
International Journal of Applied Mathematical Research, 2 (4) (2013) 486-494
c©Science Publishing Corporation
www.sciencepubco.com/index.php/IJAMR

Solution of the Black-Scholes equation via the

Adomian decomposition method

Luis Blanco-Cocom, Angel G. Estrella, Eric Ávila-Vales*
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Abstract

The Adomian Decomposition Method (ADM) is applied to obtain a fast and reliable solution to the Black-
Scholes equation with boundary condition for a European option. We cast the problem of pricing a European
option with boundary conditions in terms of a diffusion partial differential equation with homogeneous boundary
condition in order to apply the ADM. The analytical solution of the equations is calculated in the form of an explicit
series approximation.

Keywords: Adomian decomposition method, Black-Scholes equation, Call option, Put option.

1 Introduction

In 1973 Fischer Black and Myron Scholes published a formula to find the price of financial options, which Robert
Merton called the Black-Scholes equation [1, 2]. For their contributions, Scholes y Merton received the Nobel prize
of economy, unfortunately Fisher Black passed away and could not receive it [2]. The tools used to study these types
of problems are methods and ideas specialized in stochastic calculus and partial differential equations: Wilmott
et al. [3], Courtadon [4] and Company et al. [25] used finite differences methods to approximate the solution of
the option valuation equations; Geske & Johnson, MacMillan, Barone-Adesi & Whaley, Barone-Adesi & Elliot,
Barone-Adesi and Whaley, and Barone-Adesi developed methods of analytic approximation [5, 6, 7, 8, 9]; Gülkaç
, used a series expansion method called homotopy perturbation method to find an approximate solution for the
Black-Scholes equation [10], Alawneh & Al-Khaled [28] applied the Variational Iteration Method (VIM) to solve the
Fockker-Planck equation and Black-Scholes equations. Cheng et al. applied the homotopy analysis method [11],
Bohner & Zheng [12], El-Wakil et al. [26] and Tatari et al. [27] used the Adomian decomposition method but they
did not use boundary conditions to find the approximate solution of the Black-Scholes or Fockker-Planck equations.

This article presents the Adomian Decomposition Method (ADM) applied to a diffusion equation with non null
Dirichlet boundary conditions obtained after reducing the Black-Scholes equation with non homogeneous boundary
conditions through variable changes. The ADM, gives an analytic solution of an equation or a system of differential
equations. The method is based on considering the decomposition of the unknown function in an infinite series∑∞
n=0 un, and the decomposition of the non linear term of the equation in another series,

∑∞
n=0An, where the

An are named Adomian Polynomials. This method has its origins in the 80’s when George Adomian presented
and developed the then called decomposition method, to resolve linear and non linear equations, for both ordinary
differential equations and partial derivative equations [13]. The method has been applied in many deterministic
and stochastic problems, linear and non linear, in physics, biology, chemistry and economy [12, 14, 15, 16].

This paper is developed as follows: in section 2 we present a chage of variable that transforms the Black-
Scholes equation into a diffusion differential equation. Adomian Decomposition Method is presented in section 3,
and its application to Black-Scholes equation without boundary conditions and its transformation using boundary
conditions is developed en section 4. Simulations of put and call options is presented en section 5. Finally,
conclusions are given in section 6.
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2 Put-Call options and the Black-Scholes equation.

Let us consider the problem of finding a price of an option with maturity time T and a cost K. The option price
can be thought of as paying a prime for the right to exercise the option at maturity time. The problem is finding
the “right” price of the option. To find a solution to the problem one must consider the primary characteristics of
the markets, for example, randomness, one does not know how much the coin will be worth at that time [2].

