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Abstract

Let S be a nonempty set and F consists of all Z2 characteristic functions defined on S. We are supposed to introduce a ring isomorphic
to (P(S),4,∩), whose set is F . Then, assuming a finitely additive function m defined on P(S), we change P(S) to a pseudometric space
(P(S),dm) in which its pseudometric is defined by m. Among other things, we investigate the concepts of convergence and continuity in the
induced pseudometric space. Moreover, a theorem on the measure of some kinds of elements in (P(S),m) will be established. At the end, as
an application in probability theory, the probability of some events in the space of permutations with uniform probability will be determined.
Some illustrative examples are included to show the usefulness and applicability of results.
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1. Introduction

Some of the propositions in mathematics can be used in science
or other branches of mathematics to obtain some new results. For
instance, a force field is always a vector field representing forces. The
laws of conservation of energy, conservation of angular momentum,
Kepler’s laws of planetary motion in astronomy are some of the
consequences of the mathematical theory of central vector fields [10].
As another example, let us to consider the fundamental theorem of
algebra. It states that every non constant single variable polynomial
with complex coefficients has at least one complex root. In [2]
the authors proved that the Gauss-Bonnet theorem in differential
geometry implies the fundamental theorem of algebra. There are also
other proofs which involve some analysis, or at least the topological
concept of continuity of real or complex functions, differentiable or
analytic functions [4], Cauchy’s integral theorem [12], or even the
theory of compact differentiable manifolds [3, 11] and intersection
theory mod 2 [9]. Recently, some another proofs about the existence
of the roots for polynomials, also has been given in [5, 6].
In this paper, as a follow up to the method of mentioned works, we
consider the Boolean ring (P(S),4,∩) [8] with a measure on P(S)
and investigate its properties to find a mathematical formula for the
measure of some special kinds of subsets of S. At the end, we apply
the previous work to the theory of uniform probability spaces. We
are able to include some basic results whose detailed proofs are not
easily available elsewhere.

2. Preliminary notes

Let S be a nonempty set. For each A⊆ S, let χA be the characteristic
function of A with values in Z2. i.e., χA(x) = 1 for x∈A and χA(x) =
0 for x 6∈ A. Let F = {χA|A ⊆ S}, then for B,C ⊆ S, the binary

operations ⊕S and ⊗S are defined on F by

(χB⊕S χC)(x) = χB(x)⊕χC(x), (χB⊗S χC)(x) = χB(x)⊗χC(x),

in which ⊕ and ⊗ denote the operations of addition and multiplica-
tion in Z2 respectively.
An algebra of sets on S is a nonempty collection A⊆ P(S) such that,

/0 ∈ A, ∀B,C ∈ A : B∪C ∈ A, ∀B ∈ A : S−B ∈ A.

A finitely additive function on A is a function m : A→ [0,+∞] such
that m(B∪C) = m(B)+m(C) for all B,C ∈ A with B∩C = /0 [7].
The function m assigns to each element B of A, an element m(B) of
the set of non negative extended real numbers. The finitely additive
function m is called bounded if m(S)<+∞.
An algebra A⊆ P(S) of sets is called a σ−algebra, if every union
of any countable collection of sets in A is again in A. A countably
additive function m on a σ−algebra A is a function m : A→ [0,+∞]
such that m(∪An) = ∑m(An) for each sequence An of disjoint sets
in A. If m is a countably additive function on an algebra A⊆ P(S),
then (A,m) is called a measure space. If (A,m) is a measure space
and m(S) = 1, then (A,m) is called a probability space.
A pseudometric space is a generalized metric space in which the
distance between two distinct points can be zero. A pseudometric on
S is a real function d : S×S→ R which satisfies the conditions

∀x,y,z ∈ S : d(x,y) = d(y,x),d(x,x) = 0,d(x,z)≤ d(x,y)+d(y,z).

The pseudometric topology is defined exactly as the metric space
topology. A pseudometric topology is Hausdorff if and only if it is a
metric space [1].
In the following, we are going to establish the aforementioned struc-
tures on P(S).
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3. Mathematical structures on P(S)

3.1. Making P(S) to a Boolean ring

Let F be the set of all Z2 characteristic functions of the subsets of S.
Obviously χS = 1,χ /0 = 0 and χB = χC⇔ B =C. Therefore:
Theorem 3.1.1 The sets P(S) and F are equivalent.

Let B4C denotes the symmetric difference of the sets B,C.
The proofs of the following two theorems are straightforward.
Theorem 3.1.2 Let B,C ⊆ S, then

χB⊕S χC = χB4C, χB⊗S χC = χB∩C, χS−B = 1⊕S χB.

Theorem 3.1.3 Let n ∈ N and B1, ...,Bn ⊆ S, then

χB1 ⊕S ...⊕S χBn = χB14...4Bn , χB1 ⊗S ...⊗S χBn = χB1∩...∩Bn .

Theorem 3.1.4 The triple (F,⊕S,⊗S) is a Boolean unitary ring.
Proof. Let B⊆ S then χB⊗χB = χB∩B = χB.

