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Abstract 
 

In this paper, a new numerical scheme based on explicit finite difference approximation for solving fractional hyperbolic partial differen-

tial equations (FHPDE’s) is formulated. Numerical studies for the model problems are presented to confirm the accuracy and the effec-

tiveness of the proposed method. The obtained results of proposed system are compared with exact solutions and the original system to 

show the efficient of the new method. 
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1. Introduction 

Fractional Partial Differential Equations are extensively used in 

engineering, physics and mathematical fields, such as porous me-

dia, anomalous diffusion, Hamiltonian chaos systems, bioengi-

neering ([1], [2], [3], [4]). They are involved to model physical 

processes referring to memory properties, genetic characters and 

path dependence. The fractional hyperbolic partial differential 

equations (FHPDE’s) model the vibrations of structures (e.g. 

buildings, beams and machines) and are the basis for fundamental 

equations of atomic physics ([5], [6], [7]). However, only a very 

few fractional differential equations can be solved analytically 

because of their complicated form. Hence, the recent rapid devel-

opment of numerical methods for fractional differential equations 

has attracted more and more attentions from researchers. The Iter-

ative methods based on the finite difference approximations have 

been shown suitable for solving the partial differential equations 

([8], [9], [10], [11]). Meerschaert and Tadejeran ([12], [13]) pro-

posed a finite difference approximation of fractional advection-

diffusion flow equation and two-sided space-fractional differential 

equation. In this work, the new preconditioned explicit finite dif-

ference approximation will be formulated and applied for solving 

FHPDE’s. The structure of this paper is as follows: Section 2 de-

scribes the formulation of the preconditioned explicit finite differ-

ence method iterative method for solving the fractional hyperbolic 

partial differential equations. In section 3, the stability analysis of 

the proposed method will be discussed. Numerical results are pre-

sented in order to show the efficiency of the proposed method in 

section 4. Finally, relevant conclusions are drawn in section 5. 

2. Formulation of the preconditioned explicit 

finite difference method for solving the 

fhpde’s 

Consider the fractional order partial differential equations  

2u(x, t) u(x, t)
c(x, t) s(x, t), L x R, 0 t T

2t x

 
     

                    (1) 

 

 

Together with the initial and zero Dirichlet boundary conditions: 

 

u(x,0) f (x), u (x,0) h(x), L x Rt

u(L, t) 0, u(R, t) 0, 0 t T

    


                                           (2) 

 

Where 
u(x, t)

x




 denote the left-hand partial fractional derivative 

of order  of the function u with respect to x and 1 2.    

Nishimoto [14] estimated the left-handed shifted and the right-

handed shifted to the left-handed and right-handed derivatives as 

the following: 

 

nd f (x) 1
g f (x (k 1) x),

d x ( x) k 0


   

  

 

 

nd f (x) 1
g f (x (k 1) x)

d x ( x) k 0


   

  

 

 

Where n is the number of subdivision of interval [L, R] and  is 

the fractional number. Therefore, we can write: 

 

i 1u(x , t ) 1i j
g u(x (k 1) x, t )k i j

x ( x) k 0

i 11
g uk i k 1, j

( x) k 0

 
   

   


    

                              (3) 

 

and 
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n i 1u(x , t ) 1i j
g u(x (k 1) x, t )k i j

x ( x) k 0

n i 11
g uk i k 1, j

( x) k 0

  
   

   

 
    

                            (4) 

 

Where g 10  and 
( 1)...( k 1)kg ( 1) , k 1,2,...k

k!

