
International Journal of Applied Mathematical Research, 6 (4) (2017) 109-114

International Journal of Applied Mathematical Research

Website: www.sciencepubco.com/index.php/IJAMR

doi: 10.14419/ijamr.v6i4.8319

Research paper

A Problem of coefficient determination in parabolic equations
solved as moment problem

Maria B. Pintarelli

Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI), UNLP, and Departamento de Matematica,
Facultad de Ciencias Exactas, Universidad Nacional de La Plata

e-mail: mariabpintarelli@gmail.com

Abstract

The problem is to find a(t) y w(x, t) such that wt = a(t)(wx)x + r(x, t) under the initial condition w(x,0) = ϕ(x) and the boundary
conditions w(0, t) = 0 ; wx(0, t) = wx(1, t)+αw(1, t) about a region D = {(x, t), 0 < x < 1, t > 0}. In addition it must be fulfilled∫ 1

0 w(x, t)dx = E(t) where ϕ(x) , r(x, t) and E(t) are known functions and α is an arbitrary real number other than zero.
The objective is to solve the problem as an application of the inverse moment problem. Will be found an approximated solution and bounds
for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.
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1. Introduction

We want to find a(t) y w(x, t) such that

wt = a(t)(wx)x + r(x, t)

under the initial condition

w(x,0) = ϕ(x) (1)

and the boundary conditions

w(0, t) = 0 wx(0, t) = wx(1, t)+αw(1, t) (2)

about a region D = {(x, t), 0 < x < 1, t > 0}
In addition it must be fulfilled∫ 1

0
w(x, t)dx = E(t) (3)

where ϕ(x) , r(x, t) and E(t) are known functions and α is an
arbitrary real number other than zero.
We also assume that the underlying space is L2(D).
This problem is studied in [1]. Citing the abstract of this work:
”this paper investigates the inverse problem of simultaneously
determining the time-dependent thermal diffusivity and the
temperature distribution in a parabolic equation in the case
of nonlocal boundary conditions containing a real parameter
and integral overdetermination conditions, and under some
consistency conditions on the input data the existence,

uniqueness and continuously dependence upon the data of the
classical solution are shown by using the generalized Fourier
method”.

In general the methods applied to solve the problem are
varied. Other works that solve the parabolic equation but
under different conditions are [2, 3, 4].

There is a great variety of inverse problems in which a
parabolic equation must be solved and additionally we must
determine an unknown parameter[5, 6, 7], to name a few
examples.

The objective of this work is to show that we can solve the
problem using the techniques of inverse moments problem.
We focus the study on the numerical approximation.
First deduce an exact expression for a(t)w(1, t). Then, we
wrote w∗(x, t) = a(t)w(x, t), and is resolved in a first step in
numerical form the integral equation∫∫

D
G(x, t)xmExp(−(m+1)t)dxdt = ψ1(m)

where ψ1(m) is written in terms of known expressions, and

G(x, t) =−xw∗x(x, t)−w∗t (x, t)

it is the function to be determined.
In a second step the following integral equation is solved in
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numerical form∫∫
D

w∗(x, t)K(m,n,x, t)dxdt = ψ2(m,n)

where w∗(x, t) it’s the unknown function, ψ2(m,n) is an ex-
pression in function of G(x, t) with K(m,n,x, t) known.
Both integral equations are solved numerically by applying
the moment problems techniques.
Then we find an approximation for w(x, t) , this approxima-
tion we write wAp(x, t), using the solution found in the second
step and condition (3).
Finally we find an approximation for a(t) using a(t)w(1, t)
and wAp(x, t).

2. Inverse Generalized Moment Problem

The d-dimensional generalized moment problem [8, 9, 10]
and [11, 12] can be posed as follows: find a function f on a
domain Ω⊂ Rd satisfying the sequence of equations

∫
Ω

f (x)gi(x)dx = µi i ∈ N (4)

where (gi) is a given sequence of functions lying in L2 (Ω) lin-
early independent, and the sequence of real numbers {µi}i∈N
are the known data.
The moments problem of Hausdorff is a classic example of
moments problem, is to find a function f (x) in (a,b) such that

µi =
∫ b

a
xi f (x)dx iεN

In this case gi(x) = xi iεN. If the interval of integration is
(0,∞) we have the problem of moments of Stieltjes, if the
interval of integration is (−∞,∞) we have the problem of
moments of Hamburger.

