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Abstract

In this paper the partial derivative equation strongly nonlinear of Richards which models the dynamics of water in the Un-saturated Zone
(UZ) was linearized and solved by a new numerical method called SBA. The analytical solution has been simulated in order to be applied
later to the following in unsaturated zone with the aquifers of Bangui and its boundaries.

Keywords: Analytical Solution; Linearization; Richards’ Equation; SBA Method; Unsaturated Zone (UZ).

1. Introduction

In this paper we consider the following Richards’ equation [5], [7]:
%‘9 = €[K(h)€(h - z)] , (z,t)eQx[0,T]
h(z,0) = h, (2) , z2e6.Q
h(z,t) =hc (z,1)
@
Where
K[L.T ~*]: Isthe soil hydraulic conductivity at the point consid-

ered which represents the 2nd tensor order in general case, reduced
to a scalar where the soil is isotropic ; H[L] = h — z is the hy-

draulic charge at the considered point; h[L] as water pressure rela-
tively to atmospheric pressure and expressed in terms of water
height; z[L] the side of considered point positively measured

downwards with ground surface as reference point; grad(H) is
the gradient operator ; @[m?>/m?>] volumetric water content

The diffuse form of Richards’ equation that introduces soil diffu-
sivity D(6) expressed in [L*T '] and which privileges resolu-
tion in @ and the capacitive form of Richards’ equation which in-
troduces the soil capillary capacity C(h) expressed by [L™]

and which privileges the resolution in h.

For a vertical flow in space dimension 1, continuity equation in 0
is known as Fokker-Planck equation:

20 _ Q(D(g)_%] L, OK(©)
ot oz oz oz )

And in h the equation is known under the name of Richards equa-
tion [1931]:

oh o oh

In the following, the form (3) will be used:
We can define the Richards model to solve in dimension 1 of space
inz:

®

C(h)% = a{K(h)(f}:—lﬂ  (2t) e Qx[0,T]

oz
h(z,0) = h, (z) , 2e0.Q

h(z,t) = he (z,1)
(4)

Two functions inducing the nonlinearities that are hydraulic Con-
ductivity K (h) and the Capillary Capacity C (h) [2].

These functions depend on the variation of the water content & and
the matrix pressure h. It is a strongly nonlinear parabolic PDE
whose existence and unicity of the solution are proven in [8, 4].
SBA Method [14] has been used to determine the analytical solution
after linearization of the functions K (h) and C (h). Many digital
method does not converge because of the strong nonlinearity if we
want to solve the Richards equation. So it uses the SBA method to
the advantage didn’t discredited and maintains the physical proper-
ties of the model parameters and converges despite the nonlinearity.

2. Theoretical description of method SBA

Method S.B.A. (SOME Blaise ABBO) allows to solve functional
equations of type: ODE, system of ODE, PDE, system of nonlinear
and strongly nonlinear PDE under certain conditions. It also applies
to linear problems. This new algorithm makes it possible to obtain
exact solutions of some ODE, system of ODE, PDE, system of non-
linear and strongly nonlinear PDE with initial conditions or initial
conditions and in extreme cases. The new technique brings back the
resolution of any problem of PDE (resp. ODE) nonlinear with initial
conditions and in extreme cases to the solution of an equation of the
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Cauchy type. Based on a combination of the décompositionnelle
method of Adomian an idea of the method of the successive approx-
imations and the method of Picard this algorithm is with fast con-
vergence (one or two iterations) towards the exact solution of the
PDE (resp. ODE), system of PDE (resp. system of PDE) if they
exist.

The details, the convergence and the mathematical framework of
algorithm SBA are milked in [3], 9], [11], [13].

