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Abstract 

 

This paper provides an investigation regarding the modeling and analysis of a thin film flow of an Oldroyd 8-constant 

fluid on a vertically moving belt. The governing nonlinear problem is solved by using Variational Iteration Method 

(VIM). The results of the present method are then compared with those obtained by Adomian Decomposition Method 

(ADM) and an excellent agreement is observed. This comparison reveals that VIM may be considered as an efficient 

alternative method for solving nonlinear problems arising in non-Newtonian fluid mechanics. Expressions for some 

important physical quantities such as volume flux, average velocity, the belt speed for the lifting of the non-Newtonian 

fluid are also derived. 

 
Keywords: Adomian decomposition method, moving belt, nonlinear equation, thin film flow, variational iteration method. 
 

 

1 Introduction 

In the recent years, the studies of thin film flows of non-Newtonian fluids have received considerable attention by many 

researchers, see for instance [1-4], and the references therein. This is perhaps due to their several applications in 

nonlinear sciences and engineering industries. The differential equations that arise when modeling non-Newtonian 

fluids in thin film flow problems are in general highly nonlinear and complicated. The analytical study of such type of 

nonlinear problems is important not only because of their technological significance but also due to the interesting 

mathematical features presented by the governing differential equations of the flow. It is well known that most of these 

types of problems do not have an exact solution. Therefore, these equations should be treated by using some numerical 

or analytical methods. Apart from numerical methods, several analytical techniques such as HAM, HPM, ADM and 

VIM are proposed to find approximate analytical, and if possible in closed form, solutions of such nonlinear equations, 

see [5-9], and the references therein. 

The basic motivation of this paper is to apply the VIM and the ADM to find the approximate analytical solution of a 

highly nonlinear differential equation that arises in the thin film flow problems of a non-Newtonian Oldroyd 8-constant 

fluid lifting on a moving belt. The VIM as a powerful analytical technique was first introduced by He and has been used 

by many mathematicians to solve various nonlinear equations [10-14]. This method gives rapidly convergent successive 

approximations of the exact solutions if such solution exists. For this problem, the governing equation is highly 

nonlinear whose exact solution is very difficult, a few number of approximations can be used for numerical purposes 

with high degree of accuracy. For comparison the same problem is also solved by ADM. The results show that 

difference between the two solutions is negligible. This comparison is benched-marked against a numerical solution. A 

considerable amount of research work has been conducted recently in applying these methods to a class of linear and 

nonlinear problems see [10-14]. However, Variational iteration Method has an advantage over Adomian Decomposition 

Method that it solves nonlinear problems without using Adomian polynomials. For the convergence criteria and error 

estimation of VIM, see [13, 14]. 
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2 Governing Equations 

The fundamental equations governing the flow of an incompressible fluid, neglecting the thermal effects are 

.V 0  ,                                                             (1) 

V
f .S

d
p

dt
     ,                                                                   (2) 

where V ( , , )u v w is the velocity vector,  is the constant density, 
1 2 3f (f ,f ,f ) is the body force per unit mass, 

d

dt
 is 

the material time derivative, p is the dynamic pressure and S  is the extra stress tensor, which for Oldroyd 8-constant 

fluid is defined as [15]  
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  ,                                (3) 

where I is the identity tensor and   and ( 1,2,....,7)i i  are the material constants of the fluid. The contravariant 

convected derivative is defined as  

   
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                                                                (4) 
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,                                                (5) 

and the Rivilin-Ericksen tensor 
1A  is defined as 

   1A V V
T

    ,                                                            (6) 

where T  stands for transpose of the tensor. It should be noted that the model (3) includes the Oldroyd 6-constant fluid 

when
6 7 0   ; Oldroyd 3-constant fluid when

3 5 6 7 0       ; Maxwell fluid 

when
2 3 4 5 6 7 0           ; the second grade fluid when 

1 3 4 5 6 7 0           ,
2 1  and the 

Newtonian fluid for
1 2 3 4 5 6 7 0             . 