It can be proved that [12] a necessary and sufficient
condition for the existence of a solution of (4) is that

∑
∞
i=1

(
∑

i
j=1 Ci jµ j

)2
< ∞ where Ci j are given by (11) and

(12).

Moment problem are usually ill-posed in the sense that there
may be no solution and if there is no continuous dependence
on the given data. There are various methods of constructing
regularized solutions, that is, approximate solutions stable
with respect to the given data. One of them is the method of
truncated expansion.
The method of truncated expansion consists in approximating
(4) by finite moment problems

∫
Ω

f (x)gi(x)dx = µi i = 1,2, ...,n (5)

and consider as an approximate solution of f (x) to
pn(x) = ∑

n
i=0 λiϕi(x). The ϕi(x) result from ortonormalize

〈g1,g2, ...,gn〉 and λi are coefficients as a function of the µi.
Solved in the subspace 〈g1,g2, ...,gn〉 generated by
g1,g2, ...,gn (5) is stable. Considering the case where the
data µ = (µ1,µ2, ...,µn) are inexact, convergence theorems
and error estimates for the regularized solutions they are ap-
plied.

3. Resolution of the Parabolic Partial Differen-
tial Equation

We consider the equation wt = a(t)(wx)x + r(x, t). If we inte-
grate with respect to x between 0 and 1 we obtain∫ 1

0
wtdx = a(t)[wx(1, t)−wx(0, t)]+

∫ 1

0
r(x, t)dx

If we write r∗(t) =
∫ 1

0 r(x, t)dx and E
′
(t) =

d
dt

E(t) then

E
′
(t) = a(t)(−αw(1, t))+ r∗(t)

Thus

a(t)w(1, t) =
r∗(t)−E

′
(t)

α
(6)

On the other hand we consider the vector field

F∗ = (a(t)wx,−a(t)w) = (w∗x ,−w∗)

Let u(i,z,x, t) be the auxiliary function

u(i,z,x, t) = xie−(z+1)t

Then

div(uF∗) = (ua(t)wx)x− (ua(t)w)t =

= uxa(t)wx +ua(t)wxx−uta(t)w−ua
′
(t)w−ua(t)wt

Also

udiv(F∗) = ua(t)wxx−ua
′
(t)w−ua(t)wt

Moreover, as

udiv(F∗) = div(uF∗)−F∗ ·5u

∫∫
D

udiv(F∗)dA =
∫∫

D
div(uF∗)dA−

∫∫
D

F∗∇udA (7)

where ∇u = (ux,ut)
besides

∫∫
D

div(uF∗)dA =
∫∫

D
((uw∗x)x− (uw∗)t)dA =

=
∫∫

D
udiv(F∗)dA+

∫∫
D
((uxw∗x)− (utw∗))dA (8)

Then of (7) and (8)

∫∫
E
(uxw∗x−utw∗)dA =

∫∫
E

F∗∇udA (9)

Can be proven that, after several calculations, (9) is written as
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∫ 1

0
w∗(x,0)u(i,z,x,0)dx−

z+1
i+1

∫
∞

0
(w∗(1, t)u(i,z,1, t)−w∗(0, t)u(i,z,0, t))dt =

=− z+1
i+1

∫ 1

0

∫
0

∞

w∗x(x, t)udtdx−

∫ 1

0

∫
∞

0
w∗t (x, t)udtdx

and if z = i then

∫ 1

0

∫
∞

0
(−xw∗x(x, t)−w∗t (x, t))u(i, i,x, t)dtdx =∫ 1

0
w∗(x,0)u(i, i,x,0)dx−

−
∫

∞

0
(w∗(1, t)u(i, i,1, t) = ϕ1(i)

Note that

w∗(x,0) = a(0)w(x,0) = a(0)ϕ(x)

a(0) =
r∗(0)−E

′
(0)