2.1. Principles of the method

On the basis of a problem ODE, system of ODE, PDE, system of
linear and strongly nonlinear EDP, method SBA (SOME Blaise
Abbo) consists with:

e To approach the initial problem by the iterative diagram by
using the idea of the method of the successive approxima-
tions and this, in suitable functional spaces. The resolution of
the iterative diagram by the same method amounts determin-
ing with each iteration (k=1.2,3... of the approximate solu-
tions which are obtained by using the method of Picard and

0

and the solution
k

K of the

this after a judicious choice of the initial

of the problem is obtained by taking the limit
continuation

e To reconsider the iterative diagram by using the method of
the successive approximations either but rather décomposi-
tionnelle method of Adomian to each stage of iteration, under

R : u®
the judicious choice of .
e To deduce the algorithm from Adomian on the basis of a ca-
nonical form of Adomian.
e To obtain the solution with each stage then the general solu-
tion by a calculation of limit.

2.2. Solving Richards equation by SBA

2.2.1. Linearization functions C (h) and K (h)

This linearization will be based on two concepts including the con-
cept of sucking and the notion of Limited Developments (L.D.) to
order n with application to the case n = 5. The function C (h) and K
(h) respectively represent the capillary capacity and hydraulic con-
ductivity. They are written as a function of the pressure charge
(charge matrix) h. The used forms in our case are taken from [2].
They induce nonlinearities in equation (4), complicating its resolu-
tion with lot of methods. They are empirically defined [2]:

C(h)fsf—fﬂ[hh] 1+[hh]
*) *) g

(5)
,if hr 0 unsaturated case

2.2.2. Sucking concept

Generally, in unsaturated area, the pressure charge (load matrix) h

is always negative; it is frequently replaced by the suction ¥ de-
fined by [9]:

¥ =|h|
®)

Where W' can be expressed as Pa or bar.

2.2.2.2. Limited development concept order n in 0

In the situation thereafter, we will be interested only in the follow-
ing forms:

e’ =g(y) =Z(%)+ R,

9)
Whereby, R; is the rest of the L.D.?
n . -
IN@+v) = h(v) = > (1) J*l["_) R,
= 1 (10)

Where, R, is the rest of the L.D.?

Based on these two concepts and proceeding in (5) and (6) the fol-
lowing variables changes according to where we must then express

functions C(h) and K (h) in function of the variable ¥ then
the variable S , we will get successively:

In (5), expression of C = f (W)

We set successively

h
U=h—, h=h,U, \h\zhg\u,
]
_ (11
‘U‘=i=5, and sz
h, h
(5) Becomes
22
cU)=cum™f+u"] W)
Moreover
c(uD=cuhrp ] )
As Then (13) becomes:
C(‘P):C(Tj 1+[Tj
hy h (14)
And (14) becomes
2
c(s)=cs"*i+sn]n? s)
(15) Can be rewriten by:
2 n
C(8) = cetromegln 2=
(16)

In the following, we will proceed to the LD order 5 around 0 of (16).
e LD order 5 of (16) around 0.

By setting successively:

r=n-1InS),V=5"p-2_5Y =bInl+V)
n
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1 n 1 ny2
qzl—E(S )"‘5(5 )
And p:bq(S") we get:

1 ny\3 1 ny4
Z(S ) "‘g(s)

5 (i
e(DING) _ o1 _ Z(LJ IR,
i-o \ I 17
k
In(1+V)_Z( 1)“1[ j+R =In(1+S")
(18)
5 nyi
In@+smy=> (1 E) g
=0 : (19)
bIn@rs™) _ oY Zsl(ﬁJJr R
6
o\ P! (20)
Where Ry, R,, Rg, Ry are the rest of the LD.
According to (19), (20) becomes:
bIn(l+S ) Zb (S ) q +R
(21)

Where R, is the rest of the DL?

(16) Becomes:

C(S)=C[g£2:]+R3}[g[r}; }LRAJ (22)

That mens
C(S) =c@(r)r'(p) (23)

With

oo 5[5

i=0

(24)

I'(p)=e’ = i(ﬁ:)+ R,

(25)

At this level, the result consists of comparing the curve of (16) with
the curve of (23), so that (23) has been substituted from Richards
equation.

e In(6), expression of K = f (W)

We set

U=—", h=hU, =

g

h
hg
\U\=E=S, and w=m(2—j
h, n

(26)

(6) Becomes:

KU)=K.[a+ur]"

(27) Becomes successively:

k<o

e "]
K(W)=K5[1+(hgj }

And (29) becomes:

K.+t

(30) Can be written:

KU =

K@) =

K (S) - KSeWIn(1+Sn)

Similarly, we will proceed thereafter, to LD order 5 of
(31) Around 0.