 

3 Formulation of the problem 

We consider a container filled with an Oldroyd 8-constant fluid. A wide belt passes through this container, which 

moves vertically upward with a constant speed
0V . The moving belt picks up a thin film fluid of uniform thickness . 

The gravity tries to make the fluid film drain down the belt. We assume that the flow is steady, laminar and uniform and 

the pressure is atmospheric pressure. We choose x axis  normal to the belt and y axis is taken along the belt which 

is in upward direction. 

The appropriate boundary conditions for the problem are 

0v V     at 0x  (no slip condition),                                              (7) 

0xyS     at x  ( free surface),                                            (8) 

where xyS  is the shear stress component of the Oldroyd 8-constant fluid. 

We seek velocity field and the extra stress tensor of the form 

 V 0, ( ),0 ,         S S( )  v x x                                              (9) 
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When (9) is used in (1) and (2), the continuity Eq.(1) is identically satisfied and the momentum Eq.(2) is reduced to 

10 fxxdS

dx
  ,                                                     (10) 

20 f
xydS

dx
  ,                                               (11) 

where  
1f  and 

2f  are the components of body force in x  and y directions, respectively. Since y axis is taken to be 

in upward direction and the force due to gravity is in downward direction, so the above equations take the form 

0 xxdS

dx
 ,                                                           (12) 

0 g
xydS

dx
  .                                                      (13) 

Making use of Eqs.(4-6) and (9) in (3), we obtain the non-zero components of S  as 
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                    (16) 

The constants 
1  and 

2  are defined by 

     5 7

1 1 4 7 3 5 4 7 2
2

 
               , 

     5 6

2 1 3 6 2 5 3 6 1
2

 
               . 

Using (15) in (13), the final form of the governing equation is given by 

3
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dv dv

d dx dx
g
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dx
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
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  
  
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                                                     (17) 

The boundary conditions (7) and (8) are accordingly reduced to 

0v V     at 0x  ( no slip condition),                                               (18) 

0
dv

dx
     at x  ( free surface),                                      (19) 

Integrating once Eq.(17) with respect to x  and using the boundary condition (19), we obtain  
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3 2

1 2 ( ) ( )
dv dv dv

g x g x
dx dx dx

      
   

       
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 ,                                 (20) 

0v V     at 0x                                                          (21) 

Introduce the following dimensionless parameters 

2
* * * * *1 2

1 2

0 0

0 0

,  ,  ,  ,  
( ) ( )

v x g
v x m

V V
V V

   
 

  
     . 

Therefore, the governing differential equation for the problem with the boundary condition after dropping *  becomes 

3 2

1 2 ( 1) ( 1)
dv dv dv

m x m x
dx dx dx

 
   

       
   

,                                       (22) 

1v      at 0x  .                                                           (23) 

It is noted that Eq.(22) along with one boundary condition (23) is a highly nonlinear first order ordinary differential 

equation. It is a well-posed problem but difficult to find its exact closed form solution. Therefore, we are interested in 

finding the approximate analytical solutions by using VIM and ADM. 

 

4 Solution by VIM 

To apply variational iteration method (VIM), we write equation ( 22) in the form 

1 2( ) ( ) ( ) ( )L v N v N v f x   ,                                                (24) 

where ( )
dv

L v
dx

 is the linear term, 

3

1 1( )
dv

N v
dx
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and 

2

2 2( ) ( 1)
dv

N v m x
dx


 

    
 

are nonlinear terms and 

( ) ( 1)f x m x   is the forcing term. According to variational iteration method [8, 10, 14], we can construct a 

correction functional as follows 

 1 1 2
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( ) ( ) ( ) ( ) ( )

x

n n n n nv v s Lv s N v s N v s f s ds      ,                              (25) 

where ( )s is a Lagrange multiplier, which can be identified optimally via variational theory. The subscript n  denotes 

the nth  approximation and 
nv is considered as a restricted variation, that is, 0nv  . The successive approximations 

1, 0nv n   of the solution ( )v x  are obtained upon using any selective function
0v , consequently, the solution is given 

by ( ) lim n
n

v x v


 . 

