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Abstract

This paper considers the Airy ordinary differential equation (ODE) and different ways it can be discretized. We �rst consider a standard
discretization using the central difference scheme. We then consider two difference schemes which were created using a nonstandard
methodology. Finally, we compare the different schemes and how well they approximate solutions to the Airy ODE.
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1. Introduction

In this paper, we will numerically compare various �nite difference

schemes for the Airy equation. The Airy equation is an ordinary

differential equation (ODE) given by

d2y

dx2
− xy= 0. (1)

Equation (1) does not have a closed form solution.

Standard �nite difference (SFD) schemes, such as the forward Eu-

ler scheme and the central difference scheme, can be used to nu-

merically approximate the solutions to differential equations. The

problem with these numerical schemes is that they often have nu-

merical instabilities that depend on step size. A nonstandard �nite

difference (NSFD) scheme is a difference scheme which seeks to

avoid numerical instabilities by incorporating dynamics of the sys-

tem into the scheme. Dynamical consistency is achieved when the

difference equation has the same qualitative properties as its corre-

sponding differential equation. To create a suitable NSFD scheme

for a differential equation, a set of modeling strategies can be used

to optimize dynamical consistency [2]. Some of these strategies are

as follows:

1. Exact �nite-difference schemes generally require that nonlin-

ear terms be modeled nonlocally [6].

2. The discrete derivatives for differential equations have denom-

inator functions j(h) that are typically more complicated than

those used in the standard modeling procedure. For exam-

ple, the denominator function j(h) of a �rst order differential
equation has the property j(h) = h+O(h2). This allows for
the construction of a larger class of �nite difference models

and also provides for more ambiguity in the modeling process

[2, 4].

3. The order of the discrete derivatives in exact �nite difference

schemes is always equal to the corresponding order of the

derivatives of the differential equation.

4. Important properties of the differential equations and/or their

solutions should be incorporated into their corresponding dis-

crete forms. Properties such as positivity of solution, traveling

wave solutions, periodic solutions, etc., should be preserved, if

possible.

These modeling strategies have become the basis for creating NSFD

schemes.

We will focus on comparing the NSFD scheme in [2] known as

the Mickens-Ramadhani scheme with the NSFD scheme in [8].

For ease of reference, we will call the NSFD scheme in [8] the

Yaghoubi-Naja� scheme. For our numerical comparisons, the fol-

lowing initial conditions were used.

y0 = 1, y′0 = 1 (2)

This paper is ordered as follows. In section 2, we will introduce

the power series solution of equation (1). Next in section 3, we

will discuss and compare the standard scheme Euler's method, the

Yaghoubi-Naja� scheme, and the Mickens-ramadhani scheme. In

section 4 we will numerically compare the schemes and investigate

each scheme's performance via numerical experiments. Finally, in

section 5, we will discuss the results and future work.

2. Power Series Solution

The Airy equation (1) does not have a closed form solution. How-

ever, its solution can be represented by a power series. First assume

y has a power series expansion, i.e., y(x) = å¥n=0
anx

n. Substituting

this into equation (1) gives

¥

å
n=2

anx
n−2−

¥

å
n=0

anx
n+1 = 0. (3)
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After some algebraic manipulations, the coef�cients must satisfy

the following recurrence relations.

a2 =0, (4)

an+2 =
an−1

(n+2)(n+1)
, for n= 1,2, . . . . (5)

From the recurrence relations in equations (4)-(5), we have

a3k+2 =0, for k = 0,1,2, . . . , (6)

a3k =
a0

(2 ·3)(5 ·6) · · · ((3k−1)(3k))
, for k = 1,2,3, . . . , (7)

a3k+1 =
a1

(3 ·4)(6 ·7) · · · ((3k+1)(3k))
, for k = 1,2,3, . . . . (8)

Therefore the series solution to equation (1) is

y(x) =
¥

å
k=0

a3kx
3k +

¥

å
k=0

a3k+1x
3k+1+

¥

å
k=0

a3k+2x
3k+2 (9)

or

y(x) =a0

[
1+

¥

å
k=1

x3k

(2 ·3)(5 ·6) · · · ((3k−1)(3k))

]

+a1

[
x+

¥

å
k=1

x3k+1

(3 ·4)(6 ·7) · · · ((3k+1)(3k))

]
. (10)

Wewill use the power series solution in equation (10) to numerically

compare performance of the various schemes we will present in the

next section.

