map S as 

follows: 














2

1
1

2

1
0

xif

xifx
Sx


 

Let I be the identity map on X and 
n

xn

1

2

1
 . Then, {Ixn} = {xn}

2

1
 

And {Sxn} = {xn}
2

1
. Thus {ISxn} = {Sxn}

2

1
 S 









2

1
. Hence (I, S) is not 

semicompatible. 

Again as (I, S) is commuting, it is compatible. Futher, for any sequence {xn} in X 

such that {xn}  x, we have {SIxn} = {Sxn}  x = Ix. Hence (S, I) is always 

semicompatible. 

Remark 3.3: The above example gives an important aspect of semicompatibility 

as the pair of self-maps (I,S) is commuting, hence it is weakly commuting, 

compatible and weak compatible yet it is not semi-compatible. Further, it is to be 

noted that the pair (S, I) is semi-compatible but (I,S) is not semi-compatible here. 

The following is an example of a pair of self-maps (A, S) which is 

semicompatible but not compatible. 

Example 3.4 : Let (X, M,  ) be the N.A. FM-space, where X = [0, 2], with t-

norm defined by ab = min{a, b}, for all a, b[0, 1] and  

g(M(x, y,t)) = g
 










 yxdt

t

,
for all t > 0 and g(M(x, y,0)) <  , for all x, y X. 

Define self-maps A and S on X follows : 
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Ax = 











2

1
1

2

102

xif
x

xif


 , Sx = 











otherwise
x

xif

5

3

12

 

And 
n

xn
2

1
2  . Then we have S(1) = A(1) = 2 and S(2) = A(2) = 1. Also  

SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. Thus (A, S) is weak compatible. 

Again, 

Axn = 
n4

1
1 , Sxn = 

n10

1
1 . 

Thus, 1,1  nn SxAx . 

Hence u = 1. 

Further, 

SAxn = 
n20

1

5

4
 , ASxn = 2. 

Now, 

n

lim
g(M(ASxn, Su, t)) = g(M(2, 2, t)) = 0, 

n

lim
g(M(ASxn, SAxn, t)) = 

n

lim
 g(M(2, 

n20

1

5

4
 , t)) = g




















5

6
t

t
 0, for all 

t > 0.Hence (A, S) is semicompatible but it is not compatible. 

Remark 3.5: (1) If a N.A. FM-space (X,M,  ) is of type (D)g then (X,M,  ) is of 

type (C)g . 

(2)  If  (X, M,  )  is  a  N.A. FM-space    and        m ,  where  m (s, t) =  

max{s + t1,0}, then (X,M,  ) is of type (D)g for g   defined by  

g(t) = 1  t.  

Throughout this paper, let (X,M, ) be a complete N.A.FM-space of type (D)g 

with a continuous strictly increasing t-norm . 

Let : [0,+ ) [0,+ ) be a function satisfying the following condition () : 

() is upper semi-continuous from the right and (t) < t for all t > 0. 
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Lemma 3.6[10] : If a function  : [0,+)  [0, + ) satisfies the condition (), 

then we have  

(1) For all t  0, limn 
n
 (t) = 0, where 

n
 (t) is the n-th iteration of (t). 

(2) If {tn} is a non-decreasing sequence of real numbers and tn+1  (tn), n = 1,2,..., 

then limn tn = 0.  In particular, if t  (t) for all t  0, then t = 0. 

Lemma 3.7[9]: Let {yn} be a sequence in X such that limn F(yn,yn+1,t)=1 for all 

t > 0. If the sequence {yn} is not a Cauchy sequence in X, then there exist   0> 0, 

t0 >0, two sequences {mi}, {ni} of positive integers such that 

(A) mi > ni + 1, and ni   as i  , 

(B) F(
imy ,

iny  , t0) < 1  0 and F( 1imy , 
iny  , t0)  10, i = 1,2,... 

4. Main Results 

These are the main results of the paper. 

    Theorem 4.1 Let A, B, S , T :XX be mappings such that 

(1) A(X) T(X) and B(X) S(X), 

(2) g(M(Ax, By, t)) (max{g(M(Sx,Ty, t)), M(Sx,Ax,t)),g(M(Ty,By,t)),      

 1/2(g(M(Sx,By, t))+ g(M(Ty, Ax, t)))}) for all t > 0, 

where a function : [0, ) [0,) satisfies the condition () . 

