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Abstract

In this paper we propose an approach to find approximate solution to the nonlinear Volterra integral equation of the second type through a
nonlinear programming technique by firstly converting the integral equation into a least square cost function as an objective function for an
unconstrained nonlinear programming problem which solved by a nonlinear programming technique (The preconditioned limited- memory
quasi-Newton conjugates, gradient method) and as far as we read this is a new approach in the ways of solving the nonlinear Volterra integral
equation. We use Maple 11 software as a tool for performing the suggested steps in solving the examples.
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1. Introduction

Integral equation is a functional equation in which the unknown
function found under the sign of integration, in many cases the
integral equation originates from the conversion of a boundary-value
or an initial-value problem associated with a differential equation,
but many problems lead to an integral equations and cannot be
formulated as differential equations.[1]
Integral equation has been one of the principal tools in various
areas of applied mathematics, physics and engineering encountered
in a variety of applications in many fields including continuum
mechanics, potential theory, geophysics, electricity and magnetism,
antenna synthesis problem, communication theory, mathematical
economics, population genetics and radiation, the particle transport
problems of astrophysics and reactor theory, fluid mechanics etc ,In
recent years, there has been a growing interest in these mathematical
field.[2]
Many of integral equations which result from modeling different
type of problem are nonlinear , various types of polynomials , have
been used by many researchers to develop solutions. Very recently,
Maleknejad [3] , Mandal and Bhattacharya [4]and A. Shirin and M. S.
Islam [5] used Bernstein polynomials in approximation techniques ,
Shahsavaran solved by Block Pulse functions [6] Taylor polynomials
were also used by Bellour and Rawashdeh [7] and Wang [8] .
Previous work on using Nonlinear Programming technique was for
solving nonlinear Fredholm integral equation [9], her in this paper the
work is on solving nonlinear Volterra integral equation and the main
issue was on how to construrt the objective function of the nonlinear
programming problem from the Volterra integral equation which we
call it (JV-formula) presented in section 5. We organize this paper
as follows. In the next section we briefly speak about the Volterra
integral equation. In Section 3, we speaks about the Trapezoidal
Rule which we use it through establishing the objective function
used to solve our problem, In section 4 we speaks about optimization
and nonlinear programming in general and in a subsection of it we

introduce the specific nonlinear programming method named ”The
preconditioned limited-memory quasi-Newton conjugates gradient
method” which used to solve our problem after we reform it from
Volterra integral equation problem into a nonlinear programming
problem , In section 5 we present the steps for the proposed method
to reform our problem from Volterra integral equation problem into a
nonlinear programming problem to solve it .In section 6 ,we present
three example which solved due our proposed method and finally in
section 7 we will show conclusion .

2. Volterra Integral Equation

An integral equation is an equation in which the unknown function
u(x) to be determined appears under the integral sign. A typical from
of an integral equation in u(x)is as follows:

u(x)−λ

∫
β (x)

α(x)
k(x, t)u(t)dt (1)

Where k(x, t) is called the kernel of the integral equation, α(x) and
β (x) are the limits of integration. [10]
Integral equation arises from various physical and biological models
in a wide applications .
In recent years, there has been a growing interest in the Volterra
integral equations arising in various fields of physics and engineering
[11] e.g., potential theory and Dirichlet problems, electrostatics,
the particle transport problems of astrophysics and reactor theory,
contact problems, diffusion problems, and heat transfer problems.
[12]
Several numerical methods for approximating the solution of non-
linear integral equations are known. The numerical solutions of the
nonlinear Volterra-Fredholm integral equations by using homotopy
perturbation method was introduced by Tavassoli in [13] ,another
method by C. Minggen and D. Hong and [14] used the representation
of the exact solution which is given by the form of series for the
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nonlinear Volterra-Fredholm integral equations in the reproducing
kernel space. rationalized Haar functions to approximate of the non-
linear Volterra-Fredholm-Hammerstein integral equations is another
method proposed by M. Razzaghi [15]. Some valid numerical meth-
ods, for solving Volterra equations using various polynomials have
been developed by many researchers Taylor polynomial solutions
used by S. Yalcinbas[16] , Bellour and Rawashdeh and Wang for
the nonlinear Volterra-Fredholm integral equations.[17]Bernstein
polynomials in approximation techniques used by K. Maleknejad, E.
Hashemizadeh [3],and Subhra Bhattacharya, B. N. Mandal[4] .Some
other methods were introduced such as single-term Walsh series
method [18] , Langrange interpolation [19] , mixed interpolation
collocation methods [20], Adomains decomposition method [21] .