By setting successively:

X =8"etY =wlIn(@l+ X)
K(Y)=Kge"

In(L+ X) = _Zsl(—l)‘“@jL R,

With
n_ﬂ ny2 ﬂ ny3
Y:{W(S) , (8 +5(8Y)

Which upon reduction gives:

24 24
T fww s w
5 4 24 24

Which can be rewritten:

K(S)= Ks[l+oz(5")—ﬂ(5")3 +7(S")* +/1(S”)5]= K, +Kw(S")+¢(S)

With

P(S) =—B(S")? +y(S")" + A(S)®

With
a=Ww w  w?  w
Vg W + ,
s 3 2 6
w 5w? w®  w?
7 = —— —_— —_—

w ny\4 w ny\5
_Z(S ) +§(S ) }+R

1+W(sn)_[V3v_V; : ](s")3+[w+5w+wj(s s

@7)

(28)

(29)

(30)

&)

(32)

(33)

(34)

(35)

(36)

@7

(38)



International Journal of Applied Mathematical Research

23

w  w? 5w w*

+
5 4 24 24 (39)

In the next situation, the curves of (30) and (37) have been com-
pared in order to substitute (37) in the PDE of Richards.

2.2.2.3. Conclusion

Through this linearization, we were able to determine appropriate
forms of functions C (h) and K (h) that will allow us to substitute
them from equation called Richards one to get the modified form
that obeys utilization conditions of SBA method.
Note: We also note that the LD order 5 used so far can be extended
to the order n, and the result will remain the same

2.2.2.4. Richards’ equation amended to 1D

Let’s consider Richards model in 1D in z expressed in terms of
charge pressure h defined in (4):

oh 0o oh
C(h)y—=—| K(h)]| —- , (z,t) e Qx[0, T
()at az{()(az ﬂ (z,t) e Qx[0,T]
h(z,0) =he, (2) , 2€e6Q
h(z,t) =h¢ (z,1)
(40)
To determine then the shape of the amended equation, we will use

the linearized forms of C (h) and K (h) established in (34) and (48).
e Let’s express the model (51) called Richards in 1D according

to the suction ¥ =|h| .

In this case (40) becomes:

oh) _ o[ o) )
o az|: (‘ )[ -1 . (t,2) e Qx[0,T]
‘h(O, Z)‘ = ‘hm(z)‘
Ih(t,2)| = |he (t,2)]

c(h)—*=

(t,2) e 6.2%[0,T]

(41)
From the foregoing,
C¥)—= 6(\{’) 8{ (¥ )(a(\y) 1}} (t,z) e Qx[0,T]
\P(t,z) =Y, (2) , (t,2) € 6.0%[0,T]
W(t,z) = P, (t,2) . (t,2) e Qx[0,T]
(43)
Therefore the equation (53) can be rewritten as follows:
a(¥) oY OK(Y) oY K(¥)
C(“f)? K(‘l’)afz+7gf i (t,7) e Qx[0,T]
Y(t,2) =¥, (2) , (t,2)€6.0x[0,T]
Y(t,z) =¥ (t,2) . (4,2)eQx[0,T]
(43)

e Let’s express (30) and (37) as a function of b4 We get (30):

C(S) =¢d(r)I(p) = c{i[”)m}{;(‘]:] RJ:C.LLZE;’[T(:]JrRA}c.h(r,p) "

That means

1, 1., 1,
C(S)=cd>(r)r(p)=0-l{1+p+5p+€p+ap 120”} ch(r, p) )

oo [5(5) ~ 35w

However n(r, p)= f(S) because I'(p)=f(S) et o(r) = f(s) and
h(r.p) = £(S)

Then we can write that:

D(r)I(p) =[L+g(p) +h(r, p)]=1+g(S) + h(S) (46)
With

(P And h(s)=h
g(p) = Z[ k|]+R nd h(s) (r,p) (47)

