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Abstract 
 

Monte Carlo simulation is one of the most common and popular method of options pricing. The advantages of this method are being easy 

to use, suitable for all kinds of standard and exotic options and also are suitable for higher dimensional problems. But on the other hand 

Monte Carlo variance convergence rate is O(n−1 2⁄ )which due to that it will have relatively slow convergence rate to answer the prob-

lems, as to achieve ε accuracy when it has been d-dimensions, complexity is O(dε−3). For this purpose, several methods are provided in 

quasi Monte Carlo simulation to increase variance convergence rate as variance reduction techniques, so far. One of the latest presented 

methods is multilevel Monte Carlo that is introduced by Giles in 2008. This method not only reduces the complexity of computing 

amount O(ε−3log⁡(𝜀2)) in use of Euler discretization scheme and the amount O(ε−2) in use of Milstein discretization scheme, but also 

has the ability to combine with other variance reduction techniques. In this paper, using Multilevel Monte Carlo method by taking Mil-

stein discretization scheme, pricing spread option and compared complexity of computing with standard Monte Carlo method. The re-

sults of Multilevel Monte Carlo method in pricing spread options are better than standard Monte Carlo simulation. 
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1. Introduction 

Currently, due to the vast development of financial markets and 

investor’s demand, application of financial derivatives as new 

financial method in financial transactions, has been inevitable. The 

most important examples of financial derivatives are option con-

tracts. The Contracts, which are currently highly traded, by reason 

of immense variety, low price regarding to underlying asset and 

also in order to meet investor’s basic need (requirements) in finan-

cial markets. The variety of option contracts and their dependence 

on the assumed models of the underlying asset has challenged the 

pricing of these contracts. 

In general, pricing methods for option contracts are classified into 

two categories: analytical and numerical methods. Since the first 

category is used only in certain and limited circumstances, numer-

ical methods are more common and more useful. One of the nu-

merical methods in pricing option contracts is Monte Carlo simu-

lation method. The advantages of this method are the ease of use, 

being suitable for higher dimensional problems and suitability for 

all kinds of standard and exotic options.  

On the other hand, Monte Carlo method has a relatively slow rate 

of convergence rate solving a problem, such that in order to 

achieve accuracy ε, for a problem of dimension-d, the complexity 

is ⁡O(dε−3) .[1] Also Monte Carlo variance convergence rate, 

known as Canonical Monte Carlo convergence rate, is O(n−1 2⁄ ). 
To increase the efficiency of Monte Carlo methods, variance re-

duction techniques have been proposed. These methods fall into 

two main groups: Control variables and changes in the random 

input[2]. One of the novel approaches to reduce the variance, 

which is based on the control variables techniques, is Multilevel 

Monte Carlo method (MLMC), that has been introduced by 

Giles[3]. In a Multilevel Monte Carlo method, the computational 

complexity reduces from O(ε−3) to O(ε−3log⁡(ε2)) , by applying 

different time steps, when the Euler discretization scheme method 

has been used for the simulation of the processes underlying asset. 

Multilevel methods are easy to implement and have the ability to 

combine with other variance reduction techniques [4]. In this pa-

per, we aim to reduce the complexity of calculations and thus 

provide a more efficient method, by applying multilevel Monte 

Carlo method and considering the Milstein discretization scheme 

method in pricing Spread options.  

The structure of this paper is as follows. In the second part of this 

article, the empirical studies and research background of a multi-

level Monte Carlo method will be reviewed. Third part discusses 

the required concepts and definitions. In the fourth section we 

present multi-level Monte Carlo method. Lastly in the fifth section, 

the results of Monte Carlo simulation in pricing Spread options by 

Milstein discretization scheme method, will be mentioned and 

compared to the standard Monte Carlo method, in terms of (with 

respect to the) computational complexity.  

2. Theoretical backgrounds and an overview 

of the research history 

The idea of reducing the cost of computation by multi-level Monte 

Carlo method was first introduced by Giles in 2008. He demon-

strated, that in order to achieve an accuracy equivalent to O(ε), for 

Lipschitz payoff and Euler discretization scheme method, compu-

tational cost decreases from O(ε−3) to O(ε−3log⁡(ε2)). Also has 

priced European option, Asian option, Lookback option and Digi-

tal option in the numerical results with respect to the geometric 

Brownian motion as a model of the underlying asset, and to vast 

more this method has calculated European option price when the 

underlying asset follows the Heston stochastic volatility model in 

a brief example[4]. 
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In the same year, Giles had improved multilevel Monte Carlo 

method by changing (altering) the discrete stochastic differential 

equation method and using Milstein discretization scheme method 

and Showed using (applying) Milstein discretization scheme 

method in multilevel Mont Carlo simulation, decreases the com-

putational cost to O(ε−2). In (that/ the mentioned) paper he repre-

sents numerical results for Asian option, Lookback option, Barrier 

option and Digital option[5]. 

