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Abstract

This paper talks about two types of special sequences. The first
is the arithmetic sequence of numbers with three alternate common
differences; and the other, is the geometric sequence of numbers with
three alternate common ratios. The formulas for the general term a,,
and the sum of the first n terms, denoted by S,,, are given respectively.
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1 Arithmetic sequence of numbers with three
alternate common differences
Definition 1.1. A sequence of numbers {a,} is called a sequence of num-

bers with three alternating common differences if the following conditions are
satisfied:

(i) for allk € N, asp—1 — asp—z = di,
(ZZ) fO’l" all k € N, as;, — asp—1 = dg,
(1) for all k € N, aspi1 — agr = ds,

here dy (dy, and d3) is called the first (the second and the third) common
differences of {a,}.
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Example 1.2. The number sequence 1, 2, 4, 7, 8, 10, 13, 14, 16, ... is
a sequence of numbers with three alternate common differences, where d; =
1,d2 = 2, and d3 = 3.

Obviously, {a,} has the following form
ai, a1+d1, a1+d1+d2, a1~|—d1~|—d2~|—d3, ay +2d1+d2+d3, a1+2d1 —|—2d2—|—d3,
a1 + 2dy + 2dy + 2d3, ay + 3d; 4+ 2dy + 2d3, a1 + 3dy + 3ds + 2d3, c

Theorem 1.3. The formula of the general term of a,, is

an=a1+V§1Jd1+ng2+V;les (1)

Proof. We prove this theorem by induction on n.
Obviously, (1) holds for n = 1, 2, 3 and 4.

Suppose (1) holds when n = k, hence

kE+1 k kE—1
e £ o 52

We need to show that P(k + 1) also holds for any k& € N.

(i.) If k =3m — 2, where m € N, then ax.1 = ay + d;

k+1 k k—1
ap+1 = a1+ TJ d1—|—\‘§J d2+\\TJ ds + dy

3m—2+1 3m — 2 am —2—1
= a;+ qul—i‘\‘mS JdQ—F\‘mTJdg—i‘dl

3
= a1—I—(m—1)d1—|—(m—1)d2—|—(m—1)d3—|—d1

3m 2 1
= a1+ _?Jdl—i-Lm—l—FngQ—l—Lm—l—l—ngg

= a1+ WJ@—F{%J@—F{%J%

. P(k+1) holds for k = 3m — 2.

(ii.) If k =3m — 1, where m € N, then ag1 = ay + do

k+1 k k—1
ag+1 = a1+L%J d1+\‘§J d2+\\TJ d3+d2

3m—1+1 3m — 1 3m—1—1
= amﬂm—J dﬁ{ - Jd2+{mTJd3+dz
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= a1+md1+(m—1)d2+(m—1)d3—|—d2
1 3m 2
= a1+{m+§J d1+\‘?Jd2+\‘m—1+§Jd3
k

= a1+ {%J dy + {%J dy + {%J ds

. P(k+1) holds for k = 3m — 1.

(iii.) If £ = 3m , where m € N, then ax; = ap + ds

kE+1 k k—1
Ag+1 — ay + ;J d1+\‘—J dQ—‘l_\‘—J d3+d3

L3 3 3
3m +1 am 3m —1
= a1+_ 3 Jd1+\‘?Jd2+\‘ 3 Jd3+d3
= a1+md1 +md2+(m— 1)d3+d3
2 1 3m
= a;+ _m+§J d1+ \‘m—i-gJ d2+ \\?J dg
k+1 1 k+1 kE+1)—1
= a+ & d1_|_ L d2_|_ L d3
i 3 3 3
. P(k+ 1) holds for k = 3m.
Therefore, (1) holds when n = k 4 1. This proves the theorem. O

Theorem 1.4. The formula of the general term of a, can also be

S (YR PR I EE Ny

where d = dy + dy + ds.

Formula (2) can be shown easily using induction on n. The proof for the
theorem is ommited.

Now we proceed to the sum of the first n terms of the sequence.

Theorem 1.5. The sum of the of the first n terms of the sequence, denoted
by Sy, is given by

1 o~ | nti +1

where d = dy + dq + d3
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a1+d1+d2)+(a1+d1+d2+d3)

dy + dy + ds.
a1+d1)+(

Proof. Let d
n Cl1—|—(
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Lemma 1.6. For any positive integers p, q, and n,

e

Proof.
p p . .
[—} = k < = < k+ 1 where k is an integer
q q
= m§1—9+n<m+1,m:n+k.
q
o)
q q
m
Theorem 1.7. For any integer m > 0
- 1 n n
5[] 2] 1o [2])
: m m m
i=mgq
where q = Lﬂj
Proof.
S| - 5[]
m| 4 m
i=mgq =0
n—mgq .
i
- 3 (e [5))
: m
1=0
n—mgq . n—mgq
i
- TRE
m
=0 =0
0 1 —
= |—= —l—{—J—l— {n qJ—l—q(n—l—l—mq)
| m | m m
0 1
= |= —l—{—J—l— + —J—q—l—q(n—l—l—mq)
| m | m
n n
= |—|(n+l-—m {—J)
Lm | m
m

