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Abstract

Let N = prq be an RSA prime power modulus for r≥ 2 and q < p < 2q. This paper propose three new attacks. In the first attack we consider
the class of public exponents satisfying an equation eX−NY = upr + qr

u +Z for suitably small positive integer u. Using continued fraction
we show that Y

X can be recovered among the convergents of the continued fraction expansion of e
N and leads to the successful factorization of

N = prq. Moreover we show that the number of such exponents is at least N
r+3

2(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. The second
and third attacks works when k RSA public keys (Ni,ei) are such that there exist k relations of the shape eix−Niyi = pr

i u+ qr
i

u + zi or of the

shape eixi−Niy = pr
i u+ qr

i
u + zi where the parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. We apply

the LLL algorithm, and show that our strategy enable us to simultaneously factor the k prime power RSA moduli.

Keywords: Continued fraction, Diophantine approximations, Factorization, LLL algorithm, RSA prime power, Simultaneous.

1. Introduction

Invented by Rivest, Shamir and Adleman in 1978, the RSA cryp-
tosystem is most commonly used for providing privacy and ensuring
authenticity of digital data. It is one of the most popular and ac-
cepted public key cryptosystem systems in use today [14]. In the
RSA cryptosystem, the modulus N = pq is a product of two primes
of equal bit-size. Let e and d be two positive integers satisfying
ed ≡ 1 (mod φ(N)) where φ(N) = (p−1)(q−1) is Euler’s totient
function. Commonly, N is called the RSA modulus, e the encryp-
tion exponent and d the decryption exponent. The modular equa-
tion ed ≡ 1 (mod φ(N)) is sometimes interpreted as the equation
ed− kφ(N) = 1, where k is some positive integer and is called the
RSA key equation.
In 1990, Wiener showed that RSA is insecure if d < 1

3 N0.25 [17].
Later Boneh and Durfee improved the bound to d < N0.292 [1]. Sim-
ilarly, the number of exponents for which their attack applies can be
estimated as N0.292−ε . Wiener’s attack as well as its generalization
by Boneh and Durfee are based on the RSA key equation

ed− kφ(N) = 1

where k is a positive integer. In 2004, Blomer and May [2] combined
both Wiener method with Boneh and Durfee method to show that
RSA is insecure if the public exponent e satisfies an equation

ex− kφ(N) = y

Applying the continued fraction algorithm and Coppersmith’s
method [14], they showed that the RSA modulus can be factored in

polynomial time if the parameters x and y satisfy

x <
1
3

N
1
4 and |y| ≤ N−

3
4 ex

Additionally, Blomer and May proved that the number of such weak
exponents is at least N

3
4−ε .

Concurrent to these efforts many RSA variants have been proposed
in order to ensure computational efficiency while maintaining the
acceptable levels of security. One such important variant is the Prime
Power RSA. In Prime Power RSA the modulus N is in the form
N = prq for r ≥ 2. In 1998, Takagi showed how to use the Prime
Power RSA to speed up the decryption process when the public and
private exponents satisfy an equation ed ≡ 1 (mod (p−1)(q−1))
[16],. As in the standard RSA cryptosystem, the security of the
Prime Power RSA depends on the difficulty of factoring integers of
the form N = prq.

In 2007 Hinek, showed that it is possible to factor the k modulus
Ni using k equations of the form eid− kiφ(Ni) = 1 if d < Nδ with
δ = k

2(k+1) − ε where ε is a small constant depending on the size of
maxNi [5]. Very recently in 2014, with k RSA public keys (Ni,ei),
Nitaj, et al presented a method that factor the k RSA moduli Ni
using k equations of the shape eix− yiφ(Ni) = zi or of the shape
eixi− yφ(Ni) = zi where Ni = piqi, φ(Ni) = (pi− 1)(qi− 1) and
the parameters x, xi, y, yi, zi are suitably small in terms of the prime
factors of the moduli [9].

Our contribution, in this paper, we propose three new attacks on
the Prime Power RSA with a modulus N = prq, as motivated from
the recent result of [9] and [13]. In the first attack, we consider an
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instance of the Prime Power RSA with modulus N = prq and public
of exponent e satisfying the equation eX −NY = upr + qr

u +Z for
suitable positive integer u. Using continued fraction we show that Y

X
can be recovered among the convergents of the continued fraction
expansion of e

N . We show that the number of such exponents is at

least N
r+3

2(r+1)−ε where ε ≥ 0 is arbitrarily small for large N. Hence
one can factor the modulus N = prq in polynomial time.

The second attack works for k ≥ 2, r ≥ 2 moduli Ni = pr
i qi,

i = 1, ...,k when k instances (Ni,ei) are such that there exit an integer
x, k integers yi, and k integers zi satisfying eix−Niyi = pr

i u+ qr
i

u + zi.
We show that the k RSA moduli Ni can be factored in polynomial

time if N = mini Ni and x < Nδ , yi < Nδ , |zi| <
pr

i u− qr
i
u

3(pr
i u+

qr
i
u )

N
1

r+1

where δ =
k(1−αr−α)

(r+1)

The third attack works when the k instance (Ni,ei) of RSA are
such that there exist an integer y, and k integers xi and k inte-
gers zi satisfying eixi −Niy = pr

i u+ qr
i

u + zi. Also we show that
the k RSA moduli Ni can be factored in polynomial time if mini

N = mini Ni, ei = Nβ and xi < Nδ , y < Nδ , |zi| <
pr

i u− qr
i
u

3(pr
i u+

qr
i
u )

N
1

r+1

where δ =
βk(r+1)−k(r+αr+α)

(r+1)
Both second and third attacks we transform the equations into si-
multaneous diophantine problem and apply lattice basis reduction
techniques to find the parameters (x,yi) or (y,xi). Which leads to
factorization of k RSA moduli Ni
The rest of the paper is structured as follows. In section 2, we give a
brief review of basic facts about the continued fraction, lattice basis
reduction and simultaneous diophantine approximations with some
useful results needed for the attack. In section 3, we present the
first attack and estimation of the number of exponents for which
our attack works. In section 4 and 5,we give the second and third
attack with numerical example respectively. We conclude this paper
in section 6.