αϕ(1)

and

w∗(1, t) = a(t)w(1, t)

previously calculated

We wrote G(x, t) =−xw∗x(x, t)−w∗t (x, t)

We solve the integral equation numerically

∫ 1

0

∫
∞

0
G(x, t)u(i, i,x, t)dtdx =

=
∫ 1

0

∫
∞

0
G(x, t)Hi(x, t)dtdx = ϕ1(i) = µi (10)

and we will obtain an approximate solution for G(x, t)
We can apply the truncated expansion method detailed in
[11] and generalized in [12, 13] to find an approximation
p1n(x, t) for G(x, t) for the corresponding finite problem with
i = 0,1, ...n where n is the number of moments µi.
We consider the base φi(x, t) i = 0,1,2, ... obtained by ap-
plying the Gram-Schmidt orthonormalization process on
Hi(x, t) i = 0,1,2, ...n and adding to the resulting set the
necessary functions until reaching an orthonormal basis.
We approach the solution G(x, t) with [12, 13]:

p1n(x, t) =
n

∑
i=0

λiφi(x, t)

λi =
i

∑
j=0

Ci jµ j i = 0,1,2, ...,n

And the coefficients Ci j verifies

Ci j =

(
i−1

∑
k= j

(−1)
〈Hi(x, t) | φk(x, t)〉
‖φk(x, t)‖2 Ck j

)
.‖φi(x, t)‖−1 (11)

1 < i≤ n; 1≤ j < i

The terms of the diagonal are

Cii = ‖φi(x, t)‖−1 i = 0,1, ...,n. (12)

The proof of the following theorem is in [14, 15]. In [15]
he proof is done for b2 finite. If b2 = ∞ instead of taking
polynomials the Legendre are taken polynomials of Laguerre.
In [16] the demonstration is done for the one-dimensional
case.

Theorem. Let {µi}n
i=0 be a set of real numbers and suppose

that f (x, t) ∈ L2 ((a1,b1)× (a2,∞)) verify for some ε and E
(two positive numbers)

n

∑
i=0

∣∣∣∣∫ ∞

a2

∫ b1

a1

Hi(x, t) f (x, t)dxdt−µi

∣∣∣∣2 ≤ ε
2

∫
∞

a2

∫ b1

a1

(x f 2
x + t f 2

t )e
x+tdxdt ≤ E2

then ∫
∞

a2

∫ b1

a1

| f (x, t)|2 dxdt ≤

min
i

{∥∥CCT∥∥ε
2 +

E2

8(i+1)2 ; i = 0,1, ...,n

}

where C is the triangular matrix with elements Ci j (1 < i≤
n; 1≤ j < i).
and

∫
∞

a2

∫ b1

a1

|p1n(x, t)− f (x, t)|2 dxdt ≤
∥∥CCT∥∥ε

2 +
E2

8(n+1)2

It must be fulfilled that

t i f (x, t)−→ 0 if t −→ ∞ ∀iεN

If we apply the truncated expansion method to solve
equation (10) we obtain an approximation p1n(x, t) for
G(x, t) =−xw∗x(x, t)−w∗t (x, t).

Then we have an equation in first order partial derivatives

−xw∗x(x, t)−w∗t (x, t) = p1n(x, t)

of the form

A1(x, t)w∗x(x, t)+A2(x, t)w∗t (x, t) = p1n(x, t)
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where A1(x, t) =−x and A2(x, t) =−1. It is solved as in [15],
ie, we can prove that solving this equation is equivalent to
solving the integral equation

∫ 1

0

∫
∞

0
w∗(x, t)K(i,z,x, t)dtdx = ϕ2(i,z) = µiz

where

K(i,z,x, t) = [(x(A1)x (x, t)+

(A2)t (x, t)+ iA1(x, t)− x(z+1)A2(x, t)]xi−1e−(z+1)t =

= (z− i)xie−(z+1)t

that is

∫ 1

0

∫
∞

0
u(i,z,x, t)w∗(x, t)(z− i)dtdx = ϕ2(i,z) = µiz

with

ϕ2(i,z) =
∫

∞

0
[u(i,z,1, t)w∗(1, t)]dt−

−
∫ 1

0
u(i,z,x,0)w∗(x,0)dx−

∫ 1

0

∫
∞

0
up1ndtdx

Again we consider the base φiz(x, t) i = 0,1,2, .., ;z =
i + 1, ...... obtained by applying the Gram-Schmidt or-
thonormalization process on u(i,z,x, t)(z− i) = Kiz(x, t) i =
0,1,2, ...;z = i+ 1, ..... and then the above equation can be
transformed into a generalized moment problem∫ 1