Then the function ¢ (s) can be rewritten:

C(S) =c[1+g(S) +h(S)]=c+c.g(S) +c.h(S) (48)

Then
C(S) =c+c[g(S)+h(s)] (49)
Very important note:
If we switch the function ®(Nr(p) by T(p)o(r) another less
C(S)

interesting form will be found out of that cannot take into ac-
count all parameters of the studied model.

e Let’s express (43) according to

g

Therefore (43) becomes:

Kbys)olr,s) _als)
o

ohs) i, ) o
cf,s) P =K(h,s) Pttty o . (L2)edT]xQ

§(0,2)=S(2) . (t2)e0T]x6Q
S(t,2)=S¢.(t.2) . (62)e[0T]xQ
(50)

By clarifying the boundary and initials conditions, (50) system after
reduction is equivalent to the following system:

C(S)§25K(s)as K(s ) 7ia|<(s)
ot o0z oz 8z* h, oz
5(0,2)=5,.(2) (51)
S(t.0) =S (t)
S(t'z):Sfond(t)
. Let's break

as
c(s)=—
)

Out of (49) by taking into account (51), there are obtained succes-

sively:
0S oS as as 0S
CO5 =[c+c(g(s)+ h(S))]E +g(8) -+ ch(S)— -



24 International Journal of Applied Mathematical Research
oK (S) os a2s Whereby
e Similarly decomposing 6z &6z | oz® and
oK (S) c — a.(2—n)
oz outof (51) and taking into account (38), there have hy

resulted successively:

OK(S) 85 _ a[

oS
—|Kg + K w(S")* +@(S)|— =
o6z oz oz- ® sWEST™ -+ o )]az

_ K 38\, 8(87) 35 | 09(S) 0g(S) oS
oz oz oz oz oz 0z 0z (53)
As
Ky :Cte:>%:0
oz
then
oK(S)os _ a(s ) 0S a(s ) 0S
oz oz W @ o & (54)
K(S K, +K,wSs" S
)23 ~[K. + Kows" + ()25 o)
o°s
K(S =K K,ws" S
oK(S)_alK, +Kws" +9(s)] oK, Ks S, 200)
oz A 0z oyAA (57)
As
=Cte
Then
oK,
oz
oK(Ss) _ szas” L 29(S)
oz oz oz (58)

So by combining the relations (52), (54), (56) and (58), (51) be-
comes:

n 2

e 1 ag(s) S 4 cn(s) S — S B 2SS L 'S

ot at at oz oz 9z oz oz
2’ Kwas" 1 0g(s)

oz hy 8Z hy oz

S(t,2)=S o t) (59)

(59) Is equivalent to the following?

A A2 AQn A
¢Sk Q—({cg(s)ﬁwh(s)@}J{KSWOS §+O¢(S)§}r

ot 0Z oL 0L 0z

[k 1 20l
h, Gz h, oz

(60)

Relation (60) can still be rewritten after reduction to give ultimately
qualified model of the Richards Equation Modified in 1D in z , we
will resolve by SBA method:

@zﬁais_[ B s @% Kwos" 65 10p(8) S |,
a ¢ ozl d c e a a
2 n
+{[K ws" +¢(S)] 5; [K &1 ool )D
0z 0z hC 0z
S Z):SIHII(Z): Z
to) Ssurf( a(t)
S(t Z) Slund(t): (t) (61)

We noticed that all scale parameters in the Hydraulic Conductivity

are taken into account in the

s and

K(h) and Capillary Capacity C(h)
: K h

system (61) and its parameters are : S’ 9 as well as the

shape parameters such as m and n.

The system (61) is the new model of modified Richards, which is

also a highly nonlinear PDEs but easily solvable with the SBA

method with initial and limit conditions.