2. Preliminaries

We start with definition and an important theorems concerning
the continued fraction, lattice basis reduction techniques and
simultaneous diophantine equations as will as some useful lemmas
needed for the attacks.

2.1. Continued fraction

Definition (Continued Fraction). The continued fraction of a real
number R is an expression of the form

R = a0 +
1

a1 +
1

a2 +
1

a3 + ...

Where a0 ∈ Z and ai ∈N−0 for i≥ 1. The number a0,a1,a2.... are
called the partial quotients. We use the notation R = [a0,a1,a2....].
For i≥ 1 the rational ri

si
= [a0,a1,a2, ...] are called the convergents of

the continued fraction expansion of R. If R = a
b is a rational number

such that gcd(a,b) = 1, then the continued fraction expansion is
finite.
Theorem 1. (Legendre). Let a, b, x, y be an integers such that
gcd(a,b) = gcd(x,y) = 1. Suppose that∣∣∣∣ab − x

y

∣∣∣∣< 1
2y2

Then x
y is a convergent of the continued fraction expansion of a

b .

2.2. Lattice

A lattice is a discrete (additive) subgroup of Rn. Equivalently, given
m≤ n linearly independent vectors b1, ...,bm ∈ Rn, the set

L = L (b1, ...,bm) =

{
m

∑
i=1

αibi|αi ∈ Z

}
.

is a lattice. The bi are called basis vectors of L and B = b1, ...,bm is
called a lattice basis for L . Thus, the lattice generated by a basis B
is the set of all integer linear combinations of the basis vectors in B.
The dimension (or rank) of the a lattice, denoted dim(L ), is equal
to the number of vectors making up the basis. The dimension of
a lattice is equal to the dimension of the vector subspace spanned
by B. A lattice is said to be full dimensional (or full rank) when
dim(L ) = n.[6]
A lattice L can be represented by a basis matrix. Given a basis B,
a basis matrix M for the lattice generated by B is the m×n matrix
defined by the rows of the set b1...,bm

M =

b1
...

bm


It is often useful to represent the matrix M by B. A very important
notion for the lattice L is the determinant.

Let L be a lattice generated by the basis B = 〈b1, ...,bm〉. The
determinant of L is defined as

det(L ) =
√

det(BBT ).

If n = m, we have

det(L ) =
√

det(BBT ) = |det(B)| .

Theorem 2. Let L be a lattice of dimension ω with a basis v1, ...,vω .
The LLL algorithm produces a reduced basis b1, ...bω satisfying

‖b1‖ ≤ ‖b2‖ ≤ ...≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) detL
1

ω+1−i

for all 1≤ i≤ ω .
As an application of the LLL algorithm is that it provides a solution
to the simultaneous diophantine approximations problem which is
defined as follows. Let α1, ...,αn be n real numbers and ε a real
number such that 0 < ε < 1. A classical theorem of Dirichlet asserts
that there exist integers p1, ..., pn and a positive integer q≤ ε−n such
that

|qαi− pi|< ε f or 1≤ i≤ n.

A method to find simultaneous diophantine approximations to ra-
tional numbers was described by [7] In their work, they considered
a lattice with real entries. Below a similar result for a lattice with
integer entries.
Theorem 3. (Simultaneous Diophantine Approximations).
There is a polynomial time algorithm, for given rational numbers
α1, ...,αn and 0< ε < 1, to compute integers p1, ..., pn and a positive
integer q such that

maxi |qαi− pi|< ε and q≤ 2
n(n−3)

4 .

Proof. See [9] Appendix A.
Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Them

2−
1
2 N

1
2 < q < N

1
2 < p < 2

1
2 N

1
2
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Proof. suppose N = pq. then multiplying by p we get pq < p2 <

2pq which implies N < p2 < 2N N
1
2 < p< 2

1
2 N

1
2 Also since N = pq,

then q = N
p which in turn implies 2−

1
2 N

1
2 < q < N

1
2

Lemma 2. Let N = prq be an RSA modulus prime power with
q < p < 2q and u be a suitably small integer. let

∣∣∣upr− qr

u

∣∣∣ < N
1
2 .