In 2009 Giles and Waterhouse offered a multilevel quasi-Monte 

Carlo method by combining a variance reduction method and 

multi-level Monte Carlo method. They combined multi-level 

Monte Carlo method with multilevel quasi-Monte Carlo Rank-1 

lattice rule method and showed the resulting method have lower 

computational cost in pricing of Asian option, Lookback option, 

Barrier option and Digital option [6]. In the same year, Giles et al. 

expanded a multilevel Monte Carlo method for Non-globally Lip-

schitz payoff [7]. In 2009, Giles uses multilevel Monte Carlo 

method for Basket options. He demonstrates in this paper that 

multi-level Monte Carlo method is easily applicable for Basket 

options and also shows that numerical results for Asian basket, 

Prevent basket, Digital basket and Lookback basket has computa-

tional cost equivalent to O(ε−2) [8]. 

In 2011, Primozic uses multi-level Monte Carlo method to esti-

mate the expected value for First passage times in Stochastic pro-

cess [9]. In the following year, Huth proposed an application of 

multi-level Monte Carlo method for Asian option and American 

option by combining a variance reduction method and multi-level 

Monte Carlo method. He introduced a more efficient Multi Level 

quasi-Monte Carlo method [3]. Recently in 2014, Ferreiro-Castilla 

et al. presented an article on multilevel Monte Carlo simulation for 

Levy processes based on Wiener-Hopf factorization [10]. 

3. Definitions and backgrounds 

In this paper, the payoff function of spread option has been con-

sidered as the subtraction of 
1

S  from 
2

S  as follows ( K is the 

strike price ) [11]: 

 

1 2
( ( ) ( ) )S t S t K                                                                             (1) 

 

In addition it assumes that the base asset follows Samuelson sto-

chastic differential equation as below[12]: 

 

1 1 1 1 1
( )dS S r dt S dB                                                                   (2) 

 

2 2 2 2 2 2
( )dS S r dt S dB                                                                 (3) 

 

When the interest rate r, 
i

  the steady dividends rate, 
i

  the 

standard deviation per share, 
1

B and 
2

B are two Brownian motion 

with a correlation coefficient of  . 

Based on Martingale’s pricing theory, the spread option price of p 

at time t is obtained by computing the expected value of the abso-

lute risk’s of Q, as follows: 

 
( )

1 2 Q 1 2 t
( ( ), ( ), , ) E [( ( ) ( ) ) | F]r T tp S t S t K T e S t S t K                           (4) 

 

In the above equation T is maturity time and 
t

F  is filter until time 

t [2]. 

The above equation is used for pricing option contract in Monte 

Carlo simulation. But since the simulation of basic assets requires 

the existence of a strong solution for the given differential equa-

tions- which is often not feasible for most of mentioned processes- 

discrete methods (procedures) of stochastic differential equation 

are used for the simulation of Monte Carlo method. In the follow-

ing, two methods of Euler discretization scheme and Milstein 

discretization scheme are provided briefly [13]. 

3.1. Euler discretization scheme method 

Assume 
t [0,T]

( ( ))S S t


  is an Ito process and in the following sto-

chastic differential equation over 0 t T  , with the initial condi-

tion 
0

S S , is valid: 

 

( ) ( ( ), ) ( ( ), ) ( )dS t a S t t dt b S t t dB t                                                   (5) 

 

For the given discretized time 
0

0 ...
m

t t T    , 
1i i i

t t t


   and 

1i ii t t
B B B



   , Euler estimation is a random continuous-time 

process that is achieved by the below recursive (Iterative) proce-

dure: 

 

0 0
Ŝ S  

 

1

ˆ ˆ ˆ ˆ( , ) ( , )
i i i i i i i i

S S a S t t b S t B

                                                        (6) 

 

It should be noted that the Euler discretization scheme method has 

a strong convergence rate of 1/2( )O h  

3.2. Milstein discretization scheme method 

Considering the stochastic differential equation (5), Milstein dis-

cretization scheme method is computed as follows: 

 

0 0
Ŝ S  

 

2

1

1 1 1ˆ ˆ ˆ ˆ( , ) ( , ) { ( ) }
2 2 2

i i i i i i i i i i

b
S S a S t t b S t B b B t

S



        


           (7) 

 

It should be noted that the Milstein discretization scheme method 

has a strong convergence rate of O (h). 

