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Abstract

This article is devoted to the study of overlap measures of densities of two exponential populations. Various Overlapping Coef�cients,
namely: Matusita's measure r , Morisita's measure l and Weitzman's measure D. A new overlap measure L based on Kullback-Leibler
measure is proposed. The invariance property and a method of statistical inference of these coef�cients also are presented. Taylor series
approximation is used to construct con�dence intervals for the overlap measures. The bias and mean square error properties of the
estimators are studied through a simulation study.
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1. Introduction

The similarity between two densities can be considered as the com-

monality shared by both populations. Generally it is measured on

the scale of 0 to 1. Values of measure close to 0 corresponding to

the distributions having supports with no intersection and 1 to the

perfect matching of the two distributions. Scientists from different

disciplines propose different measures of similarity serving differ-

ent purposes.

By using delta method Smith [20] derived formulas for estimating

the mean and the variance of the discrete version of Weizman's mea-

sure (also known as the overlap coef�cient). Mishra et al. [12] gave

the small and large sample properties of the sampling distributions

for a function of this overlap measure estimator, under the assump-

tion of homogeneity of variances for the case of two normal distri-

butions. Mulekar and Mishra [14] simulated the sampling distribu-

tion of estimators of the overlap measures when the two densities

correspond to the normal case with equal means and obtained the

approximate expressions for the bias and variance of their estima-

tors.

Smith [20] derived approximate formulas using the delta method for

estimating the mean and variance of the discrete version of one such

measure known as Weitzman's measure D(Weitzman [21]) (also

known as the overlap coef�cient). Mishra et al. [12] gave some

properties of the sampling distributions for a function of the esti-

mator, under the assumption of homogeneity of variances for the

case of two normal distributions. Recently, several authors includ-

ing Bradley and Piantadosi [4], Inman and Bradley [8], Clemons

[5], Reiser and Faraggi [18], Clemons and Bradley [6], Mulekar

and Mishra [15], Al-Saidy, et al. [1], Al-Saleh and Samawi [2], and

Samawi and Al-Saleh [19] considered this measure.

Dixon [7] described the use of bootstrap and jackknife techniques

for the Gini coef�cient of size hierarchy, a commonly used measure

of similarity between income distributions of two ethnics groups,

gender, or geographical groups, and the Jaccard index of commu-

nity similarity. AL-Saidy et al. [1] consider the problem of draw-

ing inference about the three overlap measures under the Weibul

distribution function with equal shape parameter. Wei Ning et al

[16] have compared mixtures of generalized lambda distributions

(GLDs) with normal mixtures by using KullbackLeibler (KL) dis-
tance and overlapping coef�cient (d ) .
The main objective of this paper is to propose a new OVL based

on the Kulback-Leibler divergence [9] for two Exponential distribu-

tions, i.e. from a measure of divergence or dissimilarity, we con-

struct a measure of similarity noted L de�ned in (1). We provide its

maximum likelihood estimator.

The coef�cients and their properties are given in section 2. The ex-

pressions for approximate bias and variance of OVL are included

in section 3. A method for making statistical inferences about the

OVLs is also discussed in this section. The results of simulation

study are described in section 4, along with an example demonstrat-

ing the usefulness of OVLs. Finally, the conclusion and perspective

is presented in Section 5.

2. Overlap Coef�cients

We consider four different similarity measures (the overlap coef�-

cients (OVL)): Matusita's measure r , Morisita's measure l , Weitz-

man's measure D and the measure based Kullback-Leibler diver-

gence L. The overlap measure (OVL) is de�ned as the area of

intersection of the graphs of two probability density functions. It

measures the similarity, which is the agreement or the closeness of

Copyright © 2017 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.



136 International Journal of Applied Mathematical Research

the two probability distributions.

Let F1(x) and F2(x) be two distribution functions with the corre-

sponding density functions with respect to the Lebesgue measure.

Four commonly used measures that describe the closeness between

F1(x) and F2(x) are described below;

� Weitzman's Measure [21] The overlapping coef�cient D is the

area under two functions simultaneously, de�ned as,

D=
∫

min [ f1(x), f2(x)]dx.

� Matusita's Measure [11] second measure studied here is

known as the Matusita's measure, r , which is de�ned as,

r =
∫ √

f1(x) f2(x)dx

This measure is based on the distance between two functions

(Matusita [11]). Matusita actually developed a discrete version

of r , which is also known as the Freeman-Tukey measure

(FT). This measure is related to the Hellinger distance (Rao

[17] and Beran [3]).

