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Abstract

Making use of a Fan’s sub-equation method and the Mittag-Leffler
function with aid of the symbolic computation system Maple we con-
struct a family of traveling wave solutions of the Burgers and the KdV
equations. The obtained results include periodic, rational and soliton-
like solutions.
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1 Introduction

Recently it was found that many physical, chemical, biological and medical pro-
cesses are governed by fractional differential equations (FDEs). As mathemat-
ical models of the phenomena, the investigation of exact solutions of (FDEs)
will help one to understand these phenomena more precisely. On the other
hand the investigation of the exact travelling wave solutions for nonlinear par-
tial differential equations plays a crucial role in the study of nonlinear physical
phenomena. Such solutions when they exist can help us to understand the
complicated physical phenomena modeled by these equations [2]. Many pow-
erful methods for obtaining exact solutions of nonlinear partial differential
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equations have been presented such as, Homotopy method [12], Hirota’s bilin-
ear method [7], Backlund transformation, homogeneous balance method [15],
projective Riccati method [13], the sine-cosine method [14] etc.
In the present paper we aim to find exact solitary wave solutions of some non-
linear fractional partial differential equation with modified Riemann-Liouville-
Jumarie derivatives. Using a sub-equation method [17] we obtain three types of
solutions for the studied equations namely; two generalized hyperbolic function
solutions, two generalized trigonometric function solutions and one rational so-
lution.

2 Preliminaries

There are different definitions for fractional derivatives for more details see
[11] and the references therein. In this paper we use the modified Riemann-
Liouville derivative defined by Jumarie [8]

Dα
xf(x) =





1

Γ(1− α)

∫ x

0

(x− s)−α−1(f(s)− f(0))ds, for α < 0,

1

Γ(1− α)

d

dx

∫ x

0

(x− s)−α(f(s)− f(0))ds, for 0 < α < 1,

[
f (α−n)(x)

](n)

, for n ≤ α < n + 1, n ≥ 1.

In the following we shall outline the main idea of the fractional-Riccati
equation method. For a given nonlinear fractional equation say

F (u, ux, ut, D
α
xu,Dα

t u, ...) = 0, 0 < α ≤ 1, (1)

where Dα
xu and Dα

t u are modified Riemann-Liouville derivatives of u with
respect to x and t respectively.
To determine the solution u = u(x, t) explicitly, we first introduce the following
transformations

u = U(ξ) with ξ = kx + ct. (2)

which yields

F (U,U ′, U ′′, Dα
ξ U,D2α

ξ U, ...) = 0, (3)

Next we introduce a new variable ϕ = ϕ(ξ) which is a solution of the fractional
Riccati equation

Dα
ξ ϕ = σ + ϕ2, 0 < α ≤ 1. (4)



208 Zakia Hammouch, Toufik Mekkaoui

Then we propose the following series expansion as a solution of (1)

u(x, t) = U(ξ) =
n∑

i=0

aiϕ
i, (5)

where the positive integer n can be found via the balancing of the highest
derivative term with the nonlinear term in equation (3). In a recent paper by
Zhang et al.[17] a set of five different solutions to equation (4) was introduced
as follows 




−√−σ tanhα(
√−σξ), σ < 0

−√−σ cothα(
√−σξ), σ < 0

√
σ tanα(

√
σξ), σ > 0

−√σ cotα(
√

σξ), σ > 0.

−Γ(α + 1)

ξα + ω
, ω = const. σ = 0,

(6)

where the generalized hyperbolic and trigonometric functions [6] are expressed
by the following

tanhα(x) =
Eα(xα)− Eα(−xα)

Eα(xα) + Eα(−xα)
,

cothα(x) =
Eα(xα) + Eα(−xα)

Eα(xα)− Eα(−xα)
,

tanα(x) =
Eα(ixα)− Eα(−ixα)

i(Eα(ixα) + Eα(−ixα))
,

cotα(x) =
i(Eα(ixα) + Eα(−ixα))

Eα(ixα) + Eα(−ixα)
,

where Eα denotes the Mittag-Leffler function, given as

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
.