Employing the restricted variation in (25) we compute the Lagrange multiplier as 

 1 1 2

0

( ) ( ) ( ) ( ) ( ))

x

n n n n nv v s Lv s N v s N v s f s ds                               (26) 

Integration by parts results the stationary conditions 

1 0,   0
s x s x

 
 

   ,   

which in turn gives 1   . 

Substituting this value of the Lagrange multiplier into the functional (26), we obtain the following iteration formula 
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We start with initial approximation
0 ( ) 1v x  . The next iterates 

1 2 3, , ,....v v v are given below respectively 

 2

1( ) 1 ( 1) 1
2

m
v x x    ,                                                      (28) 
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       ,                                    (29) 
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Hence, the series solution in general gives 
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  ,                       (31) 

where 
2 1    , 

3 2 12 3    , 
4 2 13     

By back substitution of values of dimensionless parameters, we get the solution (31) in dimensionless form as 
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Here it should be noted that for
1 2 0   , we get solution for the Newtonian fluid [1] and for 

2 0  and setting the 

value of 
1 the above solution reduces to that of the third grade obtained in [14]. 

 

4.1   Flow rate and average film velocity 
 

The flow rate per unit width is given by the formula 

0

( )Q v x dx



                                                                 (33) 

Substituting (32) in (33) and then integrating, we obtain the flow rate for an Oldroyd 8-constant fluid as 
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                   (34) 

The average velocity V is given by 
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                      (35) 

It is observed from Eq.(35) that there will be a net upward flow of liquid if 0V  which implies that  
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                        (36) 

Inequality (36) provides a reasonable estimation for the belt speed to lift the Oldroyd 8-constant fluid. It shows that a 

large belt speed is needed to lift a fluid of small viscosity. As a special case, when 
1 2 0   , the inequality (36) be 

comes 

2

0
3

g
V





    ,                                                          (37) 

which is true for Newtonian fluid [1].  

 

4.2   Force to hold the belt in position 
 

The force F per unit width to hold the belt in position can also be determined using the expression for shear stress at 

the belt surface. In fact, we have the formula 

 
0 0

H

xy

x

F
S dx

W


  ,                                                              (38) 

where H is the length of the belt. Using (13) and (38), we obtain 

F
g H

W
                                                                    (39) 

Eq.(39) can also be used to determine the length of the belt, once the force per unit width is known. 

 

5 Solution by ADM 

To apply ADM to our nonlinear equation, first we rewrite it in the following operator form [13, 14]: 

    1 1 2 2( ) ( ) 1 ( ) ( 1)Lv x N v x m x N v x m x       ,                                (40) 

Where 
d

L
dx

 is a linear invertible operator and  

3

1 ( )
dv

N v x
dx

 
  
 

                                                               (41) 

2

2 ( )
dv

N v x
dx

 
  
 

                                                            (42) 

Applying the inverse operator 1L on both sides of Eq.(40), we get 
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         1 1 1 1

1 1 2 2( ) ( ) 1 ( ) ( 1)L Lv x L N v x m L x N v x L m x                             (43) 

so that  

       1 1 1

1 1 2 2( ) (0) ( 1) ( ) 1 ( )v x v L m x L N v x m L x N v x                            (44) 

and using the boundary condition (23) we obtain  
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2

x
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                      (45) 

We decompose ( )v x and the nonlinear terms
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, respectively, as follows 
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                                                               (46) 

The first few terms of the adomian polynomials 
nA  and 

nB  are given by 

3

0

0
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A
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 
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, 

2

0 1

1 3
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, 
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0 01 2

2 3 3
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dx dx dx dx

  
    

   
, 

23

0 0 31 1 2

3 6 3
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A
dx dx dx dx dx dx

  
     
   

,                                  (47) 

and  
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0 1
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2

0 2 1

2

0 3 1 2
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2 ,

2 2 ,

dv
B
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dv dv
B

dx dx
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B

dx dx dx

dv dv dv dv
B

dx dx dx dx

 
  
 

  
   

  

    
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    

     
      

    

                                        (48) 

We identify the zeroth component 0 ( )v x by 

 2

0 ( ) 1 ( 1) 1
2

m
v x x     ,                                                (49) 

