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Abstract

In this work, Homotopy Perturbation method and Adomian decomposition method are used to solve systems of partial
differential equations. These methods are which are well known methods nowadays based upon perturbation and
decomposition theories. Some examples are provided to show the ability of these methods.
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1 Introduction

The Homotopy perturbation method introduced by He [1], in 1998. Recently a great deal of interest has been focused on
the method and it's applications. Method, well addressed in [1, 2]. In this method the solution is considered as the
summation of an infinite series, which usually converges rapidly to the exact solution. To illustrate the basic concepts of
this method, consider the following nonlinear differential equations.

AW -f(r)=0, reQx Q)

With boundary conditions

B(u,ﬁ—u)zo, rel. )
on

Where A is a general differential operator, B is a boundary operator, f (r) is a known analytic operator, and T" is the

boundary of the domain Q.
Generally speaking the operator A can be divided into two parts L, and N, where L is linear, and N is a nonlinear
operator Eq.(1), therefore, can be rewritten as follows:

Lu)+N u)—f (r)=0. (©)
Lets construct the homotopy V (r, p) : ©x[0,1] — %R, which satisfies:
H{,p)=A-p)[LE¢)-LU)I+p[Al)-f (N]=0reQ2 (4)

Where u, is an initial approximation of the solution of Eq. (1).

And in continue we provided the basic idea about Adomian decomposition method. The Adomian decomposition
method is a technique for solving functional equation in the following canonical form [3, 4]:

u=f +G(u). ®)
The solution u is considered as the summation of a series, say:

u= iun. (6)
Andn&0 (u) as the summation of the following series,

Gu)=> A, Ug..u,). @
Where A:TS called Adomian polynomials, has been introduced by Adomian, as the following:

Au0srt) = 18 ] ®

And for functional equations, with several variables, the following extension of (8) can be used.
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1d"
A (u107 'u1n7u207 7u2n' 'um07 U mn _n'd n[ (Zulnpn' ’zumnp )] |p =0 " (9)

Where G (u,,..,u,,) is a functional depending on n variables, each of them is an unknown function which are considered
as the summation of series say,

U, =>u,p,, Jj=0ZL..n
n=0

2 Solution of a system of PDE by HPM and ADM.

Consider the following system of partial differential equations:

+..+——=0,,
ot ox, X, %

ou, ou, au,

—+—+..+ =g,,

ot 0Ox, X, 4

: (10)
au, 6u_2+ N ou, —g..

ot ox, X,

With initial condition:
u1(X1’X2v-'an71!0) =f1(X1,X2,..,Xn71),
uz(Xl'XZ"”Xn—l’O) :fZ(XI’XZ""Xn—l)’

un(XI’X27"'Xn—11O) :fn(xl'XZ“"Xn—l)'

Where g,,9,,..,d, are inhomogeneous terms. To solve system (10), by Homotopy perturbation method, let' s constructs
the following homotopies [5],

ou, au ou, ou oU

1— 71 7710 + _1+_2+_.+_”_ :O,

d=pX ot ot )+ ot ox, X, %)
ou, oau ou, ouU oU

1- 20y 24 —L4 . +—"-g,)=0,

1-p)( o )+ p( a ax, x 9,) 1)
ou, ou ou, ou ou

1- 0y "y —24.+—21-g,)=0.

a=pX ot ot )+ p( ot OX, OX 4 9)

Let's present the solution of the system (6), a(;tJl = alaJtl" +p a;“ +p° Uy, +... as the following:

U1 :U10+ pUn"’ p2U12 +..
U,=U, +pU, +pU, +.. (12)
U,=U,,+pU,+pU,,+..