Price in [2], presents the dynamic of European options: consider options on Australian dollars (AUD), purchasing
and European call option on AUD with expiration time T and strike K gives the purchaser the rigth to buy one
dollar at time T for a price of K dollars. Let ST denote the price of one UAD (the exchange rate) at time T; if
ST ≤ K, the expiration value of the option is zero; if St > K, the expiration value is St − K, since the option
holder can purchase one AUD for K and immediately sell it for ST . In the first case, the option is said to expire
out-of-the-money, in the second case, expire in-the-money. Note that unless there has been some special agreement,
the holder of an option that is expiring in the money does not actually have to buy the Australian dollars, but just
receives the difference ST −K in cash. If P is the price paid for an option, the the final profit and loss profile is
(ST −K)+ − P . An European put option with expiration T and strike K gives the right to sell one AUD at time
T for K dollars, and its payoff profile is (K − ST )+ − P . If the option can be exercised until or at time T, it is
called American option (put or call).

In financial mathematics, it can be demonstrated that by studying a strategy of self-financing one can reach the
following partial differential equation called the Black-Scholes equation, formulated in 1973 by Fisher Black and
Myron Scholes [1],

rf (t, x) = ft (t, x) +
1

2
σ2x2fxx (t, x) + rxfx (t, x) , x > 0, t ∈ [0, T ] , (1)

where, x represents the value of the action, t the time, f the option price, r is the type of interest of the market
of debt, σ is the volatility of the action, measured as the standard deviation of the logarithm of the value of the
action.

In this paper we give an analytic solution of two financial options, Call Option problem,
rC (t, x) = Ct (t, x) + 1

2σ
2x2Cxx (t, x) + rxCx (t, x) , x > 0, t ∈ [0, T ],

C (T, x) = max (x−K, 0) ,
C (t, x) = x−Ke−r(T−t), when x→∞,
C (t, 0) = 0, ∀t > 0 .

(2)

and put option problem,
rP (t, x) = Pt (t, x) + 1

2σ
2x2Pxx (t, x) + rxPx (t, x) , x > 0, t ∈ [0, T ],

P (T, x) = max (K − x, 0) ,
P (t, x) = Ke−r(T−t) − x, when x→ 0,
P (t, x) = 0, when x→∞, t ∈ [0, T ] .

(3)

To reduce problem 2 and 3 into a diffusion problem we use change of variables given by,

τ=
1

2
σ2 (T − t) , y = ln

( x
K

)
, γ =

2r

σ2
, (4)

and we assume that functions C(t, x) and P (x, t) can be expressed by,

C (t, x) = Ke−ay−bτU (τ, y) , (5)

P (t, x) = Ke−ay−bτV (τ, y) , (6)

where a = 1
2

(
2r
σ2 − 1

)
and b = (1 + a)2. Thus, problem 2 transforms into

Ut (τ, y) = Uxx (τ, y) , y > 0, τ ∈
[
0, σ

2T
2

]
,

U (0, y) = max
(
e

1
2 (γ+1)y − e 1

2 (γ−1)y, 0
)
,

U (τ, L) = e
1
2 (γ+1)L+ 1

4 (γ+1)2τ − e 1
2 (γ−1)L+

1
4 (γ−1)

2τ ,
U (τ, 0) = 0,

(7)
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and problem 3 becomes,
Vt (τ, y) = Vxx (τ, y) , y > 0, τ ∈

[
0, σ

2T
2

]
,

V (0, y) = max
(
e

1
2 (γ−1)y − e 1

2 (γ+1)y, 0
)
,

V (τ, L) = e
1
2 (γ−1)L+

1
4 (γ−1)

2τ − e 1
2 (γ+1)L+ 1

4 (γ+1)2τ ,
V (τ, 0) = 0.

(8)

The general solutions of (7) and (8) are given by,

C (t, x) = Ke−
1
2 (γ+1)x− 1

4 (γ−1)
2τU (τ, y) , (9)

P (t, x) = Ke−
1
2 (γ−1)x−

1
4 (γ+1)2τV (τ, y) . (10)

Thus, to obtain a solution for put and call option problems of the form (9) and (10) we reduce equations (2)
and (3) into equations (7) and (8), that is, we have reduced the Black-Scholes equation into a diffusion equation in
order to use all given boundary conditions.