Let S be an approximation of
∣∣∣upr + qr

u

∣∣∣ such that
∣∣∣upr + qr

u −S
∣∣∣<∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr+ qr

u

∣∣∣N
1

r+1

Then

qr−1u =

⌊
S2

4N

⌋

Proof. Let S = upr + qr

u +w with w <

∣∣∣upr− qr
u

∣∣∣
3
∣∣∣upr+ qr

u

∣∣∣N
1

r+1

Observe that

(upr− qr

u
)2 = (upr− qr

u
)(upr− qr

u
)

= u2 p2r− prqru
u
− prqru

u
+

q2r

u2

= u2 p2r−2prqr +
q2r

u2

= u2 p2r−2prqr +2prqr−2prqr +
q2r

u2

= u2 p2r +2prqr +
q2r

u2 −4prqr

= u2 p2r +2prqr +
q2r

u2 −4prqr−1q

= u2 p2r +2prqr +
q2r

u2 −4Nqr−1

= (upr +
qr

u
)2−4Nqr−1

Hence we obtain

(upr− qr

u
)2 = (upr +

qr

u
)2−4Nqr−1 (1)

Now consider

S2−4Nqr−1

=

(
upr +

qr

u
+w
)2
−4Nqr−1

=

(
upr +

qr

u
+w
)(

upr +
qr

u
+w
)
−4Nqr−1

= u2 p2r +2prqr +2uprw+
2qrw

u
+

q2r

u2 +w2−4Nqr−1

= u2 p2r +2prqr +
q2r

u2 +2w
(

upr +
qr

u

)
+w2−4Nqr−1

=

(
upr +

qr

u

)2
−4Nqr−1 +2w

(
upr +

qr

u

)
+w2

Hence using (1) we can rewrite the above as

S2−4Nqr−1 =

(
upr− qr

u

)2
+2w

(
upr +

qr

u

)
+w2 (2)

Suppose that
∣∣∣upr− qr

u

∣∣∣< N
1
2 and w <

∣∣∣upr− qr
u

∣∣∣
3
∣∣∣upr+ qr

u

∣∣∣N
1

r+1 < N
1

r+1

Then (2) becomes

∣∣∣S2−4Nqr−1
∣∣∣= ∣∣∣∣∣

(
upr− qr

u

)2
+2w

(
upr +

qr

u

)
+w2

∣∣∣∣∣
< (N

1
2 )2 +2(upr +

qr

u
)

∣∣∣upr− qr

u

∣∣∣
3
(

upr + qr

u

)N
1

r+1 +(N
1

r+1 )2

< N +
2
3

∣∣∣∣upr− qr

u

∣∣∣∣N 1
r+1 +N

2
r+1

< N +
2
3

N
1
2 +

1
r+1 +N

2
r+1

< N +
2
3

N
3+r

2(r+1) +N
2

r+1

< 2N

Therefore it follows that the left hand side of (2) satisfies∣∣S2−4Nqr−1
∣∣< 2N, dividing by 4N, we get

∣∣∣∣ S2

4N
−qr−1

∣∣∣∣=
∣∣S2−4Nqr−1

∣∣
4N

=

∣∣∣∣(upr− qr

u

)2
+2w

(
upr + qr

u

)
+w2

∣∣∣∣
4N

<
2N
4N

=
1
2

Which implies that

qr−1u =

⌊
S2

4N

⌋

Lemma 3. Let N = prq be an RSA modulus prime power with
q < p < 2q and u be a suitably small integer. let S be a positive
integer such that

∣∣∣∣upr +
qr

u
−S
∣∣∣∣<

∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

√
S2−4Nqr−1 is an approximation of

∣∣∣upr− qr

u

∣∣∣
Then

∣∣∣∣∣∣∣∣upr− qr

u

∣∣∣∣−√S2−4Nqr−1
∣∣∣∣< N

1
r+1

Where ∇ = S2−4Nqr−1
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Proof. let us consider

∣∣∣∣∣
(

upr− qr

u

)2
−∇

∣∣∣∣∣
=

∣∣∣∣∣
(

upr− qr

u

)2
− (S2−4Nqr−1)

∣∣∣∣∣
≤
(

upr− qr

u

)(
upr− qr

u

)
− (S2−4Nqr−1)

= u2 p2r− prqru
u
− prqru

u
+

q2r

u2 −S2 +4Nqr−1

= u2 p2r−2prqr +
q2r

u2 −S2 +4Nqr−1

= u2 p2r−2prqr +4Nqr−1 +
q2r

u2 −S2

= u2 p2r−2prqr +4prqqr−1 +
q2r

u2 −S2

= u2 p2r−2prqr +4prqr +
q2r

u2 −S2

= u2 p2r +2prqr +
q2r

u2 −S2

=

(
upr +

qr

u

)2
−S2

Therefore

∣∣∣∣∣
(

upr− qr

u

)2
−∇

∣∣∣∣∣=
∣∣∣∣∣
(

upr +
qr

u

)2
−S2

∣∣∣∣∣ (3)

Hence we can rewrite the left hand side of (3) as

∣∣∣∣∣
(

upr− qr

u

)2
−∇

∣∣∣∣∣
=

∣∣∣∣∣
(

upr− qr

u

)2
−
√

∇

(
upr− qr

u

)
+
√

∇

(
upr− qr

u

)
−∇

∣∣∣∣∣
=

∣∣∣∣(upr− qr

u

)
−
√

∇

∣∣∣∣((upr− qr

u

)
+
√

∇

)

Which shows that

∣∣∣∣(upr− qr

u

)
−
√

∇

∣∣∣∣=
∣∣∣∣(upr− qr

u

)2
−∇

∣∣∣∣((
upr− qr

u

)
+
√

∇

)

=

∣∣∣∣(upr + qr

u

)2
−S2

∣∣∣∣((
upr− qr

u

)
+
√

∇

)