(3) the pair (A,S) is semi-compatible and (B,T) is weakly compatible 

(4) one of A or S is continuous 

Then A, B,S and T have a uniqe common fixed point in X. 

Proof : Let x0 X, then by (1), there exists a point x1 X such that Ax0 = Tx1, 

since A(X) T(X). Since B(X) S(X), for this point x1, we can choose a point x2 

X such that Bx1 = Sx2 and so on. Inductively, we can define a sequence {yn} in 

X such that 

(5) y2n =  Ax2n =  Tx2n+1 and y2n+1 =  Sx2n+2 = Bx2n+1   for n = 0, 1,2... . 

Now we prove the sequence {yn}, defined by (5), such that 

limn  g(M( yn, yn+1, t ))=0  for all t >0 is a Cauchy sequence in X. 

Since g , it follows that limn M(yn, yn+1, t) = 1  for all t > 0 if and only if 

limn  g(M( yn, yn+1, t ))=0 for all t > 0. By Lemma 3.7, if {yn} is not a Cauchy 

sequence in X , then there exist 0 > 0 , t0 > 0  and two sequences  {mi}, {ni} of 

positive integers such that  

(A) mi >  ni+1    and ni    as i   ,  

(B)  g(M(ymi, yni ,t0)) >  g(1-0) and g(M(ymi-1, yni ,t0))   g( 1 - 0) , i = 1,2,... . 

 Thus we have 

g(1-0) < g(M(
imy ,

iny , t0))
 

(6)          g(M(
imy , 1imy , t0)) + g(M( 1imy ,

iny , t0)) 



 

 

 

226 Seema Mehra 

 

                 g(M(
imy , 1imy , t0))  + g(1- 0 ) 

Letting i in (6), we have 

(7) limn g(M(
imy ,

iny ,t0))= g(1-0) . 

On the other hand, we have 

g(1 0) < g(M(ymi, yni ,t0)) 

(8)          g(M(
iny , 1iny ,t0))+ g(M( 1iny ,

imy ,t0)) 

Now, consider g(M( 1iny ,
imy , t0))  in (8).Without loss of generality assume 

that both ni and mi are even. 

Then , by (2), we have 

g(M( 1iny ,
imy  ,t0))  = g(M(A

imx , B 1inx  ,t0)) 

                                      (max{g(M(S
imx , T 1inx , t0)) , 

                                 g(M(S
imx , A

imx  ,t0)),g(M(T 1inx , B 1inx ,t0)), 

                                1/2(g(M(S
imx ,B 1inx ,t0))+g(M(T 1inx , A

imx ,t0)))}) 

 (9)    =  (max{g(M( 1imy ,
iny ,t0)), g(M( 1imy ,

imy ,t0)), g(M(
iny , 1iny ,t0)),                     

  
  

                       1/2(g(M( 1imy , 1iny ,t0)) + g(M(
iny ,

imy ,t0)))}) 

By (7), (8) and (9), letting i in (9), we have 

  g(1-0)   (max {g(1-0) , 0, 0, g (1-0)}) 

                           =  (g(1-0)) < g(1-0) 

which is a contradiction. Therefore, {yn} is a Cauchy-sequence in X . 

Now, we prove limn g(M(yn , yn+1 ,t0)) = 0  for all t > 0 . In fact, by (2) 

and (3), we have 

g(M(y2n, y2n+1,t)) =  g(M(Ax2n, Bx2n+1,t)) 

                                           (max{g(M(Sx2n, Tx2n+1,t)), 

                                    g(M(Sx2n, Ax2n , t)),g(M(Tx2n+1, Bx2n+1, t)) ,  

                                  1/2(g(M(Sx2n, Bx2n+1 , t))+g(M(Tx2n +1, Ax2n,t)))}) 

                                    = (max{g(M(y2n-1, y2n ,t)), g(M(y2n-1, y2n,t)), 

                g(M(y2n,y2n+1,t)),1/2 (g(M(y2n-1, y2n +1, t)) + g(1)))}) 

                                         (max{g(M(y2n-1, y2n ,t)), g(M(y2n, y2n+1 ,t)) 

                                            1/2(g(M( y2n-1, y2n ,t))  +  g(M(y2n, y2n+1,t)))}) .  

If  g(M(y2n-1, y2n ,t))   g(M(y2n, y2n+1 ,t))   for all t > 0, then ,by (2), 

g(M(y2n, y2n+1 ,t))   (g(M( y2n, y2n+1, t)))  which means that , by Lemma 3.6, 
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g(M(y2n, y2n+1 ,t)) = 0   for all t > 0 . Similarly, we have 

g(M(y2n+1, y2n+2 ,t)) = 0  for all t > 0 . 