3 The Adomian Decomposition Method (ADM)

The Adomian decomposition method allows us to find an analytic solution in the form of the series [2, 16] and
consists in identify the linear and non linear parts of the equation in order to integrate the highest order differential
operator in the linear part, and then consider the unknown function as a series that has well determined components.
Then, the non linear function is decomposed into Adomian polynomial terms. We define the initial and boundary
conditions and the independent function as an initial approximation, and the terms of the solution series are found
in a successive fashion by a recurrence relation.

Given a differential equation,

Fu(t) = g(t), (11)

where F represents a non linear differential operator which includes both linear and non linear terms, so that
equation 11 can be written as

Lu (t) +Ru (t) +Nu(t) = g(t), (12)

where L+R is the linear operator, L is an easily invertible operator, R the remainder linear operator, N represents
the non linear operator and g is the independent function of u (t).

Resolving for Lu (t),

Lu (t) = g (t)−Ru (t)−Nu(t).

Since L is invertible, we have that,

L−1Lu (t) = L−1g (t)− L−1Ru (t)− L−1Nu(t).

An equivalent expression

u (t) = ϕ+ L−1g (t)− L−1Ru (t)− L−1Nu(t), (13)

where ϕ is the integration constant and satisfies Lϕ = 0. For problems with an initial value in t = a, we have
conveniently defined L−1 for L = dny

dxn , which is the definite integrate of a to t.
This method assumes a solution in the form of an infinite series for the unknown function u (t) given by,

u (t) =

∞∑
i=0

ui(t). (14)
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The non linear term Nu(t) is decomposed as

Nu (t) =

∞∑
n=0

An(u0, u1, . . . , un), (15)

where An is called and Adomian polynomial, and depends on the particularity of the non linear operator. The An’s
are calculated in a general way by the following formula:

An(u0, u1, . . . , un) =
1

n!

dn

dλn
N

 ∞∑
j=0

λjuj

∣∣∣∣∣∣
λ=0

. (16)

Equation 16 can be solved using a software, such as MATLAB or MAPLE [17].
Substituting 14 and 15 in the equation 13 we have,

∞∑
i=0

ui(t) = ϕ+ L−1g (t)− L−1R
∞∑
i=0

ui(t)− L−1
∞∑
n=0

An(u0, u1, . . . , un).

And thus a solution is obtained by{
u0 (t) = ϕ+ L−1g
un+1 (t) = −L−1Run(t)− L−1An(u0, u1, . . . , un).

(17)

The approximations are given by

ψk =

k−1∑
i=0

ui(t). (18)

The decomposition of the solution series converges in general very quickly. This means thaw few terms are
required for the approximation. Convergence of this method has been rigorously established by Cherruault [18],
Cherruault and Adomian [19], and Abbaoui and Cherruault [20, 21].

4 Solutions of the Black-Scholes equation through ADM.

4.1 ADM direct application.

Let us consider equation 1 with terminal function f (T, x) = fT , where, fT = max (x−K, 0), for a call option, or
fT = max (K − x, 0), for a put option. ADM can be applied using operators as shown in [12],

L = (.)t, R = 1
2σ

2x2(.)xx+rx(.)x−r (.) , N = 0, y g = 0.

Rewriting equation 1 we have that,

ft (t, x) = −1

2
σ2x2fxx (t, x)− rxfx (t, x) + rf (t, x) ,

applying L−1 =
∫ T
t

(.)ds in both sides of the equation, we obtain,

L−1ft (t, x) = −1

2
σ2L−1x2fxx (t, x)− rL−1xfx (t, x) + rL−1f (t, x) ,

f (T, x)− f (t, x) = −1

2
σ2

∫ T

t

x2fxx (s, x)ds− r
∫ T

t

xfx (s, x)ds+ r

∫ T

t

f (s, x)ds,

f (t, x) = fT +
1

2
σ2

∫ T

t

x2fxx (s, x)ds+ r

∫ T

t

xfx (s, x)ds− r
∫ T

t

f (s, x)ds.