0

∫
∞

0
w∗(x, t)Kiz(x, t)dtdx = µiz

Applying again the techniques of generalized moments prob-
lem to the corresponding finite problem, we found an approx-
imate solution p2n(x, t) for w∗(x, t).
To find a numerical approximation for w(x, t) we use condition
(3):∫ 1

0
a(t)w(x, t)dx≈

∫ 1

0
p2n(x, t)dx = p3(t)

∴ a(t)E(t)≈ p3(t)

Then

w(x, t)≈ p2n(x, t)
p3(t)
E(t)

= wAp(x, t) (13)

And a numerical approximation for a(t) will be

a(t)≈ a(t)w(1, t)
wAp(1, t)

= aAp(t) (14)

We can measure the accuracy of the approximation (13) using
the previous theorem, where µi would be the ith generalized
moment of wAp(x, t), that is, we consider the moments of
w(x, t) measured with error.
An analogous argument is used to measure the accuracy of
the approximation aAp(t)

4. Numerical Examples

To obtain an approximation p1n(x, t) for G(x, t) =
−xw∗x(x, t)− w∗t (x, t), we consider the base φi(x, t) i =
0,1,2, ...n obtained by applying the Gram-Schmidt orthonor-
malization process on Hi(x, t) = xie−(i+1)t i = 0,1,2, ...n.
In other words, it applies the Gram-Schmidt orthonormaliza-
tion process on {e−t ,xe−2t ,x2e−3t , ...,xn−1e−nt}, and is taken
as a measure

∫∫
D �e
−tdtdx.

We will obtain, by applying the truncated expansion method,
p∗1n(x, t) so that et p∗1n(x, t) = p1n(x, t).
Analogously to obtain p2n(x, t), we consider the base
φiz(x, t) i = 0,1,2, ...,n1, ;z = i+ 1, ...,n2 obtained by ap-
plying the Gram-Schmidt orthonormalization process on
u(i,z,x, t)(z− i) = Kiz(x, t) i = 0,1,2, ...,n1;z = i+1, ...,n2,
and is taken as a measure

∫∫
D �e
−2tdtdx.

We will obtain, by applying the truncated expansion method,
p∗2n(x, t) so that e2t p∗2n(x, t) = p2n(x, t).
To apply the method must be w(1,0) 6= 0.
It may happen that (13) or (14) have discontinuities because
the denominator is overridden for certain values of t. In this
case we can vary the number of moments that are taken so
that the denominator does not have real roots that cancel it.

4.1. Example 1

We consider the equation

wt = a(t)(wx)x +
e
−t−4x

8 (−4− t3 + e
x
2 (2+ t3))

8(2+ t3)

0 < x < 1 ; t > 0

and conditions

E(t)= (−2+
√

e)e−(
1
2+

t
8 ) ; α =

1
2

; w(x,0)= e−
x
2 −1

The following conditions are met:

w(0, t) = 0 ; wx(0, t)−wx(1, t) =
1
2

w(1, t)

the solution is

w(x, t) =
(

e−
x
2 −1

)
e−

t
8 and a(t) =

1
2+ t3

We calculate p1n(x, t) with n = 10 moments and p2n(x, t) with
n = n1×n2 = 4×4 = 16 moments.
Approximates w(x, t) with wAp(x, t)
Accuracy is

∫ 1
0
∫

∞

0 |w(x, t)−wAp(x, t)|2dtdx = 0.127967.
And approximates a(t) with aAp(t)
Accuracy is