3. Trapezoidal integral approximation

Trapezoidal Rule is based on Newton-Cotes Formula that states that
if one can approximate the integrand as an nth order polynomial
fn(x)[22]

I =
∫ b

a
f (x)dx where f (x)≈ fn(x) (2)

Then the integral of that function is approximated by the integral of
that nth order polynomial.

fn(x) = a0 +a1x+a2x2 + ...+an−1xn−1 +anxn (3)

∫ a

b
f (x)dx = (b−a)

f (a)+ f (b)
2

(4)

Trapezoidal Rule assumes n = 1 , that is, the area under the linear
polynomial,

∫ b

a
f (x)d(x) =

b−a
2n

[
f (a)+2

{
n−1

∑
i=1

f (a+ ih)

}
+ f (b)

]
(5)

Extending this procedure by dividing the interval into equal segments
to apply the trapezoidal rule, the sum of the results obtained for each
segment is the approximate value of the integral. In this paper
we use such formula in the proposed method to approximate the
integration in the integral equation; in reformulating the non liner
Volterra integral equation as an objective function to be solved.

4. Optimization and Nonlinear Programming

Optimization is minimizing or maximizing of a function with con-
strains or without constrains on its variables. The following is a
general formulation of an optimization problem:

minx∈Rn f (x)sub ject to

{
ci(x) = 0
c j(x)≥ 0

(6)

x is the vector of variables, also called unknowns or parameters .
f is the objective function, a function of that we want to maximize
or minimize .
c is the vector of constraints that the unknowns must satisfy .
Here f and each ci,c j are scalar-valued functions.
The process of identifying objective function, variables, and con-
straints for a given problem is known as modeling. Problems with
the general form (4.1) can be classified according to the objective
function and constraints, when both of them are linear functions , the
problem is a linear programming problem, if any of the constraints
or the objective is nonlinear functions the problem is a nonlinear
programming problem. [23] Optimization algorithms begin with
an initial guess of the optimal values and generate a sequence of

improved estimates until they reach a solution. The strategy used
to move from one iterate to the next distinguishes one algorithm
from another. There are two fundamental strategies for moving from
the current point xi to a new iterate xi+1 namely Line search
and Trust Region search , In the line search strategy which followed
in this paper , the algorithm chooses a direction Pk and searches
along this direction from the current iterate xk for anew iterate
with a lower function value, at the new point a new search direction
and step length are computed and the process is repeated. There
are many algorithms use Line Search strategy to converge to the
optimum solution, In this paper we propose an approach to find
approximate solution through a nonlinear programming technique
called the preconditioned limited-memory Quasi-Newton Conju-
gates Gradient Method by firstly converting the integral equation
into a least square cost function as an objective function for the
nonlinear programming problem We use Maple 11 software as a tool
for performing the suggested steps in solving the examples.

4.1. The Preconditioned Limited-memory Quasi-Newton
Conjugated Gradient method

Quasi-Newton conjugates gradient method can be seen as extensions
of the conjugate gradient Method, It uses an approximation to the
inverse Hessian matrix to steer its search through variable space , at
the kth stage of the algorithm we will compute a certain matrix
Hk :the matrix Hk is supposed to be an approximation to
H−1(xk) ,the inverse of the Hessian of f at the current iterate
[24]
The basic form of the algorithm is as follows:

1. Make an initial guess x0 at the minimum; set k = 0 ini-
tialize H0 = I (the n×n identity matrix).

2. Compute ∇ f (xk) and take the search direction as hk =
−Hk∇ f (xk).

3. Do a line search from xk in the direction hk and take
xk+1 = xk + t∗×hk where t∗ minimize f (xk + t×hk) .

4. Compute Hk+1 by modifying HK appropriately .This is
usually done by setting Hk+1 = Hk +Uk,Uk is some easy to
compute “updating “ matrix.