4. Multi-level Monte Carlo method 

The basic idea of multilevel Monte Carlo method is to change the 

time steps in different levels and ultimately create a new and more 

efficient (adequate) estimator. 

We consider Monte Carlo simulations at different time steps 
l

l
h M T for 0,1,...,l L  (M is filter operation), when P indicates 

the payoff function , ˆ
l

P  and 
,

ˆ
ll M

S are Indicative estimates for p and 

S(T), by using numerical discretization with the step size of 
l

h .  

Next (Now), due to the linearity of the expected value, expected 

value of PL could be calculated as follows: 

 

10 1
[ ] [ ] [ ]

L

lL l l
E P E P E P P 

                                                            (8) 

 

Multi-level Monte Carlo method aims to minimize the computa-

tional cost by estimating each expected value of the right side of 

equality (8). So the estimators of each level are defined as follows: 

 

0 ( )

1 0

0

l

( ) ( )

1 1

1
, 0

Ŷ
1

, 1,...,l

N i

l

N i i

l l l

l

P l
N

P P l L
N



 





 
  


 

 

Where 
l

N  is the number of paths simulated in the lth level and the 

multi-level Monte Carlo estimator is equal to: 

 

10

ˆ ˆ ˆL

lL l
Y Y Y                                                                                 (9) 

 

There are two key points in the multi-level Monte Carlo estimator. 

First, in the estimators of ˆ
l

Y for each level 0,1,...,l L , (the) num-
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ber of simulated paths for 

l
N  are changing and second, for ˆ

l
Y  

estimators with 1l  , the procedure of simulating is the same as 

Brownian growth but with two different time steps. 

4.1. Complexity theorem 

The complexity theorem is used by Giles under certain circum-

stances, to determine the results of computational complexity of 

multi-level Monte Carlo method [4, 5]. He also showed that it is 

possible to reduce general complexity of Monte Carlo simulation 

from 3( )O    to 2( )O    under these conditions. This theorem is 

described generally and it is valid for a variety of underlying asset 

processes and payoff functions, which are not necessarily Lipchitz. 

4.1.1. Theorem 

Suppose P indicates a function from solving the stochastic differ-

ential equation (5). Also Suppose ˆ
l

P  represents the estimation of 

numerical discretization with time steps l

l
h M T . If independent 

estimators ( ˆ
l

Y ), consists of 
l

N as Mont Carlo samples and 
l

C  as 

computational cost, furthermore positive constants 

1 2 3

1
, , , ,

2
c c c    exist and if: 

 

i) 
1

ˆ[ ]
l l

E P P c h    

ii) 
1

ˆ[ ], 0

ˆ ˆ[ ],l 0

ˆ[ ] { l

l l

E P l

l E P P
E Y





 
  

iii) 1

2 l l

ˆ[ ] c N h
l

V Y   

iv) 1

3l l l
C c N h   

 

Then there exists a positive constant, 
4

c , when for each 1e   

values of L and 
l

N  for multi-level estimator of 

 

0
ˆ ˆL

l l
Y Y   

 

Exist and this estimator has a bounded mean squared error, 

 

MSE ≡ 𝔼 [(Ŷ − 𝔼[P])
2
] < ε2  

 

And the computational cost C as follows: 

 

C ≤ {

c4ε
−2⁡β > 1⁡

c4ε
−2(logε)2⁡β = 1⁡

c4ε
−2−(1−β) α⁄ ⁡0 < β < 1.∎

⁡  

 

This theorem refers to the importance of the value of β parameter, 

which is the definition (concept) of convergence (of) variance 
l

V  , 

when l → ∞. In Euler discretization scheme method and Lipschitz 

payoff function β will be 1 (β = 1). Therefore, the computational 

cost of Monte Carlo estimator is equal to 2 2( (log ) )O    . That is, if 

we use Milstein discretization scheme method (instead of Euler 

discretization scheme method, to approximate stochastic differen-

tial equation, it’s strong convergence of O(h) for Lipschitz payoff 

functions, results an accuracy level of 2( )
l

O h  for variance estima-

tor of each level. In other words, with Milstein discretization 

scheme method, β = 2 and thus the cost of computing for multi-

level Monte Carlo estimator is 2( )O    [4]. It has to be mentioned 

that the above results by Giles, are also provided for non-public 

Lipschitz payoff functions [7]. 