≤

∣∣∣∣(upr + qr

u

)2
−S2

∣∣∣∣∣∣∣upr− qr

u

∣∣∣
That is

∣∣∣∣(upr− qr

u

)
−
√

∇

∣∣∣∣≤
∣∣∣∣(upr + qr

u

)2
−S2

∣∣∣∣∣∣∣upr− qr

u

∣∣∣ (4)

Also we rewrite
∣∣∣∣(upr + qr

u

)2
−S2

∣∣∣∣ as

∣∣∣∣∣
(

upr +
qr

u

)2
−S2

∣∣∣∣∣
=

∣∣∣∣∣
(

upr +
qr

u

)2
−S
(

upr +
qr

u

)
+S
(

upr +
qr

u

)
S2

∣∣∣∣∣
=

∣∣∣∣(upr +
qr

u

)
−S
∣∣∣∣((upr +

qr

u

)
+S
)

=

∣∣∣∣upr +
qr

u
−S
∣∣∣∣(upr +

qr

u
+S
)

Therefore (4) becomes

∣∣∣∣(upr− qr

u

)
−
√

∇

∣∣∣∣≤
∣∣∣upr + qr

u −S
∣∣∣(upr + qr

u +S
)

∣∣∣upr− qr

u

∣∣∣ (5)

Suppose that

∣∣∣∣upr +
qr

u
−S
∣∣∣∣<

∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

Then

S < upr +
qr

u
+

∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

And

upr +
qr

u
+S <

(
upr +

qr

u

)
+

(
upr +

qr

u

)
+

∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

<

(
upr +

qr

u

)
+

(
upr +

qr

u

)
+

∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

<

(
upr +

qr

u

)
+

(
upr +

qr

u

)
+

(
upr + qr

u

)
3
(

upr + qr

u

)N
1

r+1

< 2
(

upr +
qr

u

)
+

1
3

N
1

r+1

< 3
(

upr +
qr

u

)
Putting back in to (5) we get

∣∣∣∣(upr− qr

u

)
−
√

∇

∣∣∣∣≤
∣∣∣upr + qr

u −S
∣∣∣(upr + qr

u

)
∣∣∣upr− qr

u

∣∣∣
≤

3
(

upr + qr

u

)∣∣∣upr− qr

u

∣∣∣∣∣∣upr− qr

u

∣∣∣3(upr + qr

u

)N
1

r+1

< N
1

r+1

3. The First Attack on Prime Power RSA with
Moduli N = prq

In this section, we present a result based on continued fractions and
show how to factor the Prime Power RSA modulus N if (N,e) is
a public key satisfying an equation eX −NY = upr + qr

u +Z with
small parameters X , Y and Z where u be a suitably small positive
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integer.
Lemma 4. Let N = prq be an RSA modulus prime power with
q < p < 2q and u be a suitably small integer. let e be a public key
satisfying the equation

eX−NY = upr +
qr

u
+Z

with gcd(X ,Y ) = 1, if X < N
3
(
(upr+ qr

u

) and Z <

∣∣∣upr− qr
u

∣∣∣
3
(

upr+ qr
u

)N
1

r+1

Then Y
X is among the convergent of the continued fraction expansion

of e
N .

Proof. Assume that Z <

∣∣∣upr− qr
u

∣∣∣
3
(

upr+ qr
u

)N
1

r+1 thus Z < N
1

r+1

and let X < N
3
(
(upr+ qr

u

) , then from the equation eX −NY = upr +

qr

u +Z when dividing by NX we get∣∣∣∣ e
N
− Y

X

∣∣∣∣= |eX−NY |
NX

=

∣∣∣upr + qr

u +Z
∣∣∣

NX

≤

∣∣∣upr + qr

u

∣∣∣+ |Z|
NX

≤

∣∣∣upr + qr

u

∣∣∣
NX

+
|Z|
NX

≤

∣∣∣upr + qr

u

∣∣∣+N
1

r+1

NX

If the condition

∣∣∣upr+ qr
u

∣∣∣+N
1

r+1

NX < 1
2X2 hold, which is equivalent to

2X2
∣∣∣upr + qr

u

∣∣∣+N
1

r+1

2X
∣∣∣upr + qr

u

∣∣∣+N
1

r+1

<
NX

2X
∣∣∣upr + qr

u

∣∣∣+N
1

r+1

Which implies

X <
N

2(upr + qr

u )+N
1

r+1

Then by theorem (1), we conclude that Y
X is among the convergent of

the continued fraction expansion of e
N . Hence according to lemma

(3) such condition is satisfies if X < N
3(upr+ qr

u )
.

Theorem 4. Let N = prq be an RSA modulus prime power with
q < p < 2q. let u be a suitably small integer and suppose that e is a
public key exponent satisfying the equation

eX−NY = upr +
qr

u
+Z

with gcd(X ,Y ) = 1, if X < N
3(upr+ qr

u )
and |Z|<

∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1 then

N can be factored in polynomial time.