And the remaining components 1( )nv x by the recurrence relation 



 

 

 
332 International Journal of Applied Mathematical Research 

 

 1 1

1 1 2

0 0

( ) 1 ,  0n n n

n n

v x L A m L x B n 
 

 



 

 
     

 
                                 (50) 

Using the same algorithms as are used in [7-8], we obtain the following components 

 
 

3

2 1 4

1( ) ( 1) 1
4

m
v x x

 
   ,                                                 (51) 
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2

2 3
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m
v x x
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   ,                             (52) 
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3

( )
( ) ( 1) 1

8

m
v x x

  
   ,                                          (53) 

 
2 2 3 9

103 4 3 1

4
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( ) ( 1) 1

10

m
v x x

      
                                     (54) 

and so on. In this manner, the rest of the terms in the decomposition series can be calculated. 

Summing up, we write the solution in the decomposition series form 

0 1 2 3( ) ...v x v v v v      

This, after inserting the values of 
0 1 2 3, , ,  and v v v v  from (51)-(54), be comes 
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8 10
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v x x x x

m m
x x
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        

         

  
      

                                          (55) 

Here,
2 1 3 2 1 4 2 1,  2 3 , 3                 .The solution of the corresponding problem for the third grade fluid is 

obtained by setting 
2 0   and 

1 2   [14] and that for the Newtonian fluid can be obtained by setting 
1 2 0   . 

 

6 Discussion of results 

Tables 1 and 2 are prepared to show a numerical comparison between three iteration solution of VIM and the four 

component solution obtained by ADM for various values of the flow parameters
1 , 

2  and m . This comparison shows 

that the numerical results of these methods are in close agreement and they provide realistic series solutions. It is also 

evident that the errors between the solutions can be reduced further and high accuracy can be achieved by evaluating 

more components of ( )v x . Tables 3 and 4 provide a comparison among the approximate solutions
1( )v x , 

2 ( )v x  and 

3 ( )v x  obtained by VIM for different values of
1 , 

2  and m . From these tables, we see that for the assigned values of 

the pertinent flow parameters, VIM gives excellent iterative solutions from one to the next iteration. It is remarkable to 

observe that third iteration of VIM is almost equivalent to the four terms of ADM solution. 

Figs. 1-3 show a comparison between three iteration solution of VIM and the four terms of the ADM solution for 

different values of 1 , 2  and m and no visible difference is observed. The quantitative effects of the material 

parameters 1 and 2  keeping m fixed on the velocity profile obtained by VIM are observed physically through Figs. 4 

and 5. It can be seen from Fig. 4 that for an Oldroyd 8-constant fluid, when the material parameter 1  increases 

from 1 0.1  to 1.5  for fixed values of 2  and m , the fluid velocity increases. However, an almost opposite behavior is 

observed when 2  increases from 2 0.1   to 1.5 for 1 1.0   and 0.5m  . Thus, as expected the variation of 1 leads 

to a shear-thinning behavior for fixed 2  while the variation in 2 leads to a shear-thickening property when 1 is fixed.   

 



 

 

 
International Journal of Applied Mathematical Research 333 

 

 

 

7 Concluding remarks 

Our main goal in this work is to discuss the thin film flow of an Oldroyd 8-constant fluid on a vertical moving belt. The 

governing nonlinear equation is solved by using VIM. In order to verify the efficiency of this method, the same problem 

is also solved by ADM. A very good agreement between the results of VIM and those obtained by ADM is observed, 

which confirm the validity of VIM. In comparison with the results of ADM, one can see that the three terms 

approximations of the VIM is more effective than three terms solution of ADM. Moreover, the series solution obtained 

by VIM converges faster than that by ADM and there is less computation work needed in comparison with the Adomian 

decomposition method. An estimation of the belt speed required to lift the fluid is also recorded. This estimation can be 

used for experimental verification. 
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Fig. 1: Comparison of VIM solution and ADM solution for 

1 20.5, 0.1, 0.5m    . 

