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Abstract 
 

This paper aimed to develop two well-known nonlinear ordinary different equations, Bernoulli and Riccati equations to fractional form. 

General solution to fractional differential equations are detected, based on conformable fractional derivative. For each equation, numerical 

examples are presented to illustrate the proposed approach. 
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1. Introduction 

Solving fractional different equations is very important but there are 

many fractional different equations which can’t be solved analyti-

cally. Due to this fact, finding an approximate solution of fractional 

different equations is clearly an important task. In recent years, 

many effective methods have been proposed for the approximate 

solution to classical fractional differential equations, such as 

Adomian decomposition method [3], [4], homotopy perturbation 

method [5-7], homotopy analysis method [8], variational iteration 

method [9], generalized differential transform method [10], finite 

difference method [11], Laplace transform method [12], Sub-equa-

tion method [13], Legendre operational matrix [14], etc. 

The organization of this paper is as follows: In Section 2, the basic 

ideas conformable fractional derivative, and conformable fractional 

integral are described. In Section 3, Bernoulli and Riccati fractional 

differential equations are solved. Finally, conclusion and discus-

sions are presented in section 4. 

2. Basic definitions 

The purpose of this section is to recall some results on the proposed 

method.  

2.1. Conformable fractional derivative 

Given a function f: [0, ∞) → ℝ. Then conformable fractional deriv-

ative of f of order α is defined by  

 

Τα(f)(x) = lim
ε→0

f(x+εx1−α)−f(x)

ε
                                                  (1) 

 

For all x > 0, α ∈ (0,1]. If f is α- differentiable in some (0, a), a >
0, and lim

x→0+
Τα(f)(x) exists, then one can define 

 

Τα(f)(0) = lim
x→0+

Τα(f)(x)  

 

If the conformable derivative of f of order α exists, then we simply 

say that f is α- differentiable (see [1,2]). 

One can easily show that Τα satisfies all the following properties 

(see [1]): 

Let α ∈ (0, 1] and be α-differentiable at a point x > 0, Then 

 

A. For a, bϵℝ Τα(af + bg) = a Τα(f) + b Τα(g) ,  
 

B. For all pϵℝ Τα(xp) = pxp−α, 
 

C. For all constant functions f(x) = λ, Τα(λ) = 0, 
 

D. Τα(f. g) = g. Τα(f) + f . Τα(g), 
 

E. Τα (
f

g
) =

g.Τα(f)−f .Τα(g)

g2 , 

 

F. Τα(f) = x1−α df

dx
. 

2.2. Conformable fractional integral 

Given a function f: [a, ∞) → ℝ, a ≥ 0. Then conformable fractional 

integral of f is defined by 

 

Iα
a (f)(x) = ∫

f(t)

x1−α dx
x

a
                                                                    (2) 

 

Where the integral is the usual Riemann improper integral, and α ∈
(0,1) (see [1], [2]). 
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For simplicity, we have, Iα

0(f)(x) = Ια(f)(x) .

  

One of the well results is the following (see [1]): 

For all x ≥ a, and any continuous function in the domain of Ια
a , we 

have Τα(Ια
a f(x)) = f(x). 

3. Basic theoretical of the idea 

Bernoulli and Riccati equations will be converted in to a first order 

linear equation, by changing dependent variable. In this section, the 

procedure of the solution of first order linear fractional equations is 

described. Then general solution to Bernoulli and Riccati fractional 

equations are presented. 

3.1. First order linear fractional differential equations 

The most important type of fractional different equations is the lin-

ear fractional differential equation, in which the conformable frac-

tional derivative of highest order is a linear function of the lower 

conformable fractional derivative. Thus, the general first order frac-

tional differential equation based on conformable fractional deriva-

tive is presented as  

 

Τα(u)(x) = p(x)u(x) + q(x),                                                      (3) 

 

Where p (x), q (x) are α −differentiable functions and u(x) is an 

unknown function. 

We write in the standard form, 

 

Τα(u)(x) + P(x)u(x) = Q(x).                                                      (4) 

 

By using the property (F), equation (4) will be written as 

 

x1−αu′(x) + P(x)u(x) = Q(x)  

 

u′(x) +
P(x)

x1−α u(x) =
Q(x)

x1−α .                                                             (5) 

 

Where equation (5) is a first order linear ordinary differential equa-

tion with general solution  

 

u(x) = e− ∫
P(x)

x1−αdx (∫
Q(x)

x1−α e∫
P(x)

x1−αdx dx + C),                                 (6) 

 

Wherever C is constant among and arbitrary (see [15]). Now by us-

ing subsection (2.2) and substitution in equation (6) we obtain 

 

u(x) = e−Ια(P(x))[Ια(Q(x). eΙα(P(x))) + C].                                   (7) 

 

As a results (7) is the general solution to equation (4).  

Example 1 According to equation (7) the following first order linear 

fractional differential equation  

 

Τ1

2

(u)(x) + u(x) = x2 + 2x
3

2 ,  

 

Has a general solution such as, 

 

u(x) = x2 + Ce−2√x . 

 

Example 2 According to equation (7) a general solution of the fol-

lowing first order linear fractional differential equation  

 

Τ1

2

(u)(x) + √xu(x) = xe−x , 

 

Is as the following 

u(x) = e−x (
2

3
x√x + C)  

3.2. Bernoulli fractional differential equation 

General form of Bernoulli fractional differential equations is as fol-

lows, 

 

𝛵𝛼(𝑢)(𝑥) + 𝑃(x)𝑢(𝑥) = 𝑄(𝑥)(𝑢(𝑥))
𝑛

,                                      (9) 

 

Where 𝛼 −differentiable functions and 𝑢(𝑥) is an unknown func-

tion. 