Substituting (12) in to (11), and equating the coefficients of the terms with identical powers of p, leads to:
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U,

ou,,

:O’
ot ot
Uy Oy _
gt et
My g _ g
ot ot
Uy By, Vg Uy g =0
ot ot x,  ox,, o
Uy Oy Uy, Uy 9. =0
ot ot ox,  ox,, o
Uy Oy Uy Uy g =0
ot ot ox, X,
Uy, , 0Uy Uy _o,
ot oX, X, 4
6U22 6U11+ aUnl =0
ot OX, X, 4
MUy, Uy Uy
ot ox, X,
U 8U2H+ +aUnH:0
ot ox, R S
U, 6U1H+ +aunj7120
ot x, X,
U, U, , . U, , o
ot OX, OX 4

For simplicity we have:
UlO(Xl’Xl""'Xn—].!O) =U10(X1,X1,...,Xn_1,t) =f1(X1’X11---1Xn_1)1
UZO(Xl’Xl""’Xn—llo) :uzo(xllxll""xn—l’t) :fz(xllxl""'xn—l)'

U, o(X3, X X0, 0) =U o (X Xy, X ) =T (X, X,

We have the following scheme:

U6 =—[(

U= (

aU—2°+...+ Uog -g,)dt,
a 1 n-1
w_w+_l'+%_gz)dt’
OX, OX, 4

ouU

¢ oU
U 0t =—[(E22 4.+ T gyt
' ! X X

1 n-1

X q)

Having this assumption we get the following iterative equations:
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LoJ,. ouU
U, (x,t)=-— I p+——"0 _g))dt, j=23,..
5 (1) !( ~ o moodt

n-1

tou,. ou
Uzj(x,t):—j Lzt

( Fo+—3T g )dt, j=23..
o ox, X ?

n-1

L ou,, U,
U.(x,t)=- I +—H2 g )dt. j=23,..
4 (1) !( ~ e g,)dt. ]

The approximate solution of (10) can be obtained by setting p =1:
u, = Iiqul =U,+U,+U, +..
p -

u, =limu, =U, +U, +U,, +...
p—1

u, =limu, =U ,+U_,+U ,+..
p—l

Now to solve the system (10), by Adomian decomposition method constructs the following forms of this method [6, 7]:

i 0U ou
U, (X3, X500 X 40t) =u1(x1,...,xn_1,0)+_[gl(x1,...,xn_1)dt +I( .
0 0

24+

)dt,
OX, X, 4

U, (x,,Xx X o) =U, (X ., X O)+]g (Xyyor X )dt+](aul+ +aU”)dt
PACANREAY RELEE EAN W B 2\ Ap ! 2\A g Apg ! axl GXH ' (13)
¢ L oU, au,
Un(xl,xz,...,xH,t)=un(xl,...,xH,O)+£gn(xl,...,xH)dt+£(6Xl +...+6XH)dt.

To solve Eqg. (13) by Adomian decomposition method let consider, as usual in this method, the solution u as the
summation of a series, say:

Up =D Uy, 0 =12, (14)
n=0
And the integrand on the right sides as following series:
ou, ouU ou 2
22— = AL Uy,
0X, OX, OX,1 o
U U U 2
Y, , Y., Y, =D A, UgUy,.u,),
oX, OX, OX,1 oo (15)
ou, oduU ou 2 .
2 bt — = A UpUy,Uy). =123,

+
OX, OX, OX,1 0

Where A, (U,.U,,..,uU,), i =1,2,... are called Adomian polynomials and should be computed. Substituting from (14) and
(15) in to (13) we get:

© t [
DUy =F 0 X )+ [ 010X )+ [ DAL Ut )t
i=1 0

o n=0

o0 t t o
DU =150 X )+ [ 05 (X A+ [ A, Uyt )t
i=1 0 o n=0 (16)

o0 t t o
DU = K X ) [ G0 (g X )+ [ DA Mg, U, )t §=123,
i=1 0

on=0

From Eg. (16) the following procedure can be defined:
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t
U, =f0(x1,...,xH)+Igo(xl,...,xH)dt,
0

(17

t o
Upa == 2 A Ug)dt.  i=123,..
0

n=0

So we can calculate the terms of,u = Zun, term by term, as long as we derive the desired accuracy, the more terms the
n=0

more accuracy.

Adomian polynomials have been calculated by using an alternate algorithm so,

j‘(a 2,n 1 aUn,nfl)dt
o OX, X, ’
](auln -1 aUnn l)dt
S oX, X, (18)
u :.tl'(auz,n—l + aUln l)dt
ot ox, ox

3 Numerical Example

Two examples are provided; these are considered to illustrate the Homotopy methods to solve a system of partial
differential equations.