Theorem 3.1.5 The rings (P(S),4,∩) and (F,⊕S,⊗S) are
isomorphic.
Proof. The map ϕ : P(S)→ F defined by ϕ(A) = χA is bijective.
Moreover, Theorem 3.1.2 implies that

ϕ(B4C) = χB4C = χB⊕S χC = ϕ(B)⊕S ϕ(C),

ϕ(B∩C) = χB∩C = χB⊗S χC = ϕ(B)⊗S ϕ(C).

3.2. Making P(S) to a measure space

Let B ∈ P(S) and µ(B) is +∞ for an infinite set B and is equal to
the number of elements in B for a finite set. Then µ is a countably
additive function defined for all subsets of S, therefore:
Theorem 3.2.1 The ordered pair (P(S),µ) is a measure space.

3.3. Making P(S) to a pseudometric space

Let m be a finitely additive function on the algebra P(S). Theorem
3.2.1 shows that such a function exists. For B,C ⊆ S let dm(B,C) =
m(B4C), then:
Theorem 3.3.1 The ordered pair (P(S),dm) is a pseudometric space.
Proof. Obviously

dm(B,C) = dm(C,B)≥ 0, B =C⇒ dm(B,C) = 0

for all B,C ⊆ S. For B,C,D⊆ S we have

dm(B,D)+dm(D,C)−dm(B,C)

= m(B4D)+m(D4C)−m(B4C)

= m(B−D)+m(D−B)+m(D−C)

+m(C−D)−m(B−C)−m(C−B)

= [m(B−D)+m(D−C)−m(B−C)]

+ [m(C−D)+(D−B)−m(C−B)]≥ 0.

Because

(C−D)∩ (D−B) = (B−D)∩ (D−C) = /0,

C−B⊆ (C−D)∪ (D−B), B−C ⊆ (B−D)∪ (D−C).

This completes the proof.

Let B⊆ S and {Bn}n∈N be a sequence of elements in (P(S),m). Then
we write limn→+∞Bn = B if and only if limn→+∞dm(Bn,B) = 0. As
a consequence we have:
Theorem 3.3.2 If limn→+∞Bn = B, then limn→+∞m(Bn) = m(B).
Proof. Let limn→+∞Bn = B, then limn→+∞d(Bn,B) = 0, so
for any ε > 0 there exists n0 ∈ N such that, if n > n0 then
m(Bn−B)+m(B−Bn)< ε . But

m(Bn) = m(Bn−B)+m(B∩Bn)≤ m(Bn−B)+m(B),

m(B) = m(B−Bn)+m(Bn∩B)≤ m(B−Bn)+m(Bn).

Therefore |m(Bn)−m(B)| ≤m(Bn−B)+m(B−Bn)< ε for n > n0.
This completes the proof.

Theorem 3.3.3 The function m : (P(S),dm) → (R, | |) is
continuous.

With the preceding notations let B,C ⊆ S are such that dµ (B,C) = 0,
then µ(B4C) = 0 . Thus µ(B−C) = µ(C−B) = 0 and B = C.
Therefore:

Theorem 3.3.4 The ordered pair (P(S),dµ ) is a metric space.

In the next section, we are going to find the measure of
some special kinds of sets in a bounded measure space (P(S),m).

4. The measure of some sets

Let N be the set of natural numbers, O⊆N be the set of odd numbers
and E = N−O. For the bounded measure space (P(S),m) and the
subsets B1, · · · ,Bn, let

On = {a ∈ S | ∃r ∈ O,r ≤ n, i1, ..., ir ≤ n,card{i1, ..., ir}= r

,a ∈ Bi1 ∩ ...∩Bir},

En = {a ∈ S | ∃r ∈ E,r ≤ n, i1, ...ir ≤ n,card{i1, ..., ir}= r

,a ∈ Bi1 ∩ ...∩Bir}.

Since On and En are disjoint subsets, then m(On)+m(En) = m(S).
In the following Theorem, On is interpreted due to some operations in
commutative unitary ring (P(S),4,∩). The proof of the Theorem is
a consequence of the associativity property of symmetric difference
and a straightforward induction.
Theorem 4.1 Let n ∈ N and B1, · · · ,Bn are some subsets of S. Then

On = B14·· ·4Bn.

The following Theorem is a consequence of Theorem 4.1.
Theorem 4.2 Let m(Bi) = mi,m(Bi∩B j) = mi j,m(Bi∩B j ∩Bk) =
mi jk, ...,Sn

1 =∑i mi,Sn
2 =∑i< j mi j,Sn

3 =∑i< j<k mi jk ,...for n∈N and
B1, ...,Bn ∈ P(S). Then m(On) = ∑

n
r=1(−2)r−1Sn

r .
Proof. Let n = 2, then

m(O2) = m(B14B2) = m(B1∪B2)−m(B1∩B2)

= m(B1)+m(B2)−2m(B1∩B2) = m1 +m2−2m12

= S2
1−2S2

2 =
2

∑
r=1

(−2)r−1S2
r .