Proof. suppose that e satisfies the equation

eX−NY = upr +
qr

u
+Z

with gcd(X ,Y ) = 1, let X and Z satisfy the condition in lemma (4),
then Y

X is among the convergent of the continued fraction expansion
of e

N . Therefore using the value of X and Y , we define S = eX−NY

Then S is an approximation of
∣∣∣upr + qr

u

∣∣∣ satisfying

∣∣∣∣upr +
qr

u
−S
∣∣∣∣< Z <

∣∣∣upr− qr

u

∣∣∣
3(upr + qr

u )
N

1
r+1

And by lemma (2) this implies that

qr−1u =

⌊
S2

4N

⌋
It follows that gcd

(⌊
S2

4N

⌋
,N
)
= q

——————————————————————————-
Algorithm 1
——————————————————————————–
Input: an RSA modulus prime power N = prq,with q < p < 2q and
public key (e,N) and Theorem (4).
Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N .
2: For each convergent Y

X of e
N , compute S = eX−NY .

3: Compute
⌊

S2

4N

⌋
4: q = gcd

(⌊
S2

4N

⌋
,N
)

5: If 1 < q < N, then pr = N
q

6: End if.
7: End for.
———————————————————————————
-
Example 1. The following shows an illustration of our attack for
r = 3, given N and e as

N = 32136260228777526617

e = 24662734946793681455

Suppose that the public key (e,N) satisfy all the condition as stated
in the Theorem 4.
Following the above algorithm we first compute the continued frac-
tion expansion of e

N . The list of first convergents of the continued
fraction expansion of e

N are[
0,1,

3
4
,

10
13

,
33
43

,
24265
31618

,
24298
31661

,
218649
284906

,
2210788
2880721

,
4640225
6046348

,
6851013
8927069

, ...

]
Therefore omitting the first and second entry and try for the next
convergent 33

43 , we obtain

S = eX−NY = 1015162469924204

And [
S2

4N

]
= 8017071938

We compute
gcd

([
S2

4N

]
,N
)

= (8017071938,32136260228777526617) =

63313
Finally with q = 63313 we compute p = 3

√
N
q = 79769, which leads

to the factorization of N.

3.1 Estimation of the Number of e′s Satisfying eX − NY =
upr + qr

u +Z
We give an estimation of the number of the exponents e < N for
which our attacks can be applied. Let u be a suitably small integer.
Define α by

(
upr + qr

u

)
= N

2
3 +α with 0 < α < 1

3

Lemma 5. Let N = prq be an RSA modulus prime power with
q < p < 2q. let

∣∣∣upr− qr

u

∣∣∣< N
1
2 and Suppose that e is a public key

exponent satisfying e < N and two equation

eX1−NY1 = upr +
qr

u
+Z1

And

eX2−NY2 = upr +
qr

u
+Z2
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with gcd(Xi,Yi) = 1, for i = 1,2

1≤ Yi ≤ Xi <
N

3(upr+ qr
u )

and |Zi|<

∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1

Then X1 = X2 , Y1 = Y2 and Z1 = Z2.

Proof. Assume that the exponent e satisfying the two equation

eX1−NY1 = upr +
qr

u
+Z1

And
eX2−NY2 = upr +

qr

u
+Z2

with gcd(Xi,Yi) = 1, for i = 1,2

1≤ Yi ≤ Xi <
N

3(upr+ qr
u )

and |Zi|<

∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1

Then X1 = X2 , Y1 = Y2 and Z1 = Z2
Therefore we have

e =
upr + qr

u +Z1 +NY1

X1

And

e =
upr + qr

u +Z2 +NY2

X2

Equating e we get

X2(upr +
qr

u
+Z1 +NY1) = X1(upr +

qr

u
+Z2 +NY2)

(upr +
qr

u
)X2 +Z1X2 +NY1X2 = (upr +

qr

u
)X1 +Z2X1 +NY2X1

(upr +
qr

u
)(X2−X1)+Z1X2−Z2X1 = N(Y2X1−Y1X2) (6)

Let
∣∣∣upr− qr

u

∣∣∣< ∣∣∣upr + qr

u

∣∣∣ and
∣∣∣upr + qr

u

∣∣∣> pr > N
r

r+1 . Then the
right hand of(6) becomes∣∣∣∣(upr +

qr

u
)(X2−X1)+Z1X2−Z2X1

∣∣∣∣
≤
∣∣∣∣upr +

qr

u

∣∣∣∣(|X2−X1|)+ |Z1X2−Z2X1|

≤
∣∣∣∣upr +

qr

u

∣∣∣∣(|X2|+ |X1|)+ |Z1X2|+ |Z2X1|

<
2N(upr + qr

u )

3(upr + qr

u )
+

2(upr− qr

u )

9(upr + qr

u )
2

N
r+2
r+1

<
2N
3

+
2N

r+2
r+1

9N
r

r+1
<

2N
3

+
2
3

N
r+2
r+1−

r
r+1

<
2N
3

+
2
3

N
r+2−r

r+1

<
2N
3

+
2
3

N
2

r+1

< N

Therefore from the right hand side of (6) we get Y2X1−Y1X2 = 0.
since the gcd(X1,Y1) = 1 = gcd(X2,Y2) which leads to X1 = X2 and
Y1 = Y2 and Z1 = Z2.

Theorem 5. Let N = prq be an RSA modulus prime power with
q< p< 2q. let the number of exponents e<N satisfying an equation

eX1−NY1 = upr +
qr

u
+Z1

with gcd(X ,Y ) = 1 and X < N
3(upr+ qr

u )
, |Z| <

∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1 is at

least N
r+3

2(r+1)−ε where ε > 0 is arbitrarily small for suitably large N.