Corollary 1.8. For any integer m > 0,

> |- 2] (-]

1=
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Proof. Let q = {QJ
m
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mq—1 . n .
1 1
PN W]
i=m(g—1) 1=mgq
qg—1 [(G+1)m—-1 \‘ i J n
)5l
7=0 i=jm m i=mgq
q—1 n i
Smi+ Y |
7=0 i=mgq m
q
= (@= 1) +q(n+1-mq)
(% ——=+n+1- mq)

O

Theorem 1.9. The sum of the first n terms of the sequence can also be

S, = na; + \‘HT—HJ (n—|—2
n—1 _§ n—+ 2 d
3 |\" 2| 3 3

Proof.

e B2
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2 Geometric sequence of numbers with three
alternate common ratios

Definition 2.1. A sequence of numbers {a,} is called a sequence of numbers
with three alternating common ratios if the following conditions are satisfied:

1) forallk € N k-1 =r
(i) f ; ,

a3k—2
(i) for all k € N, sk _ T,
agk—1
(iii) for all k € N, okl _ rs3,
asy

where r1 , ro, and r3 are called the first, the second and the third common
ratios of {a,} respectively.

Example 2.2. The number sequence 1, 1/2, 1/6, 1/24, 1/48, 1/144, 1/576,
1/1152, 1/3456, ... is an example of the sequence where ri = 1/2,ry = 1/3,
and rz = 1/4.

Obviously, {a,} has the following form

i, a1T1, G1T1T2, Q1T1T2T3, A1T3TaTs, Q1T5TaTs, A1TiToTS, Q1T T3 s, - . .

Theorem 2.3. The formula of the general term of a,, is

an =ay-r{"t gt et (3)
where e; = | £].
Proof. Let e; = L%J and use induction on n to prove theorem 2.3.

Obviously, (3) holds for n = 1, 2, 3 and 4.

Now suppose (3) holds when n = k, hence

. €r4+1 ek €r—1

We need to show that P(k + 1) also holds for any k£ € N.

(i.) If K =3m — 2, where m € N, then ay,1 = ay - 1
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ap = ap-ri"tt st erd ey
— al Tf3m—2+1 r(253m—2 T§3m—2—1 . Tl
= ay ey T ey
3m 142 gl
= a 7*1L a TQLm 3] rng 1+3]
(k+1)+1 k+1 (k+1)—1
:a1r1L3Jr2L3Jr3L )

. P(k+ 1) holds for k = 3m — 2.

(ii.) If K =3m — 1, where m € N, then agq = ay, - ro

€k+1 ek . .Ck—1

Ay = Q1-Ty Ty ~T3 -T2
— CL1 7,,(133717, 1+1 T;?)m 1 T§3m7171 .7,,2
= @17’?7";”17’?1 T2
BN NE SN
(k+1)+1 k+1) 1
T STNCINE S

. P(k+1) holds for k = 3m — 1.

(iii.) If £ = 3m , where m € N, then ax.1 = ay - 13

€k+1 ek ek—1

ap = ay-ri g e g
ap ri¥mt gttt oy
ay 7y el g
RN NETNEY
_ TIL%J L5 T?)L%J

. P(k + 1) holds for k = 3m.

Therefore, (5) holds when n = k + 1 and this proves the theorem. O
Theorem 2.4. The formula of the general term of a, can also be
€n+l1—€n—1 _En—€En—1

— €n—1

where r =1y -r9-r3 and e; = L#J
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The proof for theorem 2.4 is ommited but it can be easily verified using
mathematical induction.

Theorem 2.5. The formula for the sum of the first n terms of the sequence
s given by

o ((25) ) e (155 - 31)
e (e ([3]-[252])

where R=nr1+riro+rirers , r=ry 1913 and e,_1 = VT_lJ

Proof. Let p=-e,_1 = L”T_IJ, R=ri4+mrro+rirergandr =1y 7y 73,

2 2.2 2.2.2
Sp = a1+ a1r1 + arire + a1rirers + a1riTers + a1riraTs + a1y

3,.2..2 3..3..2 3,.3..3 en—1 ,.tn—-2 _€En—3
Farryrary + ariryry +ariryry + oo +ap ]t ryt T rg"

€n—2 n+1

e €n—1

€en .tn—1

€.
+a; Tyt Ty

— En— En—
= e+ R+arR+ar*R+ ... +ar" 'R+ ay Tyt Tt g
€n—1

€n+41 €En

1
= a1+a1R(1+T+T2+...+7‘p1)+a1r1rp(\‘iJ _ \\EJ)

3 3
sates e (2] [252])

e (A2 e (2] - 2)
rartevne (151252
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