Assuming that the solution could be expressed in terms of an infinite series,

f (t, x) =

∞∑
i=0

fi(t, x),
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We obtain that,

∞∑
i=0

fi(t, x) = fT +
1

2
σ2

∫ T

t

x2
∞∑
i=0

fixx(s, x)ds+ r

∫ T

t

x

∞∑
i=0

fix(s, x)ds− r
∫ T

t

∞∑
i=0

fi(s, x)ds,

k∑
i=0

fi (t, x)=fT+
1

2
σ2

k∑
i=0

∫ T

t

x2fixx (s, x)ds+r

k∑
i=0

∫ T

t

xfix (s, x)ds−r
k∑
i=0

∫ T

t

fi (s, x)ds.

Each term of the approximation is represented by{
f0 (t, x) = fT ,

fn+1(t, x) = 1
2σ

2
∫ T
t
x2fnxx(t, x)ds+ r

∫ T
t
xfnx(t, x)ds− r

∫ T
t
fn(t, x)ds, for n > 0.

(19)

Then, an approximation is given by the partial sum

f (t, x) ≈ ψk+1 =

k∑
i=0

fi(t, x). (20)

Observe that the boundary conditions were not used, when there is a boundary value problem, a special treatment
will be executed as shown in section 4.3.

4.2 ADM application for european options.

Given the system{
ut (τ, y) = uxx (τ, y) , y > 0, τ ∈

[
0, σ

2T
2

]
,

u (0, y) = u0 (y) .
(21)

Following the AMD algorithm, considering L = du
dτ , R = d2u

dx2 , N = 0, y g = 0, we obtain,

L−1ut (τ, y) = L−1uxx (τ, y) ,
u (τ, y) = u (0, y) +

∫ τ
0
uxx (s, y) ds.

Assuming a solution in the form of a infinite series u (τ , y) =
∑∞
i=0 ui (τ , y) , we have,

∞∑
i=0

ui (τ, y) = u (0, y) +

∫ τ

0

∞∑
i=0

uixx (s, y)ds.

For an approximation up to k + 1 terms, we have,∑k
i=0 ui (τ, y) = u (0, y) +

∫ τ
0

∑k
i=0 uixx (s, y)ds,

⇔
∑k
i=0 ui (τ, y) = u (0, y) +

∑k
i=0

∫ τ
0
uixx (s, y) ds.

Thus, the (k + 1)-th approximation for the solution is given by,

ψk =

k−1∑
i=0

ui(t) ≈u (t) . (22)

And so, the solution for the original problem is determined for the call option by

C (t, x) = Ke−
1
2 (γ+1)x− 1

4 (γ−1)
2τψk, (23)

and for the put option,

P (t, x) = Ke−
1
2 (γ−1)x−

1
4 (γ+1)2τψk. (24)
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4.3 Solution of the diffusion equation with boundary conditions via the ADM

Adomian Decomposition method is not appropriate for resolving partial differential equations with non homogeneous
boundary conditions, however, under a change of a variable, the initial value and non homogeneous boundary
conditions problem can be transformed into one of initial value with homogeneous boundary as mentioned in
[23, 24]. Transforming the original problem following the methodology presented before by Luo et al. [24], assume
that

U (τ, y) = u(τ, y) + w(τ, y),

where,

w (τ, y) = U (0, y) + (U (0, y)− U (τ, L))

(
y − y0

L− y0

)
,

and so, as problems 7 and 8 are similar can be written in a general form as follows,
ut (τ, y) = uxx (τ, y)− wt (τ, y) , y > 0, τ ∈

[
0, σ

2T
2

]
,

u (0, y) = u0(y)− w (0, y) ,
u (τ, L) = 0,
u (τ, 0) = 0, ∀τ > 0.

(25)

Where, if we have a call option

u0 (y) = max
(
e

1
2 (γ+1)y−e 1

2 (γ−1)y, 0
)
,

or, if the problem corresponds to a put option

u0 (y) = max
(
e

1
2 (γ−1)y−e 1

2 (γ+1)y, 0
)
.