Proof. Suppose that the exponent e satisfying an equation

eX−NY = upr +
qr

u
+Z

with gcd(X ,Y ) = 1 and X < N
3(upr+ qr

u )
, |Z|<

∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1

Hence we can express e as e =
upr+ qr

u +Z+NY
X with the conditions

given in the theorem bellow

ξ =
A1

∑
Z=1

A2

∑
X=1

gcd
(

X ,upr+ qr
u +Z

)
=1

1 (7)

Where A1 =

⌊ ∣∣∣upr− qr
u

∣∣∣
3(upr+ qr

u )
N

1
r+1

⌋
and A2 =

⌊
N

3(upr+ qr
u )

⌋
Using the given identity (See [13]) Let m and n be positive integers
then.

m

∑
k=1

gcd(k,n)=1

1 >
cm

(log logn)2

Where c is a positive constant. Now from the above identity with
m = A2 and n = upr + qr

u +Z we get

A2

∑
X=1

gcd(X ,upr+ qr
u +Z)=1

1 >
cA2

(log log
∣∣∣upr + qr

u +Z
∣∣∣)2

>
cA2

(log logN)2 (8)

Where c is a positive constant. Substituting (8) into (7) we get

ξ =
c

(log logN)2

A1

∑
Z=1

A2 (9)

Now we have

A1

∑
Z=1

A2 = 2A2A1

> 2


∣∣∣upr− qr

u

∣∣∣
3
∣∣∣upr + qr

u

∣∣∣N 1
r+1

⌊ N

3(upr + qr

u )

⌋

>
2
3

N
1

r+1 × N

3(upr + qr

u )

>
2

9(upr + qr

u )
N

r+2
r+1

Substituting back into (9) we get

ξ >
2c

9(upr + qr

u )(log logN)2
N

r+2
r+1

>
2c

9(log logN)2 N
r+2
r+1−

1
2

>
2c

9(log logN)2 N
2(r+2)−(r+1)

2(r+1)

>
2c

9(log logN)2 N
r+3

2(r+1)

> N
r+3

2(r+1)−ε

Where we used
∣∣∣upr + qr

u

∣∣∣ > N
1
2 with

∣∣∣upr− qr

u

∣∣∣ < ∣∣∣upr + qr

u

∣∣∣ and

we set N−ε = 2c
9(log logN)2 , with ε > 0 is arbitrarily small for suitably

large N.
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4. The Second Attack on k Prime Power RSA
with Moduli Ni = pr

i qi

In this section for k ≥ 2, r ≥ 2 moduli Ni = pr
i qi with the same size

N. We suppose that the prime power RSA moduli satisfying the k
equations eix−Niyi = pr

i u+ qr
i

u + zi. We show that it is possible to
factor the RSA moduli Ni if the unknown parameters x, yi, and zi are
suitably small.
Theorem 6. For k ≥ 2, r ≥ 2, let Ni = pr

i qi, 1 ≤ i ≤ k be k RSA
moduli. Let N = mini Ni. Let ei, i = 1, ....,k, be k public exponents.
Define δ =

k(1−αr−α)
r+1 . Let u, be a suitably small integer such that

pr
i u+ qr

i
u < N

r
r+1 +α . If there exist an integer x < Nδ and k integers

yi <Nδ and |zi|<
pr

i u− qr
i
u

3(pr
i u+

qr
i
u )

N
1

r+1 such that eix−Niyi = pr
i u+ qr

i
u +zi

for i = 1, ...,k, then one can factor the k RSA moduli N1, ...Nk in
polynomial time.

Proof. For k ≥ 2, and r ≥ 2, let Ni = pr
i qi, 1 ≤ i ≤ k be k RSA

moduli. Let N =mini Ni, and suppose that yi <Nδ , and
∣∣∣pr

i u+ qr
i

u

∣∣∣<
N

r
r+1 +α . Then the equation eix−Niyi = pr

i u+ qr
i

u + zi can be rewrite

∣∣∣∣ ei

Ni
x− yi

∣∣∣∣=
∣∣∣pr

i u+ qr
i

u + zi

∣∣∣
Ni

(10)

Let N = mini Ni, and suppose that yi < Nδ , |zi| < N
1

r+1 and∣∣qr
i + pr

i u
∣∣< N

r
r+1 +α . Then∣∣∣pr

i u+ qr
i

u + zi

∣∣∣
Ni

≤

∣∣∣zi + pr
i u+ qr

i
u

∣∣∣
N

<
N

1
r+1 +N

r
r+1 +α

N

<
2N

r
r+1 +α

N
< 2N

r
r+1 +α−1

Substitute in to (10), to get∣∣∣∣ ei

Ni
x− yi

∣∣∣∣< 2N
r

r+1 +α−1

Hence to shows the existence of the integer x, we let ε = 2N
r

r+1 +α−1,
with δ =

k(1−αr−α)
r+1 . Then we have

Nδ
ε

k = 2kNδ+αk+ kr
r+1−k = 2k

Therefore since 2k < 2
k(k−3)

4 ·3k for k≥ 2, we get Nδ εk < 2
k(k−3)

4 ·3k.
It follows that if x < Nδ , then x < 2

k(k−3)
4 ·3k · ε−k Summarizing for

i = 1, ....,k, we have∣∣∣∣ ei

Ni
x− yi

∣∣∣∣< ε, x < 2
k(k−3)

4 ·3k · ε−k

Hence it satisfy the conditions of Theorem 3 and we can obtain x
and yi for i = 1, ....,k.
Next from the equation eix−Niyi = pr

i u+ qr
i

u + zi we get

(eix−Niyi)− (pr
i u+

qr
i

u
) = zi

Since |zi|< N
1

r+1 and Si = eix−Niyi is an approximation of pr
i u+ qr

i
u

with an error term of at most N
1

r+1 . Hence using lemma 2, implies
that qr−1

i u =
[

S2
i

4Ni

]
with Si = eix−Niyi for i = 1, ....,k, we compute

qi = gcd
(

Ni,
[

S2
i

4Ni

])
. Which leads to factorization of k RSA moduli

Ni, ...,Nk.

