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Abstract

In this paper, we attempt to introduce a new numerical approach to solve backward doubly stochastic differential delay equation (
shortly-BDSDDEs ). In the beginning, we present some assumptions to get the numerical scheme for BDSDDEs, from which we prove
important theorem. We use the relationship between backward doubly stochastic differential delay equations and stochastic controls by
interpreting BDSDDEs as some stochastic optimal control problems, to solve the approximated BDSDDEs and we prove that the numerical

solutions of backward doubly stochastic differential delay equation converge to the true solution under the Lipschitz condition.
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1. Introduction

Backward stochastic differential equations ( shortly-BSDEs) have
been first presented in Pardoux and Peng [16, 17] in order to proved
existence and uniqueness of the adapted solutions and presented
a new class of backward doubly stochastic differential equations,
further investigations being (see [3, 4, 11, 13]). A lot of mathe-
maticians interested in a numerical methods for approximating so-
Iution of BSDEs ( see [1, 10, 14, 15, 18, 22]). Xuerong Mao et
al. [21] discussed the effects of environmental noise on the delay
Lotka-Volterra model. Brahim Boufoussi et al. [2] presented a new
class of backward doubly stochastic differential equations, this a
new class depend on an integral with respect to an adapted contin-
uous increasing process. Lukasz Delong [5, 6] studied applications
of a new class of time-delayed BSDEs and he gives examples of
pricing, hedging and portfolio management problems which could
be established in the framework of backward stochastic differential
delay equation. Wen Lu et al. [19] investigated a class of multi-
valued backward doubly stochastic differential delay equation, and
they proved the existence and uniqueness of the solutions for these
equations under Lipschitz condition. Using the Euler-Maruyama
method, Xiaotai Wu and Litan Yan [20] defined the numerical so-
lutions of doubly perturbed stochastic delay differential equations
driven by Levy process, and they proved the numerical solutions
converge to the exact solutions with the local Lipschitz condition.
Delong and Imkeller [7] presented a class of BSDEs with time de-
layed, and they established the existence and uniqueness of a solu-
tion for BSDEs with time delayed. Also, they [8] proved the exis-
tence and uniqueness as well as the Malliavin’s differentiability of
the solution for BSDEs with delayed time. Moreover, Diomande
and Maticiuc [9] proved the existence and uniqueness of a solution
for multivalued BSDEs with time delayed generators. Besides, Lu
and Ren [12] established the existence and uniqueness of the so-

lutions for a class of backward doubly stochastic differential equa-
tions with time delayed coefficients under Lipschitz condition.

The purpose of this work is to study the numerical convergent of
backward doubly stochastic delay differential equations ( shortly-
BDSDDEs ) that has the following

T
V) =&+ [ S8¥(5).2(). 10, Z0)ds
. T T
+ [ .7(9.2(5). 1, 20)aB(s) — [ Z(9)aw(s) (1)

where {W;,0 <t <T} and {B;,0 <7 < T} are a Brownian motion
defined on the probability space (Q,F;, &) and (Q,F, %), re-
spectively, and T < oo is a finite time horizon. The coefficients f and
g at time s and the terminal condition & depend on the past values
of a solution (¥y,Z;) = (Y (s+0),Z(s+0)) _r<g<o-

We point out that the main results in the present paper are different
from the Multivalued BDSDEs with time delayed coefficients and
Levy process established in [19] and [20], respectively. In our work,
we extend the approach of BDSDDE:s in the general case, and in-
troduce some general assumptions on the numerical convergence of
backward doubly stochastic differential equations with time delayed
coefficients. Furthermore, we present a numerical scheme based on
iterative regression functions which are approximated by projection
on vector space of functions. Also, we discuss some theorems about
analysis of error. We prove that the approximated solution of BDS-
DDEs converges to the true solution under Lipschitz condition.

The present paper is organized as follows: In section 2, we present
some preliminaries that explain the approximation scheme for BDS-
DDEs. In section 3, we consider the approximation solution of
BDSDDEs and prove some problems that useful for our work. In
section 4, we have discussed the numerical convergence under Lip-
schitz condition.