Thus we have limn g(M(yn yn+1,t)) = 0  for all t > 0 . 

On the other hand, if 

g(M(y2n-1, y2n,t))   g (M(y2n, y2n+1,t)) , then by (2), we have 

g(M(y2n, y2n+1,t))   (g(M( y2n-1, y2n ,t))  for all t > 0 . 

Similarly, g(M(y2n+1, y2n+2 , t))  (g(M(y2n,y2n+1 ,t))), for all t > 0 .Thus we 

have 

g(M(yn, yn+1 ,t))   (g(M(yn-1, yn, t))   for all t > 0 and n = 1,2,3,... Therefore 

by Lemma 3.6, limn  g(M(yn, yn+1, t)) = 0  for all t > 0 , which implies 

that {yn} is a Cauchy sequence in X by Lemma 3.7. Since (X, M, ) is complete, 

the sequence {yn} converges to a point zX and so the subsequences {Ax2n}, 

{Bx2n+1}, {Sx2n) and {Tx2n+1} of {yn} also converges to the same limit z, i.e., 

limn Ax2n = limn Tx2n+1 = limn Bx2n+1 = limn Sx2n+2 = z.                 (a) 

Case I (S is continuous). In this case, we have 

SAx2n   Sz, S
2
 x2n Sz. 

The semi-compatibility of the pair (A, S) gives 

n

lim
ASx2n = Sz. 

Step I. By putting x = Sx2n , y = x2n+1 in (2), we obtain that 

g(M(ASx2n, Bx2n+1, t))  (max{g(M(SSx2n,Tx2n+1 , t)),  

                                        g(M(SSx2n ,ASx2n,t)),g(M(Tx2n+1 ,Bx2n+1 ,t)), 

           1/2(g(M(SSx2n ,Bx2n+1 , t))+ g(M(Tx2n+1 , ASx2n, t)))}) 

Letting n, we have 

g(M(Sz, z, t))  (max{g(M(Sz,z , t)),  

                                        g(M(Sz ,Sz,t)),g(M(z ,z ,t)), 

            1/2(g(M(Sz ,z , t))+ g(M(z , Sz, t)))}) 

g(M(Sz, z, t))  (max{g(M(Sz,z , t)), 0, 0,g(M(Sz ,z , t)))}) 

g(M(Sz, z, t))  {g(M(Sz,z , t)} 

  g(M(Sz, z, t)) = 0 .i.e., M(Sz, z, t) = 1 

z = Sz. 

Step II. By putting x = z , y = x2n+1 in (2), we obtain that 

g(M(Az, Bx2n+1, t))  (max{g(M(Sz,Tx2n+1 , t)),  

                                        g(M(Sz ,Az,t)),g(M(Tx2n+1 ,Bx2n+1 ,t)), 

            1/2(g(M(Sz ,Bx2n+1 , t))+ g(M(Tx2n+1 , Az, t)))}) 

Letting n, we have 
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g(M(Az, z, t))  (max{g(M(z,z , t)),  

                                        g(M(z ,Az,t)),g(M(z ,z ,t)), 

            1/2(g(M(z ,z , t))+ g(M(z , Az, t)))}) 

g(M(Az, z, t))  (max{0, g(M(z,Az , t)), 0, 1/2(g(M(z , Az, t)))}) 

g(M(Az, z, t))  {g(M(Az,z , t)} 

  g(M(Az, z, t)) = 0 .i.e., M(Az, z, t) = 1 

z = Az. 

Hence,   Az = z = Sz. 

Step III. As A(X) T(X), there exists a point wX such that 

Az = Sz = z = Tw. By putting x = x2n , y = w in (2), we obtain that 

g(M(Ax2n, Bw, t))  (max{g(M(Sx2n,Tw , t)),  

                                        g(M(Sx2n ,Ax2n,t)),g(M(Tw ,Bw ,t)), 

            1/2(g(M(Sx2n ,Bw , t))+ g(M(Tw , Ax2n, t)))}) 

Letting n, we have 

g(M(z, Bw, t))  (max{g(M(z, z , t)),  

                                        g(M(z ,z ,t)),g(M(z, Bw ,t)), 

            1/2(g(M(z ,Bw , t))+ g(M(z , z, t)))}) 

g(M(z, Bw, t))  (max{0, 0,g(M(z, Bw ,t)), 1/2(g(M(z ,Bw , t)))}) 

  g(M(z, Bw, t))  (g(M(z, Bw ,t)) 

  g(M(z, Bw, t)) = 0 .i.e., M(z, Bw, t) = 1 

z = Bw. 