5. Set k = k+1 and go to step 2.

The key step is the update from Hk to HK+1 .It’s required that
Hk+1 satisfy the following Quasi-Newton condition:

xi+1− xi = Hk+1 (∇ f (xi+1)−∇ f (xi)) , f or 0≤ i≤ k

(7)

A variety of quasi-Newton methods available differ from each other
in the way to compute Uk (the updating matrix in step 4),one
of the most famous quasi Newton formula is the BFGS (Broy-
den,Fletcher,Goldfarb,and Shanno)update, which is compute Uk
as follows :

Uk =

(
1+

∆gT
k Hkgk

∆xT
k ∆gk

)
∆xk∆xT

k
∆xT

k ∆gk
−

Hk∆gk∆xT
k +

(
Hk∆gk∆xT

k
)T

∆xT
k ∆gk

(8)

Where

∆xi = xi+1− xi;∆gi = ∇ f (xi+1)−∇ f (xi) (9)

A less computationally intensive method when n is large is the
Limited-Memory BFGS method (LBFGS).Instead of updating and
storing the entire approximated inverse Hessian Hk , the LBFGS
method never explicitly forms or stores this matrix. Instead it stores
information from the past m iterations and uses only this information
to implicitly do operations requiring the inverse Hessian (in particular
computing the next search direction).[25]
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5. The Proposed Method

Considering the following form for the nonlinear Volterra integral
equation of the second kind as it’s in many important cases:

u = g(x)+
∫ x

0
k(x, t,u(t))d(t) (10)

The following represent the steps followed to reform the nonlinear
Volterra integral equation (5.1) to an objective function (5.6) in
which the unknown ui(i = 0..9) is a solution for both problems
(the nonlinear Fredholm integral equation (5.1) and the nonlinear
programming problem (5.6):

• Step1: Define the right hand side of equation (5.1) to be equal
to h(x)

h(x) = g(x)+
∫ x

0
k(x, t,u(t)) dx (11)

• Step2:Define a least square cost function f (x) as follows:

f (x) =
∥∥∥[u(x)−h(x)]2

∥∥∥ (12)

• Step3:Take the norm as integration over the given interval [a,b]

f (x) =
∫ b

a
[u(x)−h(x)]2 (13)

• Step4:Substitution h(x) in (5.4) from (5.2) gives

f (x) =
∫ b

a

[
u(x)−g(x)−

∫ b

a
k(x, t,u(t))dt

]2

(14)

• Step5:Use Trapezoidal rule to approximate f (x) as follows:

f (x)≈ F(x) =
1

20
(b−a)

(
9

∑
j=0

([
u
(

a+
1

10
j(b−a)

)
−g
(

a+
1
10

j(b−a)
)

− 1
20

(
a+

1
10

j(b−a)
)( 9

∑
i=0

(
k
(

a+
1

10
j(b−a),

1
10

i
(

a+
1
10

j(b−a)
)

,u
(

1
10

i
(

a+
1

10
j(b−a)

)))
+ k
(

a+
1

10
j(b−a),

1
10

(i+1)
(

a+
1
10

j(b−a)
)

,u
(

1
10

(i+1)
(

a+
1
10

j(b−a)
)))))]2

+

[
u
(

a+
1
10

( j+1)(b−a)
)

−g
(

a+
1

10
( j+1)(b−a)

)
− 1

20

(
a+

1
10

( j+1)(b−a)
)( 9

∑
i=0

(k (a

+
1

10
( j+1)(b−a),

1
10

i
(

a+
1
10

( j+1)(b−a)
)
,u
(

1
10

i
(

a+
1
10

( j+1)(b−a)
)))