Copyright © 2016 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Preliminaries and basic assumptions

In this section, we provide some assumptions and space used in
the sequel. Therefore, we consider two independent standard d-
dimensional Brownian motions {W;,0 <7 < T} and {B;,0 <r <
T}, defined on the complete probability spaces (Qp,F], 7)) and
(Q2,F>, 9,), respectively, and a finite time horizon 7' < . We
denote

Ff =o{B —Bs,s<r<t},F¥ = c{W,,0<r<1}.

Moreover, we consider Q= QX Q, F=F®FK and #Z = 2| ®
. In addition, we put

FERVQF e/,
where .4 is the collection of Z-null sets of F.That is to say,
the o—fields F;, 0 <t < T, are &’—complete, and the family of
o —algebras F = {F; }ze[o,T] is neither increasing nor decreasing, it
is not constitute a filtration.

We consider the Euclidian norm |- | in R¥ and R¥*¢, we use the
following spaces

i) Let L? (R¥?) is the space of measurable function Z :

[—T,0] — R such that [°,|Z(1)|2dt < co.

ii) Let L™ (R*) is the space of measurable function Y : [~T,0] —
R¥ such that sup_7—,<o ¥ (¢)[?
< oo,

iii) Let H#(R™) is the space of F-predictable processes ¥ : Q x
[0,T] — R™ such that E [] ¥ (r)]?dt < oo

iv) Let S% (Rk) is the space of F-adapted, product measurable pro-
cesses ¥ : Q x [0,T] — R¥ such that E[supg<;<7 |Y (1)[*] < 0.

The spaces H7 (R¥*?) and §2.(R¥) are done with the norm ||Z| \12_12 =
2
EfOT |Z(¢)|?dt and HY\|§2 = E[supg<,<7 |V (t)]?], respectively. In
2 <i<

this paper, we consider the following BDSDE with time delayed
coefficients

d(Y (1)) = f(t.Y (1), Z(t), Y, Z)dt +g(1,Y (1), Z(t),Y;, Z:)dB(1)
—Z(t)dW(t),0<t <T,
YT = g(YT,ZT),fT S t S 0,

where f and g are Borel-measurable functions at time set depend
on the past values of the solution ¥; = (Y (s+ 0)) _r<g<o and Z; =
(Z(s+0))_r<p<0. We always set Z(r) =0 and Y (r) = Y(0) for
t < 0. Now, we make the following assumptions

Assumption (H1): There exist a positive constant K; and for all
—7 < s <t <0 such that

E[lE() ~ ()P < Ki(r—s).
Assumption (H2): Suppose that f : Q x [0,T] x R¥ x R¥*4 x
L2 (RK) x L2 (RF>d) — RF and g : Q x [0,T] x L= (R¥) x
L? ;(Rk*d) — R¥* gre product measurable, there exist a positive
constants K3, K3 and Ky, and a finite measure o on [—7,0] such that

|f(l7Y1>Zlvytlvztl) _f(t7Y2’227Ytszt2)|2 < KZ(‘YI _Y2|2 +
12! —Z22) + Ka(J27 [Y' (14 6) — Y(1 + 6)Px(d6)
+ 07 12" (e + 0) — 22 (1 + 0)Par(dD)).
and
lg(t, Y, 2" ¥}, 2} — g(t,Y2, 22, Y2, Z2)? < Ks3(|Y' Y22+
12! = Z22) + Ky ([0 [Y (1 + 0) — Y2 (1 + 0) P ax(dO)
+ /%012 (1 + 6) — Z2(t + 6) P ax(d6),
forallz €[0,7], (Y‘k,zd‘), (Y2,7%) e REXRO (v, 7)) (V2. 27) €
L2, (RK) x L2 (Rk*d),
Assumption (H3)

E 7 1£(2,0,0,0,0)2dt < oo, E [§ |g(1,0,0,0,0)|*dt < oo.
Assumption(H4)
f(tv'v'a‘a') :078(1‘7'3‘) :07
fort < 0.

Assumption (HS5): There exists a positive constant K5 such that
If.2)PVIg(Y.2) < Ks(1+|Y [ +|Z]?),

where a Vb = max{a,b}.