The system (61) can be put in the following form, which form will

allow us to apply the SBA algorithm if we set for example the fol-

lowing conditions:

S, =%SZZ+N(S(t,Z)),K a<Z<bKt=0

s(0,z)=6(z2)
S(t,0) = a(t)
s(t,z)= p(t) (62)
Or
N(S.2) = a6) 5+ 1) |+
n 2
{szg s, 10g(S)es | L(kws" —o(s))2 s}
cC 0Z o0Z ¢ 8Z 9Z c 0z*?
_[sz as" +16w(8)}
chy, 0Z hyc oZ (63)
Then we have been able to set Richards model as follows:
S, =L(S(t,Z))+ N(S(t,Z))K a<Z <bKt>0
$(0,2)=0(2)
S(t,0)= alt)
s(t,z2)=A(t) (64)
L N . . .
Whereby — and are respectively linear and nonlinear opera-

tors such as:

L(S)= L1(3)+ Lz(sz’szzaszzzv") Avec b2 * 0o (65)

Very important Remark:
In the Richards model used until then, it is assumed that the nonlin-
ear PDE subject to SBA algorithm is homogeneous every time we
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can still consider the non-homogeneous case where there is pres-

¢

ence of sources or sinks * that is to say:

LU)+~NU)=0

LU)+NU)=¢

We will in the following resolve theoretically the model (64) by
applying S.BA method.

2.2.3. Application of SBA method
2.2.3.1. Theoretical application of SBA

The considered system is (64):

s, = KC S, +N(S(t.Z))Ka<Z<bKt=>0

5(0,2)=0(2)
S(t,0) = a(t)
s(t.z)=B(t) (66)

Or

N(S(.2)= 98) 5+ 1) |+

ot

n 2
J[Kawes" o8 10p(8)28 | 1y en ()28 |
cC 0Z9oZ c 9Z 9Z c 0zZ2
| Kwos" 1 0g(S)
ch, 6Z h,ec oz

©) = et g PO= 12

In the following, we ask
So the final problem to be solved by this algorithm is:

S, :%SZZ+N(S(LZ)),K a<Z<bKt>0

(67)

Whereby, N(S(.2)) is defined as previously.

Problem of the transformation (67) into a Cauchy type of problem:
1) Taking account of edge conditions:

Consider the following equation:

S, =55, + N(S(.2))

Let’s set & =4

c
Then the above equation can be written:

S, —AS,, — N(sS)=o0. @

Consider the following operators:

2
LZZ

b b
ZZ:” o)irdr

a) Consider firstly the operator Lt of reverse L the egality (a)

becomes :
LS —AL,,S—N(S)=0
By applying the reverse L{l we get:

L'L — AL'L,,S — L'N(S)=0.

This gives the following relationship:

j%u*z)du —zj%dU—jN(s(u,Z))du =0

[s(u,2)] - zja Zg’zz)

- [N(S(@,Z))du=0

(0%S(u,z2) , ¢

s(t,2)-5(0,2) zj 7 du— [N(S(u,Z)du)=0

Whereby we have:

s(t,z):s(o,z)mj‘azzg‘;z)du—jN(s(u,z))du o
0 0 1

b) Let’s consider the other operator

L2, Reverse |2 equality (a) becomes:

LLS —AL2.,S —N(S)=o0 (b)

By applying the reverse | -2 of | 2 we have:

L2LS — AL, S —L.IN(S)=0

We have the following relationship:

p V) gvav - ”N (t,v))dvdv =0’

o —

Tas(t V) ViV — }j‘-

Which gives:

/1“‘3 SIV) gy = +”Mvav ”N(s(t,v))dVdv’

Which gives:
ﬁazg dVav - 1ﬁasgtv dVdv——HN (t,V))dvav'’

Which gives:

J-J~68t

S(a,t)-S(b,t)- 2 dvdv +%j.jiN(S(t,V))dVdV =0

@

By combining the equation (1) and (2) we have:
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Jdvdv)
®)
We obtain the following Cauchy problem type
s(t,2) S(a,t)—S(b,t)+S(O,Z)—ij.azs(zuZZ)JrJ'N( S(u,Z))du-
—%iiasgt'v)dwv%zzm (t,V))dvdv
5(0,2)=6(2)
(68)

The relation (68) is called canonical form of Adomian.
The approximate equation of the problem (68) by the new Adomian
technique can be written:

644444444“7%44444448

.2)-5 005 b+ 5102)- TS 02

0
: 12808 (V) 1
Ti 4k ;u4z4)iu4 ftigzt 4% 2 f \zlde 4%& N4(ik; t4v4)ivgv

Nluk 1)

$0,2)=6(z)K k=12K
S(t,0)=a(t)K k=12K
S4(t,2)=Blt)K k=12K

+

(69)
Wherby
sk (t,z)=L({u*)+ N(u*<?)