3. Development of Finite Difference Schemes

This section focuses on the development of standard and nonstan-

dard �nite difference schemes for equation (1) with initial condi-

tions given in (2).

3.1. Standard Finite Difference Scheme

A standard difference scheme for equation (1) can be derived by

making the following substitutions.

y(x) → yk (11)

y(x+h) → yk+1 (12)

y(x−h) → yk−1 (13)

x → xk (14)

The resulting standard �nite difference scheme for equation (1) is

yk+1−2yk + yk−1

h2
− xkyk = 0. (15)

Solving equation (15) explicitly for yk+1 gives

yk+1 = (h2xk +2)yk − yk−1 for k = 1,2, . . . . (16)

In equation (16), note that in order to compute the next time step,

two previous values, y0 and y1 are required. Using the second order

Taylor expansion, we get

y1 = y0+hy′0+
h2

2!
y′′0 . (17)

Making use of the initial conditions given in (2), we get the follow-

ing.

y1 = 1+h (18)

Therefore, we are able to get the desired second value that will en-

able us to implement the standard scheme (16).

3.2. Yaghoubi-Naja� Finite Difference Scheme

In [8], Yaghoubi and Naja� have the following nonstandard scheme

for equation (1)

yk+1−2yk + yk−1

j(h)
− xkyk = 0 (19)

where the denominator function is given by

j(h) = 4sin2
(
h

2

)
. (20)

Solving (19) for yk+1 gives

yk+1 = (2+j(h)xk)yk − yk−1. (21)

We will refer to equation (21) as the Yaghoubi-Naja� Scheme. Note

that the denominator function given in equation (20) is the same

denominator function put forth by Mickens in [2] for the exact �nite

difference scheme of the harmonic oscillator equation,

d2y

dx2
+ y= 0. (22)

The scheme (21) also requires two initial values to compute the next

time step value. It appears the authors of [8] did not make use of

a standard method to compute the value for y1(x). However, they

might have used a nonstandard method such as

y1 = y0+j(h)y′0. (23)

The denominator function used to determine y1 can be calculated

the following way. From the initial conditions in equation (2),

dy(0)

dx
= y(0) = 1. (24)

Thus, we can assume that initially, the solution satis�es

dy

dx
= y (25)

which has the exact difference scheme [5]

yk+1− yk

eh−1
= yk. (26)

Therefore

y1 = ehy0

and using the initial condition from (1), we have

y1 = eh. (27)

In the numerical computation section, we will determine wether cal-

culating the value of y1(x) in a nonstandard way gives better approx-
imations than when the value of y1(x) is calculated in a standard

way.

3.3. Mickens-Ramadhani Finite Difference Scheme

In this section, we will use Mickens' nonstandard methodology as

discussed in section 1 to give the reader details on how to construct

the scheme from [2]. We start by considering the harmonic oscilla-

tor equation,

d2y

dt
+ly= 0. (28)

Equation (28) can be written as a system of two coupled �rst order

ODEs. That is, u(1) = ly and u(2) = ly′. Then

du(1)

dt
= u(2) (29)

du(2)

dt
= −u(1), (30)
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with initial conditions

u
(1)
0

= u(1)(t0), u
(2)
0

= u(2)(t0). (31)

The solutions are

u(1)(t) = C1e
i
√
l t +C2e

−i
√
l t (32)

u(2)(t) = i
√
lC1e

i
√
l t − i

√
lC2e

−i
√
l t . (33)

Using the initial condition to solve for C1 and C2, equations (32)

and (33) become

u(1)(t) =

(
1

2
u(1)(t0)−

i

2
√
l
u(2)(t0)

)
ei
√
l (t−t0)

+

(
1

2
u(1)(t0)+

i

2
√
l
u(2)(t0)

)
e−i

√
l (t−t0) (34)

u(2)(t) = i
√
l

(
1

2
u(1)(t0)−

i

2
√
l
u(2)(t0)

)
ei
√
l (t−t0)

− i
√
l

(
1

2
u(1)(t0)+

i

2
√
l
u(2)(t0)

)
e−i

√
l (t−t0). (35)