∫
∞

0 |a(t)− aAp(t)|2dtdx = 0.0684834. In Fig.1
and Fig. 2 the exact solution and the approximate solution are
compared.
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Figure 1: w(x, t) and wAp(x, t)
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Figure 2: a(t) and aAp(t)

4.2. Example 2

We consider the equation

wt = a(t)(wx)x +
−2e−t(2+ t2 + ettx2)

(2+ t2)2

0 < x < 1 ; t > 0

and conditions

E(t) =
1

6+3t2 ; α =−2 ; w(x,0) =
x2

2

The following conditions are met:

w(0, t) = 0 ; wx(0, t)−wx(1, t) =−2w(1, t)

the solution is

w(x, t) =
x2

2+ t2 and a(t) = e−t

We calculate p1n(x, t) with n = 7 moments and p2n(x, t) with
n = n1×n2 = 3×3 = 9 moments.
Approximates w(x, t) with wAp(x, t) . Accuracy is∫ 1

0
∫

∞

0 |w(x, t)−wAp(x, t)|2dtdx = 0.0176301.
And approximates a(t) with aAp(t). Accuracy is

∫
∞

0 |a(t)−
aAp(t)|2dtdx = 0.0195688. In Fig.3 and Fig.4 the exact solu-
tion and the approximate solution are compared.
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Figure 3: w(x, t) and wAp(x, t)
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Figure 4: a(t) and aAp(t)

4.3. Example 3

We consider the equation

wt = a(t)(wx)x +

(
−1

4
e−3t(4e2t −π

2)sin
(

πx
2

))
0 < x < 1 ; t > 0

and conditions

E(t) =
2e−t

π
; α =

π

2
; w(x,0) = sin

(xπ

2

)
The following conditions are met:

w(0, t) = 0 ; wx(0, t)−wx(1, t) =
π

2
w(1, t)

the solution is

w(x, t) = sin
(xπ

2

)
e−t and a(t) = e−2t

We calculate p1n(x, t) with n = 7 moments and p2n(x, t) with
n = n1×n2 = 3×3 = 9 moments.
Approximates w(x, t) with wAp(x, t). Accuracy is∫ 1

0
∫

∞

0 |w(x, t)−wAp(x, t)|2dtdx = 0.0916382.

And approximates a(t) with aAp(t).
Accuracy is

∫
∞

0 |a(t)− aAp(t)|2dtdx = 0.188199. In Fig.5
and Fig.6 the exact solution and the approximate solution are
compared.
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Figure 5: w(x, t) and wAp(x, t)
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Figure 6: a(t) and aAp(t)

5. Conclusion

We consider the problem of finding a(t) y w(x, t) such that

wt = a(t)(wx)x + r(x, t)

under the initial condition w(x,0) = ϕ(x) and the boundary
conditions w(0, t)= 0 and wx(0, t)=wx(1, t)+αw(1, t) about
a region D= {(x, t), 0< x< 1, t > 0}. In addition it must
be fulfilled

∫ 1
0 w(x, t)dx = E(t) where ϕ(x) , r(x, t) and E(t)

are known functions and α is an arbitrary real number other
than zero. We also assume that the underlying space is L2(D).
First deduce an exact expression for a(t)w(1, t). Then, we
wrote w∗(x, t) = a(t)w(x, t), and is resolved in a first step in
numerical form the integral equation∫∫

D
G(x, t)xmExp(−(m+1)t)dxdt = ψ1(m)

where

G(x, t) =−xw∗x(x, t)−w∗t (x, t)

it is the function to be determined.
In a second step the following integral equation is solved in
numerical form∫∫

D
w∗(x, t)K(m,n,x, t)dxdt = ψ2(m,n)

where w∗(x, t) it’s the unknown function, ψ2(m,n) is an
expression in function of G(x, t) with K(m,n,x, t) known.

Both integral equations are solved numerically by applying
the moment problems techniques.
Then we find an approximation for w(x, t) , this approxi-
mation we write wAp(x, t), using the solution found in the
second step and condition

∫ 1
0 w(x, t)dx = E(t).

Finally we find an approximation for a(t) using a(t)w(1, t)
and wAp(x, t).
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