     
    

To improve the explicit finite difference method for solving the 

initial-boundary value problem (1) - (2), we substitute t t j in 

equation (1) and replace the partial derivative 
2u

2t




with its central 

difference approximation to get: 

 

u 2u u ui, j 1 i, j i, j 1 i, j
c si, j i, j2( t) x

   
 

 
                                         (5) 

 

Where t j t, j 0,1,...,mj    and m is the number of subdivision of 

the interval [0,T], t R. Next, substitute equation (3) in equation 

(5) to obtain: 

 

i 1u 2u u ci, j 1 i, j i, j 1 i, j
g u s ;k i k 1, j i, j2( t) ( x) k 0

i 1,2,..., n; j 0,1,...,m 1

  
     

                        (6) 

 

Also, the initial and boundary conditions given by equation (2) 

become: 

 

u(x ,0)iu u(x ,0) f (x ), h(x ) for i 0,1,..., nr,0 i i i
t

u u(L, t ) 0, u u(R, t) 0, for j 0,1,...,m0, j j n, j

 
    

 
    
  

 

Now, using the central difference approximation to the initial de-

rivative conditions, we can get: 

 

1
(u u ) h(x ), i 0,1,..., ni,1 i, 1 i

2 t
  


 

 

Which can be written as: 

 

u u 2 t h(x ), i 0,1,...,ni,1 i, 1 i     
 

Furthermore, equation (6) becomes: 

 

2 i 1( t) ci, j
u 2u u g ui, j 1 i, j i, j 1 k i k 1, j

( x) k 0

2s ( t) ; i 1,2,..., n; j 0,1,...,m 1i, j


       

    

                           (7) 

 

Therefore: 

 

2 i 1( t) ci,0 2u 2u u g u s ( t)i,1 i,0 i, 1 k i k 1,0 i,0
( x) k 0


                    (8) 

 

By substituting u u 2 t h(x )i, 1 i,1 i   back into equation (8), one 

can show that ui,1 can be calculated from the following equation:
 

 

2 2i 1( t) c ( t)i,0
u f g f s t g ; i 1,2,...,n 1.i,1 i k i k 1, j i, j i

22( x) k 0

 
           

 

 

By evaluating the above equation for each i 1,2,...,n 1  , one can 

get the values of ui,1 .
 

Then by evaluating equation (7) at i 1,2,...,n 1  and j 2,3,...,m 1  , 

one can get the numerical solution of equation (1). The resulting 

equation can be explicitly solved to give: 

 

i 1
u 2u u r g ui, j 1 i, j i, j 1 w i w 1, j

w 0


      


                                     (9) 

 

Where 
2k

r .
h




 
 

It’s well known that in the explicit finite difference treatment the 

PDE or the FPDE are replaced by an algebraic system of equa-

tions which can be written as the form 

 

Au f,                                                                                        (10) 

 

Where, A is nonsingular coefficients matrix,
 

Tu [u ,u ,..., u ]j,1 j,2 j,N 1   and Tf [f , f ,..., f ] ,j,1 j,2 j,N 1 
 

j 1,2,..., N 1. 
 

Now, from the linear system of equations (10) which formed when 

fractional hyperbolic partial differential equation is solved by the 

explicit finite difference method, matrix A can be write as 

A D L U   where D is diagonal matrix A, L is strictly lower 

triangular parts of A and U is strictly upper triangular parts of A. 

A preconditioner (I kL),
 
where: 1 k 2  is used to modify the 

original system (10) to 

 

(I kL)Au (I kL)f  
                                                                  

(11) 

 

The resulted system of (11) called preconditioned explicit finite 

difference method. 

3. Stability analysis 

We can discuss the stability of the resulting equation (9) as the 

following: 

 

Let g 10  and 
w ( 1)k( w 1)

g ( 1) ; w 1,2,... ;1 2.w
w

     
     

 
 

Hence, g 0,
 
for all values of i. Therefore: 

 

i 1
g g ( )w 1

w 0


     



                                                              (12) 

 

The difference between the analytical and numerical solutions of 

the difference equation remains bounded as j increases. 

Let the error E u(h ,k ) uij i j i, j   then the finite difference equation 

(9) is stable. Now, we have to find the stability condition under 

which the error Eij  is bounded. Smith [15] shows that the error 

Eij  can be written as: 

 

1 ih jE eij
  

                                                                           (13) 

 

By substituting equations (12), (13) into (9), we can get: 

 

1 1 h (1 w)2 r e 0         
                                               (14) 

Assume that h(1 w)   and substitute it into equation (14), it 

can be easily getting the following equation for R  as: 
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2 1(2 r e ) 1 0       
                                                         (15) 

 

Let 1k 2 r e    
 
and 1e 1 .  