With the following substitutions,

u(t) → uk+1 (36)

u(t0) → uk (37)

t− t0 → h, (38)

equations (34) and (35) become

u
(1)
k+1

=

[
1

2
u
(1)
k

− i

2
√
l
u
(2)
k

]
ei
√
lh

+

[
1

2
u
(1)
k

+
i

2
√
l
u
(2)
k

]
e−i

√
lh (39)

u
(2)
k+1

= i
√
l

[(
1

2

)
u
(1)
k

−
(

1

2
√
l
i

)
u
(2)
k

]
ei
√
lh

− i
√
l

[(
1

2

)
u
(1)
k

+

(
1

2
√
l
i

)
u
(2)
k

]
e−i

√
lh. (40)

Equations (39) and (40) can be rewritten using the identities

ei
√
lh = cos(

√
lh)+ isin(

√
lh)

and

e−i
√
lh = cos(

√
lh)− isin(

√
lh).

This gives

u
(1)
k+1

= u
(1)
k

cos(
√
lh)+

1√
l
u
(2)
k

sin(
√
lh) (41)

u
(2)
k+1

= −
√
lu

(1)
k

sin(
√
lh)+u

(2)
k

cos(
√
lh). (42)

After some algebraic manipulations, we can eliminate the u(2)

terms, drop the superscript notation, and obtain

uk+1−2uk cos(
√
lh)+uk−1 = 0. (43)

After some further manipulations of equation (43), we get a non-

standard scheme for equation (28) which is

uk+1−2uk +uk−1(
4

l

)
sin2

(√
lh

2

) +luk = 0. (44)

We will refer to equation (44) as the Micken-Ramadhani scheme

for the harmonic oscillator equation. Note that equation (44) holds

wether l is positive or negative. This result follows directly from

the use of the relation [2]

sin(iq) = isinh(q). (45)

Replacing the constant l in equation (44) by the discrete represen-

tation of f (x) =−x, i.e.,

l →−xk, (46)

gives the nonstandard �nite difference representation for equation

(1) [2]

uk+1−2uk +uk−1(
−4

xk

)
sin2

(
i
√

xkh

2

) − xkuk = 0. (47)

We will refer to equation (47) as the Mickens-Ramadhani scheme

for the Airy equation.

If xk > 0, using the relation (45) we obtain the following non-

standard difference scheme for equation (1)

uk+1 =

[
2+4sinh2

(√
xkh

2

)]
uk −uk−1. (48)

If xk < 0, using substitution we have the non-standard difference

scheme for equation (1)

uk+1 = 2 [cos(h
√
xk)]uk −uk−1 (49)

If xk = 0, we have the following scheme for equation (1)

uk+1 = 2uk −uk−1. (50)

All three schemes (16), (21) and (48) discussed in this section re-

quire two data points to get started. From the initial conditions

given in (2), we have the value for y0. However the value for y1
has to be calculated using the initial velocity y′

1
= 1. In the next

section, we will show that the way in which the second data point

y1 is calculated can have an effect on the difference schemes per-

formance. We will show this by numerically comparing equations

(16), (21) and (48) to see how close they are to the series solution

given by equation (10).

4. Numerical Results

In this section, we display some numerical results for the Mickens-

Ramadhani scheme (48), Yaghoubi-Naja� scheme (21) and the stan-

dard central difference scheme (15) applied to the Airy Equation (1).

We previously mentioned that equation (1), has no known analytical

solution. However we will be using the power series solution devel-

oped in section 2 to determine how well the schemes perform. We

will judge the performance of a difference scheme in two ways. The

�rst is analyzing how close the numerical solutions to the difference

equations are to the power series solution for varying step sizes. The

second measure of performance will be derived by varying the step

sizes and taking a max norm error at the last time value, between the

power series solution and the difference scheme solution. For the

�rst set of numerical approximations, each difference scheme were

started of with the same initial conditions. That is, for equations

(16), (21), and (48), the same value of y0 and y1 were used. Note

that for y1, the value of y(1) from the series solution (10) was used.