This canonical form obtained by the new approach Adomian allows,
following the technique developed to resolve the problem (69).

Indeed, the resolution of the above pattern (S.B.A.) by the method
of successive approximations, consists then in determining for each

iteration (k =123, K ) approximate solutions
S S?*K,S"K

But this requires firstly a choice of the initial condition S % There-
after the sought solution S to the problem (49) will be gotten by:
S =1imS* if S* converges

k—o0

It was noted that the scheme (SBA) is a canonical form of Adomian.
In this case, the Adomian algorithm can be written:

5S¢ =50.2)+8" @t)-S (b, t)+ [N j (500, 2)}fu- i”és 1l

Yaa

dvav +

1bb .
+;”N(S (tV)Javav (10)

0'51,0.2)

T du k=12K

l
5 =4
0

Where,

) K.wa(S**) a5t 1 0gp(Skt)ask?
N(s* (V)= cw (az) z o (pgz )az

_1[Ksa)(5“)n +¢(Sk1)625‘;1]_

c oZ
_iaw(sk—l)

ch, oz
And

«1)08 «1)08"*
S )& ~h(s )T

N(S**(u,2))=
In relation (70), one can ask:
“ kl 1“65 1unk71
N js u,Z)du- ;H;dwv 7!!5 (t,V)dvav

The various stages of resolution
Step 1: Calculation S*

Fork =1,

-tz L] v 3 o

Assuming that there isa S ° such as N (S 0 ) =0.

1 .
S+ Is solution of?

si(t,z)=s(a,t)—S(b,t)+ S*(0, Z)+AIM

So the classical Adomian algorithm is written

S: =S*(a,t)-S'(b,t)+S%(0,2)

(72)

£o%st (u, z
=1 n-1 n=12A
! 0z°

In detail, the description of the algorithm is as follows:
1

First step: Calculate of

S, 1 term..of .the..series.of .. Adomian.in..stepl
;2" term.of .series.of .Adomian.in..stepl
S; 3" term.of.the.series.of . Adomian.in..stepl

M M M
S: (n+1)-th term.of .the.series.of..Adomian.in..stepl

The approximate solution of this first stage is:
400

st=3Ys!

n=0

2
Second Step: Calculation of S

(71)
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St i term.of ..the..series.of .. Adomian.in..step2
S? 2" term..of .series.of .. Adomian..in..step2
S 3¢ term.of . the..series.of .. Adomian.in..step2

M M M
S (n+1)-th term.of.the.series.of .. Adomian.in..step2

The approximate solution of this second stage is written:

k
K-th stage: Calculation of S

S i term.of ..the..series.of .. Adomian.in..stepk
sy 2 term.of .series.of .. Adomian.in..stepk
S¥ 3% term.of.the.series.of .Adomian.in.stepk

M M M
S¥ (n+1)-th term.of .the.series.of . Adomian.in.stepk

k k
sk =>'s!
The approximate solution of the K-th stage is: n=0
The solution of the problem is obtained by:

K _
S_kl_lmos Ilm[ZS ]

0
Possible choice of S

0
Here, we show how to choose the first iteration term S the pat-
tern of successive approximations for algorithms that converge
faster to the exact solution sought by simplifying calculations. Just

0 0y _
choose S such as N (S ) O. This choice in fact, at the first
iteration, only solves a linear problem.

2.2.3.2. Practices application of SBA and simulation

In this part, a model problem will be solved by our approach where

1 1 1
parameters such as: S (a’t) , S (b’t) and S (0’ Z) will set

arbitrarily and parameters related to the model of Richards and the
initial condition will be simulated. This will allow us to observe the
different solutions and then compare the results to the solutions ob-
tained in the same manner by other methods.