Example 1.Consider the following system of partial differential equation
Sy -

E‘”(a_x) =0 (19)

With initial condition:
ui,0)=e”* v(x,0)=e"

We construct the following homotopy ©x[0,1] — R, which satisfies:

oU auo au, , 0U 1, _
S o ( V(—)) 0,
oV av

SRRV

Lets consider the following initial approximation to the solution of Eq. (19),
U, (X t)=u,(x,t)=e*,
V,(x,t)=v,(x,t)=e™

By these assumptions, one gives the following results,
u, =te*, v, =te™,

u,=3/2t%", v, =3/2t%",

u, =5/2t%*, v, =5/2t%",

The series are obtained:
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u(x,t) =iun(x ) =iant e,

V(x,t)= Zv (x,t)= Zat" e ™.

This isan exact solutlon. ThIS solution is the same as the result obtained by Adomian Decomposition Method.

Example2.

Consider the fallowing system of inhomogeneous partial differential equation:

ou

——(=—)(=—)=3/2-1/2e*

ot ( )( ) ™),

%—(a—“)(% 3/2-1/2™), (20)
ou ., ,ov

——(—)(—)—

Wlth the exact solutlons:
u(x,t)=e" +t,
v(x,t)=e™ +t,
w(x,t)=1/2(" +e™)+t.

And with initial condition:
u(x,0)=e”,
v(x,0)=e7,
w(x,0)=1/2(e* +e™*).

The Adomian decomposition can be readily constructed as

u(x,t) = j(e +3/2- 1/2(e’2x))dt+_[Z(A Ug,-,u, ))dt,

0 k=0

v(x,t)= j(e**+3/2 1/2(e2X))dt+jZ(A W,V ))dt,

0 k=0

w(X,t)= j(2+1/2(e +e’x))dt+IZ(A W,,..w,))dt.

k=0
Let’s take mltlal condition, as mltlal0 approximations
U, (X t)=u,(x,t)=e",
V,(x,t)=v,(x,t)=e™,
W, (x,t)=w,(x,t)=1/2(* +e™).

Therefore we have
Au,)=-1/2+1/2(>)-1/2*>)+1/2t(e"),
A,)=-1/2+1/2>)-1/2e>)+1/2tE™),
Aw,)=-1-te™>)-te*>)-t>

u, =-1/4t%> +1/4t%* -1/ 2t +1/2te ™,
v, =-1/4t% > +1/4t% ™ +1/2te* -1/ 2t,
w, =-t-1/3t>-1/2t% > -1/ 2t%*.

And the series solution will be derived by adding these terms as:
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u(x,t):iun(x,t),
v(x,t):ivn(x,t),

w (X ,t)=iwn(x,t).
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Some value of the eight terms approximation to the solutions are presented in the following Tables 1, 2, 3.

Table 1: the ADM results for u(x, t)

X t Uapm e(u(n=8))
-0.0052 -0.0888 0.9060135351 0.394e-6
-0.0325 -0.0888 0.8792226799 0.230e-5
-0.0888 -0.0888 0.8262291480 0.597e-5
-0.0980 -0.0888 0.8178495454 0.441e-5

Table 2: the ADM results for v(x, t)

X t V apm ev(n=8))
-0.0052 -0.0888 0.91641350380 0.392e-6
-0.0325 -0.0888 0.94422336351 0.275e-5
-0.0888 -0.0888 0.00406125900 0.803e-6
-0.0980 -0.0888 0.01416187700 0.908e-6

Table 3: the ADM results for w(x, t)

X t W Apm e (n=8))
-0.0052 -0.0888 0.91121153210 0.199e-4
-0.0325 -0.0888 0.91172613388 0.203e-4
-0.0888 -0.0888 0.91514296970 0.342e-5
-0.0980 -0.0888 0.91600342190 0.242e-4

4  Conclusion

In this paper, we have applied Homotopy analysis method and Adomian decomposition method for solving systems of
partial differential equations. Examples show that the analytical approximation to the solutions is reliable.Ability of
these 2 methods as an easy device for computing the solution of the systems of PDE [8].
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