Example 2. Consider the following three RSA prime power and
three public exponents

N1 = 396811998723440490898179183106862445436637438710601543

e1 = 280777539730432248989866685726800370419697516012778750
N2 = 1761935453709475892062197083923840534809604834405267667
e2 = 1245774494551468759343140040367253853071721343254285057
N3 = 275806371570006052291797098323622579947913608064631787
e3 = 201231552592489032873517705662876856104469684640666708

Then

N = max(N1,N2,N3)

= 1761935453709475892062197083923840534809604834405267667

Since k = 3 and r = 3 with α < 1
3 we get δ =

k(1−αr−α)
r+1 = 0.25

and ε = 2N
r

r+1 +α−1 = 0.003879095716. Using equation (11) of
Theorem 3 with n = k = 3, we obtained.

C = [3n+1 ·2
(n+1)(n−4)

4 · ε−n−1] = 178868160100

Consider the lattice L spanned by the matrix

M =


1 −[Ce1/N1] −[Ce2/N2] −[Ce3/N3]

0 C 0 0

0 0 C 0

0 0 0 C


Therefore applying the LLL algorithm to L , we obtain the reduced
basis with following matrix

K =


−4401137 −4090836 −4015793 −922985
−180914422 41062584 324166242 −724251010
−663465796 704521412 51957556 −199450580
559311153 145935984 −572548483 −845009935


Next we compute

K ·M−1 =


−4401137 −3114171 −3111819 −3211121
−180914422 −128012022 −127915340 −131997277
−663465796 −469457311 −469102750 −484072400
559311153 395759226 395460326 408079955


Then from the first row we obtained x = 4401137, y1 = 3114171,
y2 = 3111819, y3 = 3211121. Hence using x and yi for i = 1,2,3,
define Si = eix−Niyi we get

S1 = 41641330784512073299977617385100311672897

S2 = 128095260343012991955826751291968746653536
S3 = 32567304381947595300133101408261464743769

And lemma 2, implies that qr−1
i u =

[
S2

i
4Ni

]
for i = 1,2,3, which gives[

S2
1

4N1

]
= 1092457155456172672658538818

[
S2

2
4N2

]
= 2328177755859188806036633058[

S2
3

4N3

]
= 961389423918013737009006002

Therefore for i = 1,2,3 we compute qi = gcd
([

S2
i

4Ni

]
,Ni

)
, that is

q1 = 23371533491153,q2 = 34118746722727,q3 = 21924751126501

And finally for i = 1,2,3 we find pi = 3
√

Ni
qi

, hence

p1 = 25701937447111, p2 = 37239082724141, p3 = 23257152513583

Which leads to the factorization of three RSA moduli N1,N2,and N3.
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5. The Third Attack on k Prime Power RSA
with Moduli Ni = pr

i qi

In this section, we present an attack on the Prime Power RSA,
For k ≥ 2, and r ≥ 2, we consider the scenario when the k RSA
moduli satisfy k equations of the form eixi−Niy = pr

i u+ qr
i

u + zi for
i = 1, ...,k, with suitably small unknown parameters xi y and zi.

Theorem 7. For k ≥ 2, and r ≥ 2 let Ni = pr
i qi, 1≤ i≤ k be k RSA

moduli with the same size N. Let ei, i = 1, ...k, be k public exponents
with mini ei = Nβ . Let δ =

βk(r+1)−k(r+αr+α)
(r+1) . Let u, be a suitably

small integer such that pr
i u+ qr

i
u < N

r
r+1 +α . If there exist an integer

y < Nδ and k integers xi < Nδ such that eixi−Niy = pr
i u+ qr

i
u + zi

for i = 1, ...,k, then one can factor the k RSA moduli N1, ...Nk in
polynomial time.

Proof. For k ≥ 2, and r ≥ 2, let Ni = pr
i qi, 1 ≤ i ≤ k be k RSA

moduli. Then the equation eixi−Niy = pr
i u+ qr

i
u + zi can be rewrite

as∣∣∣∣Ni

ei
y− xi

∣∣∣∣=
∣∣∣pr

i u+ qr
i

u + zi

∣∣∣
ei

(11)

Let N = maxi Ni, and suppose that y < Nδ , |zi|< N
1

r+1 mini ei = Nβ

and pr
i u+ qr

i
u < N

r
r+1 +α . Then∣∣∣pr

i u+ qr
i

u + zi

∣∣∣
ei

≤

∣∣∣zi + pr
i u+ qr

i
u

∣∣∣
Nβ

<
N

1
r+1 +N

r
r+1 +α

Nβ

<
2N

r
r+1 +α

Nβ

< 2N
r

r+1 +α−β

Substitute in to (11), to get∣∣∣∣Ni

ei
y− xi

∣∣∣∣< 2N
r

r+1 +α−β

Hence to shows the existence of the integer y and integers xi, we let
ε = 2N

r
r+1 +α−β , with δ =

βk(r+1)−k(r+αr+α)
(r+1) . Then we have

Nδ
ε

k = 2kNδ+ rk
r+1 +αk−βk = 2k

Therefore since 2k < 2
k(k−3)