Therefore the Theorem is hold for n = 2. Let n = k and m(Ok) =

∑
k
r=1(−2)r−1Sk

r . If Ci = Bi ∩ Bk+1 for 1 ≤ i ≤ k, then m(Ci) =
mi(k+1),m(Ci ∩C j) = mi j(k+1), · · · and etc. Thus for n = k+ 1 we
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have

m(Ok+1) = m(B14·· ·4Bk4Bk+1) = m[(B14·· ·4Bk)4Bk+1]

= m(B14·· ·4Bk)+m(Bk+1)−2m[(B14·· ·4Bk)∩Bk+1]

= m(B14·· ·4Bk)+m(Bk+1)

−2m[(B1∩Bk+1)4·· ·4(Bk ∩Bk+1)]

= m(Ok)+m(Bk+1)−2m(C14·· ·4Ck)

=
k

∑
r=1

(−2)r−1Sk
r +mk+1−2

k

∑
l=1

(−2)l−1T k
l ,

for which we have T k
l = ∑i m(Ci) = ∑i<k+1 mi(k+1), T2 =

∑i< j m(Ci∩C j) = ∑i< j<k+1 mi j(k+1), · · · and etc. Thus

m(Ok+1) =
k

∑
r=1

(−2)r−1Sk
r +mk+1 +

k

∑
l=1

(−2)lT k
l

= (Sk
1 +mk+1)−2(Sk

2 +T k
1 )+4(Sk

3 +T k
2 )−·· ·

+(−2)k−1(Sk
k +T k

k−1)+(−2)kT k
k =

k+1

∑
r=1

(−2)r−1Sk+1
r .

This completes the proof.

In the following section, we are supposed to present some
applications of Theorem 4.2.

5. Estimation a probability

In this part we estimate the measure of On in a uniform discrete
probability space [14]. First of all we prove:
Theorem 5.1 If n ∈ N, then n! > ( n

e )
n.

Proof. If n = 1 then the inequality is hold. Let the Theorem is true
for n = k, i.e., k! > ( k

e )
k. A computation using the inequality of

the arithmetic and geometric means shows that the sequence {(1+
1
n )

n}n∈N is a bounded increasing sequence with limit e. Therefore
(1+ 1

n )
n < e for all n ∈ N. If n = k+1, then the hypothesis of the

induction, and the above inequality implies that

(k+1)! = (k+1)k! > (k+1)(
k
e
)k

= (
k+1

e
)k+1 e

(1+ 1
k )

k
> (

k+1
e

)k+1.

This completes the induction.

Theorem 5.2 Let S be the set of all permutations of the set
M = {1, · · · ,n},a = 1−e−2

2 , and Bi = { f ∈ S : f (i) = i} for
i = 1, · · · ,n. Then m(On) = ∑

k=n
k=1(−2)k−1( 1

k! ), and if n ≥ 10 then
|m(On)−a|< 2

1000 . Moreover, m(On)<
7
15 for n > 4.

Proof. A computation using uniform probability laws yields that

mi =
1
n
,mi j =

1
n(n−1)

,mi jk =
1

n(n−1)(n−2)
, · · · ,

Sn
1 =

1
1!
,Sn

2 =
1
2!
,Sn

3 =
1
3!
, ...

so Theorem 4.2 implies that m(On) = ∑
k=n
k=1(−2)k−1( 1

k! ). Moreover,
a computation using Theorem 5.1 shows that for n≥ 10 we have

|m(On)−a|=
+∞

∑
k=n

(−2)k

(k+1)!
<

+∞

∑
k=n

(
2e

k+1
)k

<
+∞

∑
k=n

2−k = 2−n+1 <
2

1000
.

The last inequality in the Theorem, comes from the Leibniz’s rule
for alternative series [13].

The following examples are some confirmations for the pre-
vious Theorem:
Example 5.3 Let n computers with labels 1, ...,n are used randomly
by n users with labels 1, ...,n. Let 1 ≤ i ≤ n and Bi be the event
that the i−th computer is used by the user the same label. The
probabilities mi,mi j,mi jk, · · · are computed as in the proof of
Theorem 5.2. Therefore, the results of the previous theorem, also
holds in this case. In particular, if the number of users is bigger than
9, then the probability of the occurrence of an odd number of Bis
is less than 0.002. In other words, the probability that an odd (res.
even) number of computers are used by the same odd (res. even)
number of users with same labels randomly, is less (res. greater)
than 0.002 (res. 0.980). Moreover

m(O1) = 1, m(O2) = 0, m(O3) =
2
3
.

Example 5.4 An institute of standards and industrial research dis-
patches randomly two inspectors to two food manufacturer com-
panies once a season. Obviously, the dispatching of exactly one
inspector on his previous visited company is impossible. The previ-
ous theorem also implies that

m(O2) = 1−2(1/2!) = 0.
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