 

Using property (F) in equation (4), reads 

 

𝑥1−𝛼𝑢′(𝑥) + 𝑃(𝑥)𝑢(𝑥) = 𝑄(𝑥)(𝑢(𝑥))
𝑛

,  
 

𝑢′(𝑥) +
𝑃(𝑥)

 𝑥1−𝛼
𝑢(𝑥) =

𝑄(𝑥)

 𝑥1−𝛼
(𝑢(𝑥))

𝑛
,                                           (10) 

 

Where equation (10) is the Bernoulli equation (see [15]). We know 

that it will be linear for 𝑛 = 0 or 1, it can be reduced to a linear or-

dinary equation for any other value of 𝑛 by the change of dependent 

variable 𝑧 = (𝑢(𝑥))
1−𝑛

, as a result, according to the results in sec-

tion (3) the general solution is as follows, 

 

(𝑢(𝑥))1−𝑛 = 𝑒
− ∫(1−𝑛)

𝑃(𝑥)

𝑥1−𝛼𝑑𝑥
(∫(1 − 𝑛)

𝑄(𝑥)

𝑥1−𝛼
𝑒∫(1−𝑛)

𝑃(𝑥)

𝑥1−𝛼𝑑𝑥
𝑑𝑥 + 𝐶)  

 

Consequently, by using subsection (2.2) and mentioned procedure 

to equation (11), the general solution of equation (9) is as the fol-

lowing 

 

𝑢(𝑥) = (𝑒−𝛪𝛼((1−𝑛)𝑃(𝑥)) [𝛪𝛼 ((1 − 𝑛)𝑄(𝑥). 𝑒𝛪𝛼((1−𝑛)𝑃(𝑥))) + 𝐶])
1

1−𝑛.    (12) 

 

Example 3 According to (12), a general solution to the following 

Bernoulli fractional differential equations, based on conformable 

fractional derivative 

 

𝛵1

2

(𝑢)(𝑥) + 𝑢(𝑥) = (𝑥2 − 𝑥√𝑥)(𝑢(𝑥))2 ,  

 

Can be presented as the following 

 

𝑢(𝑥) = (𝑥2 + 𝐶𝑒2√𝑥)
−1

.  

 

Example 4 According to equation (12) the Bernoulli fractional dif-

ferential equation 

 

𝛵1

2

(𝑢)(𝑥) + √𝑥 𝑢(𝑥) = (𝑥𝑒−2𝑥)(𝑢(𝑥))
−1

,  

 

Has the following general solution  

 

𝑢(𝑥) = √𝑒−2𝑥(
4

3
𝑥√𝑥 + 𝐶).  

3.3. Riccati fractional differential equation 

A natural extension of a first order fractional differential equation 

is the Riccati fractional differential equations,  

 

𝛵𝛼(𝑢(𝑥)) = 𝑃(𝑥) + 𝑄(𝑥) 𝑢(𝑥) + 𝑅(𝑥)(𝑢(𝑥))2 ,                     (13) 

 

Where P(𝑥), 𝑄(𝑥), 𝑅(𝑥) are 𝛼 −differentiable functions, and 𝑢(𝑥) 

is an unknown function. 

If a particular solution 𝑢1(𝑥) is known, then general solution has 

the form 𝑢(𝑥) = 𝑢1(𝑥) + 𝑧(𝑥) where 𝑧(𝑥) is a general solution of 

the following Bernoulli fractional differential equation, 

 

 𝛵𝛼(𝑧(𝑥)) + (−𝑄(𝑥) − 2𝑅(𝑥)𝑢1(𝑥))𝑧(𝑥) = 𝑅(𝑥)(𝑧(𝑥))
2

.    (14) 

 

Example 5 Find the general solution of the Riccati fractional differ-

ential equations, 
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𝛵1

2

(𝑢(𝑥)) = −𝑥√𝑥 +
1

2√𝑥
𝑢(𝑥) + √𝑥 (𝑢(𝑥))2,  

 

Since 𝑢1(𝑥) = √𝑥 is an obvious particular solution. 

To obtain a general solution to Riccati equation, suppose 𝑢(𝑥) =
𝑢1(𝑥) + 𝑧(𝑥)  , where the function 𝑧(𝑥)  is denoted by 𝑧(𝑥) =

2√𝑥𝑒
4
3𝑥√𝑥

𝐶−𝑒
4
3

𝑥√𝑥
 , so a general solution of equation is as the following 

 

𝑢(𝑥) = √𝑥 +
2√𝑥𝑒

4
3

𝑥√𝑥

𝐶−𝑒
4
3𝑥√𝑥

 .  

 

Example 6 Find the general solution of the following Riccati frac-

tional differential equations, 

 

𝛵1

2

(𝑢(𝑥)) = −2𝑥2√𝑥 +
1

√𝑥
 𝑢(𝑥) + 2√𝑥 (𝑢(𝑥))2,  

 

Which has 𝑢1(𝑥) = 𝑥, as an obvious particular solution. 

Suppose 𝑢(𝑥) = 𝑢1(𝑥) + 𝑧(𝑥) where the function 𝑧(𝑥) is denoted 

by (𝑥) =
4𝑥𝑒2𝑥2

𝐶−2𝑒2𝑥2 , consequently a general solution of the Riccati 

fractional differential equations is as the following 

 

𝑢(𝑥) = 𝑥 +
4𝑥𝑒2𝑥2

𝐶−2𝑒2𝑥2 .  

4. Conclusion 

In this article, Bernoulli and Riccati fractional different equations 

have been solved regarding the general solution of first order linear 

fractional differential equations, based on conformable fractional 

derivative. This approach lead to the exact solution, so there was no 

need for using any numerical approach. 
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