Therefore Bw = Tw = z. Since (B,T) is weakly compatible, we get that 

TBw = BTw, that is, Bz = Tz. 

Step IV. By putting x = z , y = z in (2), we obtain that 

g(M(Az, Bz, t))  (max{g(M(Sz,Tz , t)),  

                                        g(M(Sz ,Az,t)),g(M(Tz ,Bz ,t)), 

            1/2(g(M(Sz ,Bz, t))+ g(M(Tz, Az, t)))}) 

g(M(Az, Bz, t))  (max{g(M(Az,Bz , t)),  

                                        g(M(z ,z,t)),g(M(Bz ,Bz ,t)), 

            1/2(g(M(Az ,Bz, t))+ g(M(Bz, Az, t)))}) 

g(M(Az, Bz, t))  (max{g(M(Az,Bz , t)), 0, 0,g(M(Az ,Bz, t))}) 

  g(M(Az, Bz, t))  (g(M(Az, Bz ,t)) 
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  g(M(Az, Bz, t)) = 0 .i.e., M(Az, Bz, t) = 1 

Az = Bz. 

Therefore, z = Az = Sz = Bz = Tz, that is, z is a common fixed point of A, B, 

S and T. 

Case II (A is continuous). In this case, we have 

ASx2n   Az 

The semi-compatibility of the pair (A, S) gives 

ASx2n   Sz. 

By uniqueness of limit in N.A. FM Space, we obtain that Az = Sz. 

Step V. By putting x = z , y = x2n+1 in (2), we obtain that 

g(M(Az, Bx2n+1, t))  (max{g(M(Sz,Tx2n+1 , t)),  

                                        g(M(Sz ,Az,t)),g(M(Tx2n+1 ,Bx2n+1 ,t)), 

            1/2(g(M(Sz ,Bx2n+1 , t))+ g(M(Tx2n+1 , Az, t)))}) 

Letting n, we have 

g(M(Az, z, t))  (max{g(M(z,z , t)),  

                                        g(M(z ,Az,t)),g(M(z ,z ,t)), 

            1/2(g(M(z ,z , t))+ g(M(z , Az, t)))}) 

g(M(Az, z, t))  (max{0, g(M(z,Az , t)), 0, 1/2(g(M(z , Az, t)))}) 

g(M(Az, z, t))  {g(M(Az,z , t)} 

  g(M(Az, z, t)) = 0 .i.e., M(Az, z, t) = 1 

z = Az and rest of the proof follows from Step III onwards of the 

previous case. 

Uniqueness. Let u be another common fixed point of A, B, S and T. 

Then u = Au = Su = Bu = Tu. 

Putting x = z and y = u in (2.2), we have 

g(M(Az, Bu, t))  (max{g(M(Sz,Tu, t)), g(M(Sz,Az,t)),g(M(Tu,Bu,t)), 

            1/2(g(M(Sz,Bu, t))+ g(M(Tu, Az, t)))}), 

g(M(z, u, t))  (max{g(M(z, u, t)), g(M(z, z, t)),g(M(u, u, t)), 

            1/2(g(M(z, u, t))+ g(M(u, z, t)))}), 

  g(M(z, u, t))  (max{g(M(z, u, t)), 0, 0, g(M(z, u, t))}), 

g(M(z, u, t))  {g(M(z, u , t)} 

  g(M(z, u, t)) = 0 .i.e., M(z, u, t) = 1 

z = u. 

Therefore, z is the unique common fixed point of the self- maps A, B, S and 
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T. 

Corollary 4.2. Let A, B, S , T :XX be mappings such that 

(4.2.1) A(X) T(X) and B(X) S(X), 

(4.2.2) g(M(Ax, By, t)) (max{g(M(Sx,Ty, t)),g(M(Sx,Ax,t)),g(M(Ty,By,t)), 

1/2(g(M(Sx,By, t))+ g(M(Ty, Ax, t)))}) for all t > 0, 

where a function : [0, ) [0,) satisfies the condition () . 

(4.2.3) the pairs (A,S) and(B,T) are semicompatible. 

(4.2.4) one of A, B, S or T is continuous 

Then A, B,S and T have a unique common fixed point in X. 