4 ·3k for k≥ 2, we get Nδ εk < 2
k(k−3)

4 ·3k.
It follows that if y < Nδ , then y < 2

k(k−3)
4 ·3k · ε−k Summarizing for

i = 1, ....,k, we have∣∣∣∣Ni

ei
y− xi

∣∣∣∣< ε, y < 2
k(k−3)

4 ·3k · ε−k

Hence it satisfy the conditions of Theorem 3 and we can obtain y
and xi for i = 1, ....,k.
Next from the equation eixi−Niy = pr

i u+ qr
i

u + zi we get

(eixi−Niy)− (pr
i u+

qr
i

u
) = zi

Since |zi|< N
1

r+1 and Si = eixi−Niy is an approximation of pr
i u+ qr

i
u

with an error term of at most N
1

r+1 . Hence using lemma 2, implies
that qr−1

i u =
[

S2
i

4Ni

]
with Si = eixi−Niy for i = 1, ....,k, we compute

qi = gcd
(

Ni,
[

S2
i

4Ni

])
. Which leads to factorization of k RSA moduli

Ni, ...,Nk.

Example 3. Consider the following three RSA prime power and
three public exponents

N1 = 316554271895715893838423297052825846335383774244714871

e1 = 30662975302805379736707040753751257120840979424750164758

N2 = 1070522932772407842320618757272826193993836676945090657

e2 = 156257384314047655028886471773425149796985057781425370311

N3 = 1288107615235882059075831083904889457607931668623096287

e3 = 357188942147864535063579515353706065051249816879373809886

Then

N = max(N1,N2,N3)

= 1288107615235882059075831083904889457607931668623096287

Also min(e1,e2,e3) = Nβ with β = 0.989144 Since k = 3 and r = 3
with α < 1

3 we get δ =
βk(r+1)−k(r+αr+α)

(r+1) = 0.217432 and ε =

2N
r

r+1 +α−β = 0.0002394886628. Using equation (11) of Theorem
3, with n = k = 3, we obtained.

C = [3n+1 ·2
(n+1)(n−4)

4 · ε−n−1] = 12311619560000000

Consider the lattice L spanned by the matrix

M =


1 −[CN1/e1] −[CN2/e2] −[CN3/e3]

0 C 0 0

0 0 C 0

0 0 0 C


Therefore applying the LLL algorithm to L , we obtain the reduced
basis with following matrix

K =

[ −31124545811 −23784506307 −25893307909 −25594266408
299409812239 −599057443457 825420120041 −625605806008
−743267379069 3382700381747 366761735189 −2574560326232
−5132867992791 893683621433 3683419949471 1703935452152

]
Next we compute

K ·M−1 =

 −31124545811 −321319371 −213234979 −112242457
299409812239 3091006472 2051263508 1079742438
−743267379069 −7673243111 5092141904 −2680397566
−5132867992791 −52990007465 −35165396639 −18510333242


Then from the first row we obtained y = 31124545811, x1 =
321319371, x2 = 213234979, x3 = 112242457. Hence using x and
yi for i = 1,2,3, define Si = eixi−Niy we get

S1 = 33405136380487257395748038954845114471837

S2 = 88141386436274630020356106543742988720642

S3 = 103124273676106945098670323757365660026145

And lemma 2, implies that qr−1
i u =

[
S2

i
4Ni

]
for i = 1,2,3, which gives[

S2
1

4N1

]
= 881288957116468032191275442

[
S2

2
4N2

]
= 1814277808787576652532459442[

S2
3

4N3

]
= 2063999873814339973363338482

Therefore for i = 1,2,3 we compute qi = gcd
([

S2
i

4Ni

]
,Ni

)
, that is

q1 = 20991533497061,q2 = 30118746726811,q3 = 32124755826421

And finally for i = 1,2,3 we find pi = 3
√

Ni
qi

, hence

p1 = 24705937445171, p2 = 32879082726283, p3 = 34227152573563

Which leads to the factorization of three RSA moduli N1,N2,and N3.
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6. Conclusion

Let N = prq be an RSA prime power modulus for r ≥ 2 and
q < p < 2q. For the first attack. Using continued fraction we show
that Y

X can be recovered among the convergents of the continued
fraction expansion of e

N . Further more we show that the set of such
weak exponents is relatively large, namely that their number is at

least N
r+3

2(r+1)−ε where ε ≥ 0 is arbitrarily small for suitably large N.
Hence one can factor the Prime Power RSA modulus N = prq in
polynomial time. For k ≥ 2, r ≥ 2, we present second and third at-
tacks on the Prime Power RSA with moduli Ni = pr

i qi for i = 1, ...,k.
The attacks work when k RSA public keys (Ni,ei) are such that
there exist k relations of the shape eix−Niyi = pr

i u+ qr
i

u + zi or

of the shape eixi −Niy = pr
i u +

qr
i

u + zi where the parameters x,
xi, y, yi, zi are suitably small in terms of the prime factors of
the moduli. Using LLL algorithm we show that our approach
enable us to simultaneously factor the k Prime Power RSA moduli Ni.
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