3. A numerical scheme for BDSDDEs

In this section, we propose a numerical scheme is based upon a
descretization of (1). Moreover, for all integers n,/ > 1 and t €
[0,T], let

=ty <t < <0=fg<ty < <ty=T
be a partition of [—7,T], and denote

§=NAtip1 =t —ti=L 1<i<n B, =
By — By, AW = Wi, =Wy,

where i =0,1,-,-,-,n—1, and At = max_;<j<,—1 At;. Now, on the
small interval [t;,#;,1] the equation

tit
Yy =Yy, +
t ti
Tit1
- Z(s)dW(s). (3)
Ji;
We can be approximated by the discrete equation

VP f 0,0 200). Y0+ 8), 201+ 6))8 +
g([thn(l)’Z;l([)’Yi"(t—‘— 6)721}'1(t+0))ABi+1 —Z?(l)AVVFH’

with Y(T) = &(T) on —T <t < 0. Therefore, we consider a class
of BDSDDEs as the form

YI(0) = E(T) + fo f(5.Y](s),Z] (s),¥/'(s+0), Z} (s +6))ds +

@ Jo 8(5,Y7(5).Z} (5), Y5+ 6),Z] (s + 6))dB(s) — o Z{ (s)dW(s).

Now, let us define the Euler-Maruyama approximate solution by

U

Now, we present some Lemmas that useful for our work.
Lemma 3.1
Assume the assumptions (H1)-(H2) are fulfilled, then it holds that

E [supogg YR+ 7 120) \Zdt] <cm,

where M = E[|EP+ T |£(5,0,0,0,0) Pds + [ |g(s,0,0,0,0) ds].

Proof. By applying I16's formula |Y (t)|?, we have that

Y ()2 + Jg Y (s)[Pds+ f |Z(s)Pds <
ER+2 g (Y (5), £(5.Y (5), Z(5), Y5, Zs))ds +
f()T |g(57 Y(S)vz(s)>Ys7Zs)|2ds +
2 Jo (Y (5),8(5,Y (), Z(s), Y5, Zs)dB(s)) — 2 o (¥ (5),Z(5)dW(s)),

where ¢ € [0,T]. By using Young’s inequality and assumption (H2),
we get that

Y (), Z(5) Y, Zo)ds+ [ g(s,Y (5),2(s), Yo, Zs)dB(s)
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2 f (Y (), £(5,Y (5),2(5), %5, Z))ds <
}/IOT ‘Y(S)|2ds+ %/ f()T ‘f(S,Y(S),Z(S),YY7ZV)|2ds S

vJo 1Y (s)[Pds+3 [ |£(5,0,0,0,0)|*ds + 6’(22 Jo (Y ()PP +
1Z(s)[2)ds + 2 | /0 (\Y(s+9)|2+\Z(s+9)l )ou(de)ds
and
Jo 18(s,Y (5),Z(s), ¥y, Zy) Pds <
6K3 J3 (1Y (s)? +1Z(s)[*)ds +3 fy |g(s,0,0,0,0)[>ds +
3Ky f J0r (1Y (s+6)]2 +1Z(s+ 6)[*) ce(d6)ds.

By changing of integration order argument, we obtain that
I 2r IY(OS+ 9)\za(d9)ds = 27 Jo ¥ (s +6)dsr(dB) =
P Jg 0 r (0)Pdue(de) < B Jg[¥ (1)Pde
and
I 10712 (s + 0)Pa(dB)ds = [0y [ Z(s + 0)[2dsa(d6) =
127 Jg "8 1Z(1)Pdta(de) < B fy |Z() 2dt,
where f§ = ng o(de

YO+ fi Y ()Pds+ fo 1Z(s)[Pds < |E2 4+ o [¥(s5)Pds
+ 52 [T ()P + 1Z()2)ds + 3 ST 1£(5.,0,0,0,0) s
+3fo 18(5,0,0,0,0)|%ds + 6K3 fo (Y (s)* +1Z(s5)|*)ds
+(3K4ﬁ +3K4ﬁ) SR +12(5)P)ds
+2 o (Y (5),8(5. Y (5), Z(s), Y5, Zs)dB(s))
~2 i (¥ (5),Z(5)dW (s)).