� Morisita's Measure [13] Morisita proposed an index of simi-

larity between communities. Consider an ecological study in-

volving two populations from each of which a random sample

is taken, de�ned as,

l =
2
∫
f1(x) f2(x)dx∫

[ f1(x)]2dx+
∫
[ f2(x)]2dx

� Kullback-Leibler [9] : The Kullback-Leibler divergence was

originally introduced by Solomon Kullback and Richard

Leibler in 1951 as the directed divergence between two distri-

butions. It is discussed in Kullback's historic text, Information

Theory and Statistics.

the overlap coef�cient L is the complement of Kullback-

Leibler

L=
1

1+KL( f1∥ f2)
(1)

with KL( f1∥ f2) =
∫
( f1− f2) log

(
f1
f2

)
dx

2.1. Overlap measures (OVL) for Exponential Distribu-

tion

The simplest and most commonly used distribution in survival and

reliability analysis is the one-parameter exponential distribution.

Suppose fi(x;qi) indicate two exponential populations with respec-

tive hazard rates qi > 0(i= 1,2), that is

fi(x;qi) = qi exp(qix), f or x ∈ (0,¥).

The Overlapping Coef�cients is shown graphically in Fig. 2.

Let R = q1
q2
, the ratio of hazard rates, then these measures can be

shown to be functions of R as follows

D= 1−|1− 1

R
|R

1

1−R R ̸= 1

r =
2
√
R

1+R

l =
4R

(1+R)2

and

L=
R

R2−R+1

lemma 2.1: For OVLs de�ned earlier,

Figure 1: The overlap of two exponential densities.

Figure 2: Measures of similarity as functions of R for exponential popula-
tions.

a) 0≤ OVL≤ 1 for all R≥ 0

b) OVL= 1 iff R= 1

c) OVL= 0 iff R= 0 or R= ¥

All four OVLs possess properties of reciprocity, invariance, and

piecewise monotonicity

a) OVL(R) = OVL(1/R)
b) OVLs are monotonically increasing in R for 0 ≤ R ≤ 1 and

decreasing in R> 1.

3. Bias and Variance of Estimates

As mentioned earlier, the overlap coef�cients are functions of the

ratio. Most commonly, the estimation of ratios, estimators that are

convenient and easy to understand are found to be biased. As noted

by Lu, et al. [10], the OVLs in this study are no exception to it.

The amount of bias is B(OVL) = E(OVL)−OVL. To examine the

effects of bias, approximate expressions for the mean and the vari-

ance of estimates are obtained.

suppose that (Xi j; j = 1, ...,ni; i= 1,2) denote independent observa-
tion from two independent random samples draw from f1(x) and
f2(x) respectively, where

f1(x) =
1

q1
exp{− x

q1
} x> 0

and

f2(x) =
1

q2
exp{− x

q2
} x> 0
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The maximum likelihood estimators (MLEs) based on the two sam-

ples are given by:

1) From the �rst sample:

q̂1 = X1 =
å
n1
i=1X1i

n1

2) From the second sample:

q̂2 = X2 =
å
n2
i=1X2i

n2

Note that, it is easy to show that

q̂1 ∼ G(n1,
q1
n1

) q̂2 ∼ G(n2,
q2
n2

)

where G(., .) stands for the gamma distribution function. Hence,

the variances of those MLE's are respectively Var(q̂1) =
q
2
1

n1
and

Var(q̂2) =
q
2
2

n2
Then we may de�ne an estimate of R is R̂= q̂1

q̂2

.

Therefore, using the relationship between Gamma distribution

and Chi-square distribution and the fact that the two samples

are independent, it is easy to show that q1
q2
R̂ has F-distribution

(i.e, F(2n1,2n2)). Hence, the variance of R̂ is Var(R̂) =

R2 n2
2
(n1+n2−1)

n1(n2−1)(n2−2)
Also, an unbiased estimate of R is given by R̂∗ =

q̂1

q̂2

(n2−1)
n2

=
(n2−1)

n2
R̂ with

Var(R̂∗) = R2 (n1+n2−1)

n1(n2−2)
(2)

. Clearly, R̂∗ has less variance than R̂.