+k
(

a+
1
10

( j+1)(b−a),
1

10
(i+1)

(
a+

1
10

( j+1)(b−a)
)

,u
(

1
10

(i+1)
(

a+
1
10

( j+1)(b−a)
)))))]2

))

(15)

(15) is a general formula we call it (JV-formula) to find an
approximate solution to a Volterra non linear integral equa-
tion of the second kind on an interval [a,b] by considering it
as an objective function to be minimized by some nonlinear
programming methods ; we use Preconditioned Quasi-Newton
Conjugate Gradient Method ( one of the nonlinear program-
ming method) used for non-constrained nonlinear objective
functions. We used Maple11 mathematical package which
facilitate these method to find an approximate solution on a
specific interval [a,b] .

Table 1: Comparison between exact and approximate solution

X Exact solution Approximate solution error
0 0 -3.667130711026*10−7 -3.6671307110*10−7

.1 .1 0.0976276841546660 0.00237231585

.2 .2 0.193184567025837 0.0068154330

.3 .3 0.281404121700274 0.0185958783

.4 .4 0.376109629352903 0.0238903706

.5 .5 0.492046863461681 0.0079531365

.6 .6 0.550148644075373 0.0498513559

.7 .7 0.607424281265213 0.0925757187

.8 .8 0.704067225527287 0.0959327745

.9 .9 0.747715861709644 0.1522841383
1.0 1.0 1.04312108608697 0.043121086

6. Numerical Examples

6.1. Example 1

Consider the following problem :

u(x) = x+(1/5)x2−
∫ x

0
tu(t)3 dt (16)

With exact Solution u(x) = x.
Table (1)shows comparison between the exact and numerical solution
on the interval [0,1].
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Table 2: Comparison between exact and approximate solution

X Exact solution Approximate solution error
0 0 -3.52755567494226*10−7 -3.52755567494226*10−7

.1 .2 0.201073312751560 0.0010733128

.2 .4 0.403199202244726 0.0031992022

.3 .6 0.605957793739756 0.0059577937

.4 .8 0.803337562866959 0.0033375629

.5 1.0 .986891364811940 0.0131086352

.6 1.2 1.17228380923445 0.027716191

.7 1.4 1.33445688254654 0.065543117

.8 1.6 1.46311419818004 0.136885802

.9 1.8 1.56032024088127 0.1522841383
1.0 2.0 1.57632993100464 0.423670069

Table 3: Comparison between exact and approximate solution

X Exact solution Approximate solution error
0 0 -2.02398780992364*10−7 -2.02398780992364*10−7

.1 0.0998 0.00457812129780025 0.00237231585

.2 0.198669 0.0165202683754665 0.0068154330

.3 0.29552 0.0420113452919495 0.0185958783

.4 0.389418 0.0668496265389050 0.0238903706

.5 0.4794255 0.0649244450079436 0.0079531365

.6 .6 0.550148644075373 0.0498513559

.7 .7 0.607424281265213 0.0925757187

.8 .8 0.704067225527287 0.0959327745

.9 .9 0.747715861709644 0.1522841383
1.0 1.0 1.04312108608697 0.043121086

6.2. Example 2

Consider the following problem :

u(x) = 2x− (1/2)x4 +0.25
∫ x

0
(x− t)u(t)2 dt (17)

With exact solution u(x) = 2x.
Table (2)shows comparison between the exact and numerical solution
.

6.3. Example 3

Consider the following problem :

u(x) =
∫ x

0
(x− t)u(t) dt (18)

With exact Solution u(x) = sinx.
Table (3)shows comparison between the exact and numerical solution
on the interval [0,1].
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7. Conclusion

This paper presents a method to find the solution of a nonlinear
Volterra integral equation by an optimization technique that is based
on some principles of measure theory, functional analysis and non-
linear programming ,such method seems to be accurate and solves
the problems directly, without need of any initial guess.
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