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Abstract

This paper is devoted to analysis of a finite volume scheme for a one-dimensional convection-diffusion-dissipation equation having
application in pollution of water table. We analyse a scheme corresponding to a semi-descretization, also called method of lines. Results of
numerical experiments using this approach are reported.
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1. Introduction

In this paper, we analyze a finite volume method for the following
convection-diffusion-dissipation problem:

ut(x, t)− (αux)x +ν(x)ux + c(x)u = f (x, t) in QT ,
u(x,0) = u0(x),
u(0, t) = g(t),
u(A, t) = h(t),

(1)

where QT = ]0,A[× ]0,T [ , A and T are two nonnegative integers,
u(x, t) is the concentration of the pollutant, α is a constant, ν(x)
is the speed of water, c(x) is the dissipation, f (x, t) is the source
function, x is a space variable, and t stands for time. ut denotes the
time derivative of u and ux the derivative with respect to the space
variable x.
−(αux)x is the diffusion term, ν(x)ux is the convection term, and
c(x)u is the dissipation term.
Solving this problem has been recently addressed in [1], where
the authors were able to calculate the exact solution by using the
Adomian decomposition method on specific cases of α, ν and c.
In general, it is not always possible or easy to calculate the exact
solutions in many cases, this requires the use of a numerical method.
The aim, here is to find an approximation to the solution, u(x, t) by a
semi-discrete finite volume scheme.
The outline of the remainder of this paper is as follows. In next
section, we present the semi-discrete finite volume scheme (FVM),
for the problem (1). Section 3 is devoted to the fully discrete approx-
iamtion. Finally in Section 4, numerical results using this approach
are shown and compared with the exact solution (Exact) obtained in
[1].

2. Semi-discrete approximation

By semi-discretization we mean discretization only in space, not
in time. This approach is also called method of lines (see, e.g.

[3]). We discretize space into N equal size grid cells of size h =
A/N, and define xi = h/2+ i h, so that xi is the center of cell Ii =(

xi−1/2, xi+1/2

)
.

In finite volume method the unknowns approximate the average of
the solution over a grid cell. More precisely, we let ui(t) be the
approximation

ui(t) :=
1
h

∫ xi+1/2

xi−1/2

u(x, t)dx.

Integrating (1) over the cell Ii and dividing par h we get

1
h

∫ xi+1/2

xi−1/2

ut(x, t)dx=
α

h

∫ xi+1/2

xi−1/2

(ux)x (x, t)dx− 1
h

∫ xi+1/2

xi−1/2

ν(x)ux(x, t)dx

−1
h

∫ xi+1/2

xi−1/2

c(x)u(x, t)dx+
1
h

∫ xi+1/2

xi−1/2

f (x, t)dx∫ xi+1/2

xi−1/2

(ux)x (x, t)dx = ux(xi+1/2, t)−ux(xi−1/2, t)

Since the value in the midpoint of the cell is a second order approxi-
mation of average, we have for smooth u,

ux(xi−1/2, t) =
1
h

[
u(xi, t)−u(xi−1, t)+O(h2)

]
and

ux(xi+1/2, t) =
1
h

[
u(xi+1, t)−u(xi, t)+O(h2)

]
.

To approximate the terms∫ xi+1/2

xi−1/2

ν(x)ux(x, t)dx and
∫ xi+1/2

xi−1/2

c(x)u(x, t)dx,

we use the values of functions ν and c in the midpoint of the cell,
ν(xi) et c(xi) respectively. So we get∫ xi+1/2

xi−1/2

c(x)u(x, t)dx ≈ hc(xi)u(xi, t) and
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∫ xi+1/2

xi−1/2

ν(x)ux(x, t)dx ≈ ν(xi)
(

u(xi+1/2)−u(xi−1/2)
)

Now, as in [2], we approximate ν(xi)u(xi+1/2) by ν(xi)u(xi) and
ν(xi)u(xi−1/2) by ν(xi)u(xi−1). Fanally we get

d ui(t)
dt

=
α

h2 [(ui+1(t)−ui(t))− (ui(t)−ui−1(t))]

−ν(xi)

h
(ui(t)−ui−1(t))− c(xi)ui(t)+ fi(t).