In �gure 1 and �gure 2, we see how the numerical solutions us-

ing equations (16), (21), and (48) behave compared to the series

solution given by equation (10). Judging performance based on

this, it appears that the Mickens-Ramadhani scheme (48) outper-

forms the other two schemes. With a step size of h = 0.25 and

h= 0.5, �gures 1 and 2 show that the Mickens-Ramadhani scheme

approximations stays closer to the series solution curve than both

the Yaghoubi-Naja� scheme approximations as well as the standard

scheme approximations. Next we determine how well the Mickens-

Ramadhani scheme does compared to the other two. At x = 4, the

max norm error between the power series solution (10) and the dif-

ference scheme approximations was calculated. We noticed that

as the step-size increased, the max norm error at x = 4 increased
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as well. However as we can see in �gure 3, the max norm error

when the Mickens-Ramadhani scheme is used remains relatively

low compared to the other two difference schemes. A log-log plot

was generated to determine an approximate order of convergence

of the difference scheme. In �gure 4, we found the slope of the

log-log plots generated to be of magnitude approximately equal to

two. Therefore, we concluded that difference schemes were approx-

imately second order accurate.

Figure 1: h= 0.25

Figure 2: h= 0.5

Figure 3: Graph of error of each numerical scheme with respect to the step-
size at x= 4

Figure 4: log-log plot of error with respect to step-size at x= 4

Now we will show the how using different values for y1 affects the

performance of the difference schemes. To do this, we calculated

the value y1 for each difference schemes in different ways. For the

standard scheme, we used equation (18) to calculate the value for

y1. For the Yaghoubi-Naja� scheme (21), the equation (27) was

used. Lastly for the Mickens-Ramhadi scheme (48), the following

formula was used to calculate y1.

y1 = sinh(h)+ y0 (51)

In �gures 5 and 6, we see how the numerical solutions using equa-

tions (16), (21), and (48) behave compared to the series solution

given by equation (10). It is dif�cult to determine which scheme

performs best by referring to �gures 5 and 6 alone because of the dif-

�culty in seeing how close each schemes approximations are to the

series solution curve. However using �gure 7, we can see that the

Mickens-Ramadhani scheme (48) still outperforms the other two

schemes since the magnitude of the error derived when using the

Mickens-Ramadhani scheme is relatively less than the errors de-

rived when using the other two schemes. This is with the excep-

tion of the step-size interval 0.25−0.35 where the Yaghoubi-Naja�
scheme performs the best. A log-log plot was generated to deter-

mine an approximate order of convergence of the difference scheme

(see �gure 8). In this case, the standard scheme and the Mickens-

Ramadhani scheme maintained their second order accuracy because

the slope of the log-log plots generated were of magnitude approxi-

mately equal to two. However, the Yaghoubi-Naja� scheme appears
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to now be only �rst order accurate because the slope of the log-log

plots generated to be of magnitude approximately equal to one.

Figure 5: h= 0.25

Figure 6: h= 0.5

Figure 7: Graph of error of each numerical scheme with respect to the step-
size at x= 4

Figure 8: log-log plot of error with respect to step-size at x= 4

In some instances, the choice of the initial conditions can in�uence

the numerical outputs. In �gure 3 and �gure 7, when the initial

conditions used for the difference schemes y0 and y1 was the same

as the �rst two data points in the series solution y(1) and y(2), the
Mickens-Ramhadani scheme outperformed the other two schemes

(�gure 3). Also, when the value of y1 was calculated based on the

difference scheme in question, theMickens-Ramhadani scheme still

outperformed the other two schemes (see �gure 7). However, calcu-

lating the value of y1 in the nonstandard way (27) for the Yaghoubi-

Naja� scheme appears to reduce the max norm error. So in this

case, the choice in how the second initial condition is chosen has a

signi�cant impact on the performance of the scheme.

5. Conclusion

This paper compares different �nite difference schemes for the Airy

ordinary differential equation (1). It is important to �nd appropriate

approximation methods for equations such as equation (1), which

have no closed form solution. Due to the nonexistence of a closed

form solution for equation (1), we made use of a series solution (10)

in order to judge the performance of the �nite difference schemes

(16), (21), and (48).

To utilize the difference schemes discussed in this paper, two ini-

tial data points are required. In the case of this paper, one data point

was given y0 = 1 while the second had to be calculated using the ini-

tial condition y′
0
= 1. This led us to investigate wether the method

in which the second data point was calculated was of any conse-

quence. We found that in the case of the standard �nite difference

scheme and the Yaghoubi-Naja� difference scheme, it did matter

how the second data point was calculated. However we found that

for the Micken-Ramadhani scheme, the behavior of the solutions

remains somewhat consistent even when the method of calculating

the second data point changed. We were able to numerically deter-

mine that overall, the Mickens-Ramadhani (48) outperformed both

the standard difference scheme (16) and the other nonstandard dif-

ference scheme (21).
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