D̂= 1−|1− 1

R̂∗
|(R̂∗)

1

1−R̂∗

r̂ =
2
√
R̂∗

1+ R̂∗

l̂ =
4R̂∗

(1+ R̂∗)2

and

L̂=
R̂

R̂2− R̂+1

Theorem 3.1: Suppose D̂, r̂ , l̂ and L̂ are the estimates of D, r ,

l and L respectively, obtained replacing R by R̂∗. the approximate
sampling variance of the OVL measures can be obtained as follows:

Var(D̂) =
(n1+n2−1)(R)

2

1−R (logR)2

n1(n2−2)(1−R)2
(3)

Var(r̂) =
R(1−R)2(n1+n2−1)

n1(n2−2)(1+R)4
(4)

Var(l̂ ) =
16R2(1−R)2(n1+n2−1)

n1(n2−2)(1+R)6
(5)

Var(L̂) =
(n1+n2−1)

n1(n2−2)

R2(1−R2)2

(R2−R+1)4
(6)

Proof: Since each of the OVL is a function of R, the expressions are

obtained using the �rst order Taylor series expansion about R and

the Var(R̂∗) given in equation (2).

Theorem 3.2: the approximate sampling bias of theOVL measures

can be obtained as follows:

Bias(D̂) =


AnR

2 R
2R−1
1−R [R(2R−log(R)−2) log(R)−(R−1)2]

(R−1)3
i f R> 1

AnR
2 R

2R−1
1−R [R(2R−log(R)−2) log(R)−(R−1)2]

(1−R)3
i f R< 1

(7)

Bias(r̂∗) = An

√
R
3R(R−2)−1

2(R+1)3
(8)

Bias(l̂ ∗) = An
n1+n2−1

n1(n2−2)

8R2(R−2)

(R+1)4
(9)

Bias(L̂) =−An
R2(2R3−6R+2)

(R2−R+1)3
(10)

with An =
(n1+n2−1)
n1(n2−2)

.

Proof: Using the second order Taylor series expansion the desired

results are obtained.

Remark: Reasonable estimates for the above variances and the

biases can be obtained by substituting R by its consistency estimator

R̂∗ in the above formulas.

4. Con�dence Interval Eestimation of Overlap

From Section 3, R̂
R
∼ F(2n1,2n2), then

q2n2
q1(n2−1)

R̂∗ ∼ F(2n1,2n2).

Let L andU be the lower and upper con�dence limits respectively of

R, corresponding to the probability 1−a , i.e., P(L< R<U) = 1−
a . Thus L andU can be determined by solving for R the equation

P
(
F
a/2
(2n1,2n2)

<
q2
q1

R̂< F
1−a/2
(2n1,2n2)

)
= 1−a

where F
a/2
(2n1,2n2)

and F
1−a/2
(2n1,2n2)

are the lower and the upper a/2 quan-

tile of the F(2n1,2n2) distribution respectively. Thus

L=
R̂

F
1−a/2
(2n1,2n2)

and U =
R̂

F
a/2
(2n1,2n2)

The lower (L
′
) and upper (U

′
) limits of OVLs can be obtained using

appropriate transformation as 1−a =Pr(L
′
<OVL(R)<U

′
). Here

L
′
= OVL(L) and U

′
= OVL(U). The con�dence limits for OVLs

are as follows:

OVL lower limit (L
′
) upper limit (U

′
)

D 1−L
1

1−L |1− 1
L
| 1−U

1

1−U |1− 1
U
|

r 2
√
L

(L+1)
2
√
U

(U+1)

l 4L
(L+1)2

4U
(U+1)2

L L
L2+L−1

U
U2+U−1

If (L,U) ∈ (1¥), then the L
′
and U

′
interchange their role and the

con�dence interval for OVL becomes (U
′
,L

′
) If 1 is enclosed in the

interval (L,U), then it asserts at OVL= 1.
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5. Simulation Study

A Monte Carlo study was conducted to evaluate the performance

of approximations in bias and variance of four overlap coef�cients.

From each population 1000 samples of 20,50,100, 200 and 500

observations were generated. r̂ , l̂ , D̂ and L̂ were computed for

each pair of samples. The bias and variance of estimates were com-

puted using actual OVLs and the estimates. The bias and MSE for

R= 0.2,0.5,0.8 are reported in Table 1.
The following conclusions are drawn based on these computations

where only the values of R < 1 are considered. However, for the

Overlap measures, the case R < 1 is symmetric to the case R > 1

the comments given below in terms of R can also be interpreted in

terms of 1/R for these OVL measures.

For sample sizes larger than 50, the bias is fairly close to zero.

Weitzman's measure has less bias than others but Morisita's mea-

sure has the largest bias.

The bias decreases as sample size increases, as expected and the

MSE goes to zero for each OVLs. L tend to be more biased and the

sampling distributions show larger variability.

It is clear that the actual OVLs are found to be underestimated (Fig-

ure 3) and for very small values of R and small sample sizes, they

are observe to be overestimated. The bias approaches 0 very fast.