 
Hence the values of   are: 

 

2 2k k 4 k k 4
,1 2

2 2

   
   

 

 

From equation (13), the error will not grow with time if 

 

1e 1  
 
for all real 

                                                          (16) 

 

Equation (16) is called the Von-Neumann’s condition for stability. 

Therefore, we will use this equation to find the stability condition 

of the finite difference equation (9). 

We can see that for r, and 
 
are real, the stability will be given 

while 2  gives instability. For 1 k 1   , the only useful inequali-

ty is k 1  and then 12 r e 1,     where 1e 1 .    There-

fore, 
1

r





where 1 2   . 

Hence, 
1

r
2

 which is the stability condition. We can conclude 

that the stability results in the finite partial differential equation 

case as generalization for the corresponding result in the classical 

hyperbolic partial differential equation. 

By the same manner, we can observe that the preconditioned sys-

tem (11) has the same stability condition because it has the same 

structure of (10). 

4. Numerical results and discussion 

Several numerical experiments have been conducted to show the 

superiority of the proposed method for solving fractional hyper-

bolic partial differential equation. To check the effectiveness of 

the proposed iterative method; we will use the following modal 

problem which is the fractional order partial differential equation 

[16]: 

 

2 1.5u 1 u 2 3 2 2x 4x 2x (2.546) x t
2 1.5(0.5)t x

2(2.546) x t ,0 x 2,0 t 1,

 
   
 

    

 

 

Together with initial and zero Dirichlet boundary conditions: 

 

u(x,0) 0, u (x,0) 0, 0 x 2t

u(0, t) 0, u(1, t) 0, 0 t 1

    


    
  

This problem has the exact solution 2 2u(x, t) x (x 2) t  . Firstly, 

the numerical solutions based on preconditioned explicit finite 

difference and the original explicit finite difference were com-

pared with the exact solution to show the accuracy of these itera-

tive methods. Figure 1 shows that the accuracy of the mentioned 

methods is acceptable. Furthermore, we can observe that the pre-

conditioned explicit finite difference have better accuracy than the 

original one. 

 

 
Fig. 1: Comparison of Exact Solution to the Numerical Solution from the 

Preconditioned and the Original Explicit Finite Difference 

 

In addition to that, Comparisons for Number of iterations and 

Elapsed time of proposed method and the original one are made 

for the particular mesh size. Table 1. shows that the proposed 

method has the lowest number of iterations and elapsed time. 

 
Table 1: Comparison of Number of Iterations and Elapsed Time of Pro-

posed and Original Explicit Finite Difference Methods for Solving the 
Model Problem 

N 

Explicit Finite Difference 

method 

Preconditioned Explicit Finite 

Difference method 

Num-
ber of 

itera-

tions 

Elapse

d time 
(sec.) 

Aver-
age 

absolute 

Error 

Number 

of itera-
tions 

Elapse

d time 
(sec.) 

Aver-
age 

absolute 

Error 

74 1572 0.0974 0.0244 1438 0.0183 0.0192 

96 1946 0.1733 0.0194 1873 0.1532 0.0134 

162 2511 0.2521 0.0131 2360 0.2403 0.0114 
186 2815 0.2844 0.0094 2670 0.2501 0.0063 

222 3178 0.3423 0.0064 2981 0.2904 0.0043 

246 3397 0.2874 0.0024 3165 0.1863 0.0015 

5. Conclusion 

In this paper, we have formulated new preconditioned explicit 

finite difference iterative method for solving fractional hyperbolic 

partial differential equations. From observation of all experimental 

results, it can be concluded that the proposed scheme may be a 

good alternative to solve this type of fractional differential equa-

tion and many other numerical problems.  
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