Proof. As semi-compatibility implies weak compatibility, the proof follows from 

theorem 4.1. 

On taking A = B in theorem 4.1, we have the following corollary. 

Corollary 4.3. Let A, S and T : XX be mappings such that 

(4.3.1) A(X) T(X)S(X), 

(4.3.2) g(M(Ax, Ay, t)) (max{g(M(Sx,Ty, t)), g(M(Sx,Ax,t)),g(M(Ty,Ay,t)), 

1/2(g(M(Sx,Ay, t))+ g(M(Ty, Ax, t)))}) for all t > 0, 

where a function : [0, ) [0,) satisfies the condition () . 

(4.3.3) the pair (A,S) is semi-compatible and (A,T) is weakly compatible 

(4.3.4) one of A or S is continuous 

Then A, S and T have a unique common fixed point in X. 

Now, taking S = I and T = I in theorem in 4.1, the conditions (1),(3) and (4) are 

satisfied trivially, and we get the following corollary. 

Corollary 4.4. Let A, B :XX be mappings such that 

(4.4.1) g(M(Ax, By, t)) (max{g(M(x, y, t)), g(M(x, Ax, t)), 

            g(M(y, By, t)),1/2(g(M(x, By, t))+ g(M(y, Ax, t)))}) for all t > 0, 

where a function : [0, ) [0,) satisfies the condition () . 

Then A, B have a unique common fixed point in X. 

Theorem 4.5. Let A,B, S , T : X X be mappings satisfying (1), (2) and the 

following : 

(4.5.1) the pair (A, S) is compatible and (B, T) is weakly compatible 

(4.5.2) one of A or S is continuous 

Then A, B, S and T have a unique common fixed point in X. 

Proof. In view of Proposition (3.1) and theorem (4.1), it suffices to prove the 

result when A is continuous. As in the proof of theorem 4.1, the sequence {yn} 

z X and (a) are satisfied. As A is continuous, we have 

ASx2n Az, AAx2n Az. 

The compatibility of (A,S) gives
n

lim
 ASx2n = Az = 

n

lim
SAx2n. 

Step I. By putting x = Ax2n , y = x2n+1 in (2), we obtain that 

g(M(AAx2n, Bx2n+1, t))  (max{g(M(SAx2n,Tx2n+1 , t)),  

                                        g(M(SAx2n ,AAx2n,t)),g(M(Tx2n+1 ,Bx2n+1 ,t)), 
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           1/2(g(M(SAx2n ,Bx2n+1 , t))+ g(M(Tx2n+1 , AAx2n, t)))}) 

Letting n, using (a) we have 

g(M(Az, z, t))  (max{g(M(Az,z , t)),g(M(Az ,Az,t)),g(M(z ,z ,t)), 

                          1/2(g(M(Az ,z , t))+ g(M(z , Az, t)))}) 

g(M(Az, z, t))  (max{g(M(Az,z , t)), 0, 0,g(M(Az ,z , t)))}) 

g(M(Az, z, t))  {g(M(Az,z , t)} 

  g(M(Az, z, t)) = 0 .i.e., M(Az, z, t) = 1 

z = Az. 

Step II. As A(X) T(X), there exists a point wX such that Az = Sz = z = Tw. 

By putting x = x2n , y = w in (2), we obtain that 

g(M(Ax2n, Bw, t))  (max{g(M(Sx2n,Tw , t)), g(M(Sx2n ,Ax2n,t)), 

                        g(M(Tw ,Bw ,t)),1/2(g(M(Sx2n ,Bw , t))+ g(M(Tw , Ax2n, t)))}) 

Letting n, using (a), and the continuity of the t-norm, we have 

g(M(z, Bw, t))  (max{g(M(z, z , t)),g(M(z ,z ,t)),g(M(z, Bw ,t)), 

                 1/2(g(M(z ,Bw , t))+ g(M(z , z, t)))}) 

g(M(z, Bw, t))  (max{0, 0,g(M(z, Bw ,t)), 1/2(g(M(z ,Bw , t)))}) 

  g(M(z, Bw, t))  (g(M(z, Bw ,t)) 

  g(M(z, Bw, t)) = 0 .i.e., M(z, Bw, t) = 1 

z = Bw. 

Therefore Bw = Tw = z. Since (B,T) is weakly compatible, we get that 

TBw = BTw, that is, Bz = Tz. 