For n ≥ 50, the amount of bias is negligible and fairly close to 0.

Although L̂ has less bias than the other in case R= 0.2 and has the

largest bias for R = 0.8; the bias of Delta approaches 0 faster than

the other three. The bias of l̂ is the slowest in approaching 0.

An important increase in standard deviations for small values of R

is observed for r and l . For D standard deviation increases as R

approaches 1. But a remarkable increase in standard deviations for

moderate values of R in the L case (Figure 4). They decrease fast

as n increases, from n = 100 the standard deviations are negligible.

The difference between the MSE of r and L is almost nil for small

values of R, but the difference increases as R becomes large with r

giving lowestMSE values and L the highest.

The estimates of MSE are plotted in Figure 5 for all four overlap

coef�cients. As the sample size increases, the MSE reduces consid-

erably.

Figure 3: Relationship of Bias to R for Overlap Coef�cients.

Figure 4: Relationship of Standard deviation to R for Overlap Coef�cients.

6. Conclusion

The problem of estimation of four commonly used measures of over-

lap for two exponential densities with heterogeneous variances is

considered and relations between them are studied. Overlap coef-

�cients are frequently used to describe the degree of interspeci�c

encounter or crowdedness of two species in their resource utiliza-

tion.

Relations between three commonly used measures of overlap with

our measure of overlap are studied and approximate expressions for

the bias and the variance of the estimates are presented. The invari-

ance property and a method of statistical inference of these coef�-

cients also are presented. Monte Carlo evaluations are used to study

the bias and precision of the proposed overlap measures.
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Figure 5: Relationship of MSE to R for Overlap Coef�cients.
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Table 1: Bias and MSE estimates of overlap coef�cients

r̂ l̂ D̂ L̂

n Bias MSE Ratio Bias MSE Ratio Bias MSE Ratio Bias MSE Ratio

c=0.2 r = 0.745 l = 0.556 D= 0.465 L= 0.24
20 -0.029 0.007 -0.36 -0.030 0.016 -0.25 -0.0180 0.008 -0.061 0.0060 0.0080 0.067
50 -0.011 0.003 -0.22 -0.012 0.006 -0.15 -0.0070 0.007 -0.030 0.0020 0.0030 0.041
100 -0.055 0.001 -0.15 -0.056 0.003 -0.11 -0.0034 0.0015 -0.017 0.0011 0.0015 0.029
200 -0.003 0.000∗ -0.11 -0.003 0.001 -0.07 -0.0020 0.027 0.010 0.000∗ 0.000∗ 0.020
500 -0.001 0.000∗ -0.07 -0.001 0.000∗ -0.05 0.000∗ 0.000∗ -0.039 0.000∗ 0.000∗ 0.013

c=0.5 r = 0.943 l = 0.889 D= 0.750 L= 0.667
20 -0.036 0.0040 -0.71 -0.640 0.0140 -0.66 -0.031 0.014 -0.092 0.048 0.0500 0.22
50 -0.014 0.0010 -0.44 -0.024 0.0040 -0.41 -0.012 0.005 -0.045 0.018 0.0190 0.013
100 -0.007 0.000∗ -0.31 -0.012 0.0020 -0.28 -0.006 0.0024 -0.026 0.009 0.0090 0.095
200 -0.003 0.000∗ -0.27 -0.006 0.000∗ -0.20 -0.003 0.001 -0.015 0.004 0.0045 0.067
500 -0.001 0.000∗ -0.13 -0.002 0.000∗ -0.13 -0.001 0.000∗ -0.05 -0.0018 0.0018 -0.042

c=0.8 r = 0.994 l = 0.988 D= 0.918 L= 0.952
20 -0.032 0.001 -0.87 -0.063 0.005 -0.87 -0.037 0.016 -0.3 -0.20 0.061 -0.84
50 -0.012 0.000∗ -0.74 -0.024 0.0011 -0.73 -0.014 0.006 -0.19 -0.079 0.013 -0.69
100 -0.006 0.000∗ -0.61 -0.012 0.000∗ -0.6 -0.007 0.0027 -0.133 -0.039 0.005 -0.56
200 -0.003 0.000∗ -0.47 -0.006 0.000∗ -0.47 -0.003 0.001 -0.09 -0.019 0.002 -0.43
500 -0.001 0.000∗ -0.32 -0.002 0.000∗ -0.32 -0.001 0.000∗ -0.06 -0.008 0.000∗ -0.28

∗|value|< 0.001 ∗∗Ratio= Bias/s
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