So

dui(t)
dt

=

(
ν(xi)

h
+

α

h2

)
ui−1 −

(
2α

h2 +
ν(xi)

h
+ c(xi)

)
ui(t) (2)

+
α

h2 ui+1(t)+ fi(t)

for i = 1, ...N − 2. To complete the scheme (2) we need update
formula also for the boundary points i = 0 and i = N − 1. These
must be derived by taking the boundary conditions into account. We
introduce the ghost cells I−1 and IN wich located juste outside the
domain.The boundary conditions are used to fill these cells with
values u−1 and uN , based on the values ui in the interior cells. The
same update formula (2) as before can then be used also for i = 0 and
i = N−1. Let us consider our boundary conditions u(0, t) = g(t) and
u(A, t) = h(t). So u0(t) = g(t) and uN(t) = h(t). Since the center of
cells I0 and IN are not on the boundary, we take the average of two
cells to approximate the value in between,

g(t) = u(0, t) =
u(0, t)+u(−1, t)

2
=

u0(t)+u−1(t)
2

+O(h2)

and

h(t) = u(A, t) =
u(N, t)+u(N −1, t)

2
=

uN(t)+uN−1(t)
2

+O(h2)

leading to the approxiations

u−1(t) = 2g(t)−u0(t),

and

uN(t) = 2h(t)−uN−1(t).

We now insert this into the update (2) for i = 0 and i = N−1, we get

du0

dt
=

α

h2 u1−
(

2α

h2 +
ν(x0)

h
+ c(x0)

)
u0+

(
ν(x0)

h
+

α

h2

)
u−1+ f0,

du0

dt
=−

(
3α

h2 +
2ν(x0)

h
+ c(x0)

)
u0+

α

h2 u1+ f0+2
(

ν(x0)

h
+

α

h2

)
g(t)

(3)

and

duN−1

dt
=

α

h2 uN −
(

2α

h2 +
ν(xN−1)

h
+ c(xN−1)

)
uN−1

+

(
ν(xN−1)

h
+

α

h2

)
uN−2 + fN−1,

duN−1

dt
=

(
ν(xN−1)

h
+

α

h2

)
uN−2−

(
3α

h2 +
ν(xN−1)

h
+ c(xN−1)

)
uN−1

+
2 α h(t)

h2 + fN−1. (4)

We put all the equations (2), (3), (4) together and write them in
matrix form, then we get a linear ordinary diffenrential equation
(ODE) system of the form:

dU(t)
dt

= AU(t)+S(t). (5)

Here, in this semi-discretization the time-dependent partial differen-
tial equation has been approximated by a system of ODEs.

Remark

In a heterogeneous medium, α may be discontinuous, since the
conductivities of differents components of the medium may be quite
different. In this case the edges of cells have to coincide with the
discontinuities of α , and the approximation the diffusion term is done
by using the harmonic means of α values between the neighboring
cells, as done in [2].

3. Fully discrete approximation

The system of ODEs (5) can be solve by standard numerical methods
for ODEs with a time step ∆t e.g. the forward Euler method

Un+1 =Un +∆t [AUn +S(tn)] , Un ≈U(tn), tn = n∆t.

That is the method we used in this paper, others methods can be use.
As for any ODE method, here arises the question of stability. The
numerical experiments that we will present in Section 4 have shown
that it takes ∆t ≤C h2 as a condition of the method.

4. Numerical simulations

In this section we present numerical results, comparing the approx-
imate solution described in this paper and the example of exact
solution obtained in [1]. The first test problem involved simulations
with following data:

QT = ]0,10[× ]0,T [ ,α = ν(x) = c(x) = 1, u0(x) = cos(x),

g(t) = cos(t), h(t) = cos(10)cos(t), and

f (x, t) =−cos(x)sin(t)+2cos(x)cos(t)− sin(x)cos(t).

The second test problem involved simulations with following data:

QT = ]0,10[× ]0,T [ ,α = 0.5, ν(x) = x(5− x)cos(x), c(x) = 3x2,

u0(x) = cos(x), g(t) = cos(t), h(t) = cos(10)cos(t), and

f (x, t)=−cos(x)sin(t)+(0.5+3x3)cos(x)cos(t)−x(5−x)sin(x)cos(t).

In both test cases the exact solution is (see, [1]):

u(x, t) = cos(x)cos(t).

Figure 1: Test problem 1: h = 0.1, T = 1, ∆t = 0.001
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Figure 2: Test problem 1: h = 0.2, T = 10, ∆t = 0.0025

Figure 3: Test problem 1: h = 0.1, T = 10, ∆t = 0.0025

Figure 4: Test problem 2: h = 0.2, T = 1, ∆t = 0.002

Figure 5: Test problem 2: h = 0.1, T = 1, ∆t = 0.001

Figure 6: Test problem 2: h = 0.1, T = 15, ∆t = 0.001
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5. Conclusion

The purpose of this paper was to apply and develop a finite volume
scheme corresponding to the method of lines for the one-dimensional
convection diffusion-dissipation equation. To approximate the dif-
fussion and convection terms we used the values of the functions
ν(x) and c(x) in the midpoint of grid cells. If ν and c are constant,
one finds the approximations used in [2]. The numerical results
indicate that the method of lines is well adapted to the discretiza-
tion of this problem. The extension of the present technique to the
two-dimensional problem with uniform rectangular grids is straight-
forward.
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