Step III. Again as z = Bw and B(X)S(X), there exists v X such that z = 

Bz = Sv. By putting x = v, y = w in (2), we have 

g(M(Av, Bw, t))  (max{g(M(Sv,Tw, t)), g(M(Sv,Av,t)),g(M(Tw,Bw,t)), 

            1/2(g(M(Sv,Bw, t))+ g(M(Tw, Av, t)))}), 

  g(M(Av, Sv, t))  (max{g(M(Sv,Tw, t)), g(M(Sv,Av,t)),g(M(Tw,Sv,t)), 

            1/2(g(M(Sv,Sv, t))+ g(M(Tw, Av, t)))}), 

  g(M(Av, Sv, t))  (max{0, g(M(Sv,Av,t)),0, 1/2(g(M(Sv, Av, t)))}), 

   g(M(Av, Sv, t))  (g(M(Sv,Av,t)) 

  g(M(Av, Sv, t)) = 0, that is, M(Av, Sv, t) = 1 

⇒ Av = Sv. As (A, S) is compatible, we have ASv = SAv or Az = Sz = z. 
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Also Az = Bz follows from Step IV in the proof of Theorem 4.1 and it follows that 

z is a common fixed point of four maps A, B, S and T. The uniqueness follows as 

in the proof of theorem 4.1. 

Corollary 4.6. Let A,B, S, T : X X be mappings satisfying (1), (2) and the 

following : 

(4.6.1) the pairs (A,S) and (B, T) are compatible, 

(4.6.2) one of A, B, S or T is continuous 

Then A, B,S and T have a unique common fixed point in X. 

Proof. As compatibility implies weak compatibility, the proof follows from 

theorem (4.5) 

If we take A = I, the identity map on X in Theorem (4.5), we have the following 

result for three self-maps, none of which is continuous and just a pair of them is 

needed to be weak compatible. 

5. Application 

Theorem 5.1. Let (X, M, ) be a complete N.A. FM-space and A, B, S and T be 

the mappings from the product X X to X such that 

(5.1.1) A(X {y} ) T(X {y}) and B(X {y}) (X {y}) 

(5.1.2) g(M(A(T(x,y),y),T(A(x,y),y),t)) g(M(A(x,y),T(x,y),t)), 

            g(M(B(S(x,y),y),S(B(x,y),y),t)) g(M(B(x,y),S(x,y),t))for all t > 0 . 

(5.1.3) 

g(M(A(x,y),B(x,y),t))(max{g(M(S(x,y),T(x,y),t)),M(S(x,y),A(x,y),t)),               

g(M(T(x,y),B(x,y),t)),1/2(g(M(S(x,y),B(x,y),t)) + g(M(T(x,y),A(x,y),t)))}) 

for all t > 0 and x,y,x,yin X, then there exists only one point b in X such that 

A(b,y) = S(b,y) = B(b,y) = T(b,y) for all y in X . 

Proof. By (5.1.3), 

g(M(A(x,y),B(x,y)),t))(max{g(M(S(x,y),T(x,y)),t)),g(M(S(x,y),A(x,y)),t)), 

                                         g(M(T(x,y),B(x,y)),t)),  

                                         1/2(g(M(S(x,y),B(x,y)),t)) + g(M(T(x,y),A(x,y)),t)))}) 

for all t > 0 , therefore by Theorem 4.1, for each y in X, there exists only one 

x(y) in X such that 

A(x(y),y) = S(x(y),y) = B(x(y),y) = T(x(y),y) = x(y) for every y, yin X 

g(M(x(y),x(y)),t)) = g(M(A(x(y),y), A(x(y),y)),t) 

(max{g(M(A(x,y),A(x’,y)),t)),g(M(A(x,y),A(x,y)),t)),     

g(M(T(x,y),A(x,y)),t)),1/2(g(M(A(x,y),A(x,y)),t))+ g(M(A(x,y),A(x,y)),t)))}) 

                              = g(Mx(y), x(y)),t)) 

This implies x(y) = x(y) and hence x(y) is some constant b X so that 

A(b,y) = b = T(b,y) = S(b,y) = B(b,y) for all y in X . 
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6. Conclusion 

In this study we prove the common fixed point theorems in Non- Archimedean 

fuzzy metric space using the concept of semi-compatibility and weak 

Compatibility of pair of self maps. In fact, the results presented in this paper 

improve and extend some known results. The previous results such as   

Chang(1985) are obtained in Probabilistic metric space, while we can get fixed 

point theorems in more general space. 
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