Either the system as follows:

= S(a,t) — S*(b,t) + S*(0, 2)

1
Sl_ﬂfas W2 g
Z

At this level, the issue was clearly set initial and boundary condi-

Sl(a,t)’Sl(b,t)

tions by acting on the following parameters:

et S (O’ Z) . These parameters are set in a random manner by con-
sidering just the type of linear functions or combinations of these
functions to highlight our method in this case of Richards equation
transformed.

We set

s‘at)=a Sl(b,t):ﬂ’ S*0,z) =m+ f(z)

0<z<100 0<t<T
With

a=0 b=100

(@, ) e (R7)” (u,m) € (R)%,...T(2) =e”
Then
s =S'(a,t)—S*'(b,t) +S*(0,2) = — B +¢e**

So the system becomes:

Se=a—pB+m+e”

1
sl_zja Snld
For
n=1
And
k=1
18281 t a
= °d —| = e’ )| du
;',-822 -!.6 [ A )}

S; = Au’et = S = (Au’t)e”

0 s1 roflo 2
zj :ﬂ_l.g[g(e”(ﬂyzt) }du
= (’t)%e*”

M
Gradually therefore
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1_ < 1_ el 1 1 1 1z
S _gsn_so+sl+sz+83+/\ h(t,Z):—hg|:a—ﬂ+m+m:|
§'= [a - B+m+ e*‘z]+ [(/wzt)e”z]+ [(/Iyzt)ze’”]+ [(Ayzt)3e’“]+A With
S'=a-f+m+ [(/Wt)O + () + () + (At +A }9‘“ a=Ksand  _6.(2-n)
c h

St=a-pf+m +{i(ﬂy2t)”}e"z =a-B+m +[i(l,u2t)n:|e‘ﬂ

n=0 n=0

As

1—(ﬂﬂ2t)n+l B 1
1-(At)  1-Aut

> (Au’)" = lim
=0 N>+

If

‘/lyzt‘rrl

Than

ee
St=a—p+ m+——-
1-Auct

For
k>2
We obtain in each step the same solution.

So
Y73

S'=S?’=A =S*=ag-pB+m+——
p 1-Au*t

With

As

Y(t,z)
h

g

S(t,z) = = W¥(t,z) =h,S(t, 2)

Then

er”
1— Au’t l

‘P(t,z):hg[a—,b’+m+

As
W(t,2) = |h(t, z)| = —h(t, 2)......if ..h £ O

Then

Frofondeurz

<]

6,  the water content in natural saturation,

KS . the saturated hydraulic conductivity.
M and N parameters relevant to the soil structure,

1
m=1-—
n
h, : the inflection point of the curve retention h = f (6)

Note:
Just simulate values a, 'B’ m, 4 .

It remains to compare the solutions of the problem obtained
with this method with the solutions of the problem obtained
by other methods.

Soiution Exacis FIGHARDS-38A 20
T T T

L L 1
4813 -a3128 -a81328 -281.34

Frezsion b

Fig. 2: T=3h.
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3. Interpretation

On the curves in 2d and 3d, we see that the pressure “h” increases
when depth “z" increases. This proves that the developed technique
and the solution obtained by this approach reflect «reality». This
curve is obtain for h=0, 25 and h=0, 0025 in 2D and 3D.

4. Conclusion

With this technic we could analytically solve Richards’ equation
through its modified form in which all the parameters of the initial
model are preserved and it has been possible thanks to the technic
of penalization applied to the initial function in SBA algorithm. Our
approach is highly reliable because, whichever numerical method
is used the solution can easily be compared to our solution accord-
ing to the results of simulation obtained. Moreover, the constraints
related to convergence, stability problems and that of taking into
account of the nonlinearities were easily treated. We conclude that
our argumentation is an innovation related to the resolution of the
equation of Richards and is likely to be used to quantify the infil-
trated water quantity which can breach the deep tablecloth of Ban-
gui and its suburbs.
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