Now, following the ADM algorithm, let us consider L = du
dτ , R = d2u

dx2 , N = 0 y g = −wt (τ , y), and so,

L−1ut (τ, y) = −L−1wt (τ, y) + L−1uxx (τ, y) ,
u (τ, y) = u (0, y)− L−1wt (τ, y) +

∫ τ
0
uxx (s, y) ds.

Considering a solution in the form of the infinite series u (τ , y) =
∑∞
i=0 ui (τ , y) , we have,

∞∑
i=0

ui (τ, y) = u (0, y)− L−1wt (τ, y) +

∫ τ

0

∞∑
i=0

uixx (s, y)ds.

For an approximation up to k + 1 terms,∑k
i=0 ui (τ, y) = u (0, y)− L−1wt (τ, y) +

∫ τ
0

∑k
i=0 uixx (s, y)ds,

⇔
∑k
i=0 ui (τ, y) = u (0, y)− L−1wt (τ, y) +

∑k
i=0

∫ τ
0
uixx (s, y) ds.

The terms of the series are completely determined by{
u0 (t) = u (0, y)− L−1wt (τ, y) ,

un+1 (t) =
∫ τ
0
uixx (s, y) ds.

(26)

Thus, the (k + 1)-th approximation for the solution is given by

u (t) ≈ ψk =

k−1∑
i=0

ui(t). (27)

The solution for the original problem is determined for the call option by

C (t, x) = Ke−
1
2 (γ+1)x− 1

4 (γ−1)
2τ (ψk + w (τ, y)), (28)

and for the put option

P (t, x) = Ke−
1
2 (γ−1)x−

1
4 (γ+1)2τ (ψk + w (τ, y)) . (29)
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5 Simulations

In this section we compare the results of the traditional ADM and methodology presented in this article applied
to problems (2) and (3), sections 4.2 and 4.3. In the first case, ADM is applied solely using the initial condition,
just as it was done in Bohner [12], in the second case ADM was applied using the methodology presented in 4.3,
transforming the Black-Scholes problem into one of diffusion, and with that we could use the boundary conditions
of (2) and (3).

Figure 1: Solution approximation: a) with boundary conditions, b) without boundary conditions.

Let us define the group of parameters r = 0.05, σ = 0.317,K = 20 and T = 0.25 (3 months) for the problems
(2) and (3). Simulations shows solution time profiles at t = 0, 0.125 and 0.25 (start, 1.5 months and maturity time
T ).

Figure 2: Solution approximation: a) with boundary conditions, b) without boundary conditions.

In Fig. 1a) we show the solution approximation for call option problem (2) using formula (27) with k = 10,
applying the ADM on homogeneous dirichlet boundary diffusion problem (24) obtained from problem (7), and so,
in Fig. 1b), we presented the solution approximation profiles obtained from problem (2) applying the ADM only
using the initial condition (see section 4.1 and [12]).

Analogously, in Fig. 2 one can to observe a similar behavior in profiles at t = 0, 0.125 and 0.25 for put option
solution approximation. In Fig. 2a) an approximation solution to put option problem (3) is presented, using the
methodology developed in 4.3 with k = 10, in which we applied the ADM on problem (25), and then using equality
(29 ). In Fig. 2b) we can see the result of applying ADM without considering boundary conditions.

In both cases, call and put option problems, one can observe differences in profiles obtained from approximations
by using all boundary conditions and approximation using only the initial function in the ADM, this differences
causing possible money losses in real applications.
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6 Conclusions

Since Adomian descomposition method converges quickly as shown by Cherruault [18], Adomian and Cherruault
[19], Abbaoui y Cherruault [20, 21], it turns out to be an efficient alternative tool to solve the Black-Scholes equation
problem, in general, ADM gives an analytic solution for partial differential equation problems, without implying
that this solution is adequate to a given problem, because it does not use all boundary conditions, however, we
showed that ADM is applicable to partial differential equations with null Dirichlet boundary conditions transforming
it into a diffusion equation with null Dirichlet conditions.Simulations shows the efficiency of the method. Therefore,
the methodology presented in this article may be very useful for practitioners.
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