 

 

 
 

 
Fig. 2: Comparison of VIM solution and ADM solution for

1 20.5, 1.0, 0.5m    . 
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Fig. 3: Comparison of VIM solution and ADM solution for
1 21.0, 0.5, 0.1m    . 

 

 

 

 

 
Fig. 4: Effect of 

1 on velocity profile when
2 1.0, 0.5m   . 
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Fig. 5: Effect of 

2 on velocity profile when
1 1.0, 0.5m   . 

 

Table1. Comparison between VIM and ADM for 
1 20.1, 0.5, 0.1m     

 

Table 1: Comparison between VIM and ADM for 
1 20.1, 0.5, 0.1m     

x  VIM solution ADM solution Error( VIM-ADM) 

0.0 1.0000000000 1.000000000 0.0000000 

0.1 0.9904653911 0.9904653892 0.1410E-8 

0.2 0.9819406154 0.981940613 0.2110E-8 

0.3 0.9744235978 0.9744235955 0.2310E-8 

0.4 0.9679125147 0.9679125123 0.2410E-8 

0.5 0.9624057902 0.9624057878 0.2410E-8 

0.6 0.9579020948 0.9579020924 0.2410E-8 

0.7 0.9544003433 0.9544003409 0.2410E-8 

0.8 0.9518996930 0.9518996906 0.2410E-8 

0.9 0.9503995429 0.9503995405 0.2410E-8 

1.0 0.9498995329 0.9498995304 0.2510E-8 
 

Table 2: Comparison between VIM and ADM for 
1 20.5, 0.1, 0.5m     

x  VIM solution ADM solution Error( VIM-ADM) 

0.0 1.0000000000 1.000000000 0.0000000000 

0.1 0.9905339855 0.9905339903 -0.4810E-8 

0.2 0.9820584028 0.9820584099 -0.7110E-8 

0.3 0.9745752279 0.9745752359 -0.8010E-8 

0.4 0.9680862166 0.9680862249 -0.8310E-8 

0.5 0.9625928997 0.9625929081 -0.8410E-8 

0.6 0.9580965797 0.9580965881 -0.8410E-8 

0.7 0.9545983268 0.9580965881 -0.8410E-8 

0.8 0.9520989762 0.9520989846 -0.8410E-8 

0.9 0.9505991261 0.9505991345 -0.8410E-8 

1.0 0.9500991361 0.9500991446 -0.8510E-8 
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Table 3: A Comparison among 1( )v x , 2( )v x and 3( )v x obtained by VIM for 1 20.5, 0.1, 0.1m     

x  
1( )v x  2 ( )v x  3( )v x  

0.0 1.00000000 1.0000000000 1.0000000000 

0.1 0.99050000 0.9904570125 0.9904568180 

0.2 0.98200000 0.9819262000 0.9819258939 

0.3 0.97450000 0.9744050125 0.9744046464 

0.4 0.96800000 0.9678912000 0.9678908043 

0.5 0.96250000 0.9623828125 0.9623824039 

0.6 0.95800000 0.9578782000 0.9578778666 

0.7 0.95450000 0.9543760125 0.9543755977 

0.8 0.95200000 0.9518752000 0.9518747850 

0.9 0.95050000 0.9503750125 0.9503754971 

1.0 0.95000000 0.9498850000 0.9498745849 
 

 

 

 

Table 4: A Comparison among 1( )v x , 2( )v x and 3( )v x obtained by VIM for 1 21.0, 0.5, 0.1m     

x  
1( )v x  2 ( )v x  3( )v x  

0.0 1.00000000 1.0000000000 1.000000000 

0.1 0.99050000 0.9905429875 0.990542211 

0.2 0.98200000 0.9820738000 0.982072576 

0.3 0.97450000 0.9745949075 0.974593524 

0.4 0.96800000 0.9681088000 0.968107218 

0.5 0.96250000 0.9626171800 0.962615554 

0.6 0.95800000 0.9512180000 0.958120148 

0.7 0.95450000 0.9546239875 0.954622329 

0.8 0.95200000 0.9521248000 0.952123141 

0.9 0.95050000 0.9506249875 0.950623328 

1.0 0.95000000 0.9501250000 0.951233411 
 

 