3 Applications

In this section we give two illustrative examples, namely Burgers and the KdV
equations.
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3.1 Example.1

The Burgers equation [3] is considered as one of the fundamental model equa-
tions in fluid mechanics. The equation demonstrates the coupling between
diffusion and convection processes. Consider the following Burgers equation
with fractional-order derivatives

Dα
t u + uDα

xu− νD2α
x u = 0. (7)

where ν is a constant that defines the kinematic viscosity. If the viscosity ν = 0,
the equation is called inviscid Burgers equation [16]. Our main task is to seek
travelling wave solutions to equation (7). Using the wave transformation (2),
we reduce equation (7) to an ODE

cαDα
ξ U + kαUDα

ξ U − νk2αD2α
ξ U = 0. (8)

By (4) and balancing the terms D2αu with the term uDαu in (8), we obtain
n = 1. Substituting equation (5) in (8) with n = 1 and collecting all coefficients
of ϕi, i = 0, ..., 3 we get the following system of algebraic equations for a0 and
a1, 




kαa2
1 − 2νk2αa1 = 0,

cαa1 + kαa0a1 = 0,

kαa2
1σ − 2νk2αa1σ = 0,

cαa1σ + kαa1a0σ = 0,

(9)

we find that

a0 = − cα

kα
a1 = 2νkα. (10)

Accordingly we obtain

• Two hyperbolic function solutions:

u(x, t) = − cα

kα
− 2νkα

√−σ tanhα(
√−σ(kx + ct)) σ < 0,

u(x, t) = − cα

kα
− 2νkα

√−σ cothα(
√−σ(kx + ct)) σ < 0,

(11)

• Two trigonometric function solutions:

u(x, t) = − cα

kα
+ 2νkα

√
σ tanα(

√
σ(kx + ct)) σ > 0,

u(x, t) = − cα

kα
− 2νkα

√
σ cotα(

√
σ(kx + ct)) σ > 0,

(12)
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• One rational solution:

u(x, t) = − cα

kα
− 2νkα Γ(1 + α)

(kx + ct)α + ω
σ > 0 and ω = const.

(13)

3.2 Example.2

The Korteweg-deVries (KdV) equation arises in the study of shallow water
waves [16]. In particular, the KdV equation is used to describe long waves
traveling in canals. It is formally proved that this equation has solitary waves
as solutions, hence it can have any number of solitons [5][16]. Consider the
following fractional KdV equation with fractional-order derivatives

Dα
t u + 6uDα

xu + D3α
x u = 0, (14)

Similarly, we use the wave transformation (2), we reduce equation (14) to an
ODE

cαDα
ξ U + 6kαUDα

ξ U + k3αD3α
ξ U = 0, (15)

Thanks to (4) and the balancing of the terms D3α
ξ U with the term UDα

ξ U
in (15), we obtain n = 2. By substituting equation(5) in (15) with n = 2
and collecting all coefficients of ϕi, i = 0, ..., 5 we get the following system of
algebraic equations for a0, a1, and a2,





12kαa2
2 + 24k3αa2 = 0,

18kαa1a2 + 6k3αa1 = 0,

2a2c
α + 12kαa0a2 + 12kαa2

2σ + 6kαa2
1 + 40k3αa2σ = 0,

8k3αa1σ + 6kαa0a1 + 18kαa1a2σ + cαa1 = 0,

2cαa2σ + 16k3αa2σ
2 + 12kαa0a2σ + 6kαa2

1σ = 0,

cαa1σ + 2k3αa1σ
2 + 6kαa0a1σ = 0.

(16)

From the output of Maple, we get a solution namely

a0 = −8k3ασ + cα

6kα
a1 = 0, a2 = −2k2α.

In view of this we obtain
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• Two hyperbolic functions solution:

u(x, t) = −8k3ασ + cα

6kα
+ 2k2ασ tanh2

α(
√−σ(kx + ct)) σ < 0,

u(x, t) = −8k3ασ + cα

6kα
+ 2k2ασ coth2

α(
√−σ(kx + ct)) σ < 0,

(17)

• Two trigonometric function solutions:

u(x, t) = −8k3ασ + cα

6kα
− 2k2ασ tan2

α(
√

σ(kx + ct)) σ > 0,

u(x, t) = −8k3ασ + cα

6kα
− 2k2ασ cot2

α(
√

σ(kx + ct)) σ > 0,

(18)

• One rational solution:

u(x, t) = − cα

6kα
− 2k2αΓ2(α + 1)

((kx + ct)α + ω)2
ω = const. σ = 0.

(19)

4 Conclusion

In this paper we give some exact analytical solutions including the generalized
hyperbolic function solutions, generalized trigonometric function solutions and
rational solutions by using a sub-equation method. It can be concluded that
the improved sub-equation method can be used for solving other nonlinear
fractional partial differential equations with nonlinear terms of any order. All
solutions obtained in this paper have been checked by Maple software.
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