4.2. Numerical algorithm 

Giles has provided a numerical algorithm to run Multi-level Mon-

te Carlo simulation as follows: 

1) Initialize 0L   

2) Estimate 
L

V  using 52 10
L

N   prototype sample 

3) Define Optimized , 0,...,
l

N l L  by using the following 

equation: 

 
2

02 ( )
L

ll L l l l
N V h V h 


   

                                                       (10) 

 

4) Evaluate the rest of samples in each layer to check if a new 

l
N

 is required or not. 

5) If 2L  , do the convergence test by the following equation  

1

1 L

1ˆ ˆmax{ | |,| Y |} ( 1)
2

L
M Y M 


   (11)  

6) If 2L  or non-convergent, then L→L+1 and return to num-

ber 2. 

This algorithm estimates the multilevel variance estimator, less 

than 2 2 . Additionally with a specified error  , this algorithm 

provides, a mean square error (MSE) less than 2  [4]. 

5. Simulation results 

In this section, we represented the results of multi-level Monte 

Carlo simulations, using Milstein discretization scheme method 

for spread options. The results has been obtained by the given 

values of 
1

90S   , 2
80S   , 0.05r   , 

1
0.2   , 

2
0.2   , 0.5  , 

5K   and 1T  . Also M is considered M = 2, because the mini-

mum possible value for filter element, based on equation (11), 

increases the speed of convergence in the numerical algorithm [4]. 

 
Table 1: Compares the Computational Cost of MLMC to MC for Spread 

Options 

ε P̂Spread MLMC_cost MC_cost 
MC_cost

MLMC_cost
  

0.001 9.0994 296900000 2635000000 8.87 
0.005 9.1067 12390000 49180000 3.97 

0.01 9.0860 2865000 12300000 4.29 

0.05 9.1042 118600 491800 4.15 
0.1 8.9766 28600 123000 4.30 

 

In Table 1, the estimated price of spread options and a comparison 

of computational cost is provided for two methods, multi-level 

Monte Carlo (MLMC) and Monte Carlo (MC) with different val-

ues of error. Evidently, MLMC method (with) error of 0.001   is 

approximately 8 times more efficient than MC method. 

Other results of MLMC simulation is shown in Figure 1. The 

above graph in left, demonstrates the behavior of the estimator’s 

variance, in both standard Mont Carlo ( ˆ
l

P ) and multi-level Monte 

Carlo (
1

ˆ ˆ
l l

P P


 ). The drawn quantity of logarithm to the base 2 for 

two estimators has been illustrated next to each level. In order to 

graph, the slope of the 
1

ˆ ˆ
l l

P P


 estimator is approximately 2, which 

imply that 2

1 l

ˆ ˆ[ ] O(h )
l l l

V V P P


    .When 2L  ; which in this case, 

the simulation time step is only 4, the variance of estimator 

MLMC is at least 2000 times smaller than the variance of estima-

tor MC. Top right graph shows that 
1

ˆ ˆ[ ]
l l

E P P


  has a rate of 
l

(h )O . 

According to equation (11), this value is used to determine the 

required number of levels, to reduce the bias to an acceptable level. 

Two bottom graphs in figure 1, show the result of 5 simulations of 

MLMC with different values of error. The bottom left graph, rep-

resents the number of optimal routes at different levels to achieve 

the desired error. For example, when ε = 0.005, simulation would 

be performed up to two level and with the specified number of 

optimal routes in Table 2. The Bottom graph in the right also 

shows the computational cost of the two methods, MLMC and 

MC. 
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Fig. 1: The Results of A MLMC Simulation for Spread Options. 

 
Table 2: Simulation of optimal routes MLMC for spread options 

𝑁3 𝑁2 𝑁1 𝑁0 𝜀 
340567 938794 2903337 185627057 0.001 

- 37287 100191 7911664 0.005 
- 9043 24796 1824542 0.01 

- 407 1221 74984 0.05 

- 200 285 17696 0.1 

6. Conclusion 

As we have seen, convergence rate of multi-level variance estima-

tor rate has a degree of 2

l
(h )O , while the conventional conver-

gence rate of Monte Carlo method is constant and equal to 
1 2( )O n  .Also the results of cost computation, emphasized that 

multilevel Monte Carlo method in spread options is more efficient 

and appropriate than standard Monte Carlo method. 
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