By taking the expectation and ¢ = 0, we obtain that

).Therefore, we drive that

EY(0)2+CiE [y [Y(s)[ds +CoE [ 2(s)[*ds <
E|E[*+3E [y £(5,0,0,0,0)2ds +3E [ [¢(s,0,0,0,0)[?ds,
61(2
’J/i —_—

—3K4B — 6K2, ¢ > 0. For sufficiently small K4 and K3, choos—
ing € > 0 and y > 0 such that C; > 0 and C, > 0, then there exists a
constant C > 0 depending on €,7, K>, K3,K4 and 8 such that

where C; = 1 — y— 72 — KB _ 3k, B—6K2,Cr=£—
3K4B
Y

EJg Y (s)Pds+E [ |Z(s)Pds <
C{E\é P+E Jy 1£(5.0.0,0,0)Pds +E [ |g(s,o7o7o,0)|2ds}.
Therefore, for y choosing above, we obtain that

supo<,<7 Y (1)|* <
&P 43 J5 1£(5,0,0,0,0)[%ds +3 [ |g(5,0,0,0,0)[2ds

+2supg<,<r | fo (¥ (5),8(5.Y (5),2(s), ¥, Z;)dB(s))|
+2supo<i<r | fo (¥ (5),Z(s)dW(s))].

Now, by Young’s inequality and Burkholder-Davis-Gundy inequal-
ity, together with above inequality and assumption (H2), there exists
a constant r; > 0 such that

28 | sy | ] 0V (61,05, (5).205). Yo ZaB(3) | <
M (sopocycr IVOP ) + S22 g7 206) s
+iE [y |g(s70,07070)|2ds} :
Similarly, there exists a constant r, > 0 such that
28 supoqcr ] (V(9) 20w ) | <

2 P (supucecr S 1Y (0)P0s) + LEGT 2060749

where 41,4, > 0. Then, choosing 4} = 3r and A, = 3r , for suf-
ficiently small K3 > 0 and K4 > 0, there exists a constant C > 0
depending on €,7,K3,Ky, B, and r; such that

E[supog,g YOR+ T \z<s>|2ds] <

CE |:|§ ‘2 + fOT ‘f(S,O,O,O,O)‘ZdS+ fOT ‘g(s70707070)‘2dsj| :

Hence, the proof is complete.

Lemma 3.2
Under assumption (HS), for every p > 2, there exists a positive con-
stant M/, such that

((sup cccr VO ) <

and
E (SuP—rgng |Z(s)\”) <M,.

Proof. Forany 0 <s <t <T,we get from Eq. (1)

supg<y<r |V (5)] < supo<sar [§(T) + o £(Y(5),Z(5).Ys,Zs)ds

+Jo 8(Y(5),Z(8), Y5, Z)dB(s) — fo Z(s)dW(s)].
By taking the expectation, we obtain that
E(supocer 0 ) <
{Supo<s<r|<§ )+ o FY(5),Z(S)., Yy, Zs)ds
I 66,2061, 2038(5) - ] Z()W )P |
Thanks to inequality
la+b+c+dP < 4P~ (|alP +[b|P + |c|P +|d|?),
we have that
(supocscr V617 <4 { BRI
Zs)ds|P]
+E {supogsg | I e (Y (s),Z(S), Yy, Zs)dB(s) ﬂ

+E {Supogsg o Z(S)dw(s)|p] }

£ [supogsg T £ (5).2(S). Y,

The Holder inequality and assumption (HS) imply that

E [supogsg | fon(Y(SLZ(S),Ys,Zs)dSI”} <
TP='E [ |£(Y(5),Z(S), Y5, Zy)|Pds <
P ,
T [ K (4 R +IZG)P+ G+ 127) S <
N 4 2
17 AT K (14 250p0c0r V0P 4 250pocscr 26 ) a5 <
- r p
255 K TP 2P 1k TP1 fOT E {supogsg \Y(s)|P} ds
P
-1-21”*1K12 Tpr-1 fOTE {supoéng |Z(s)|p] ds.

By Burkholder-Davis-Gundy inequality ( Theorem 1.7.3 in [16])
and assumption (H5), we have that
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E [supogsg T4 \g<Y<s>,z<s>7Ys,zadB(s)\P} <

p+1 g P
L(,,’L—l) } E[fy 18(Y(5),(S). Y5, Z,)Pds]? <

{i} T ET 9(1(5),2(S). ¥e, Z0)|Pds) <

[4 2 S
+2r- K¢ [W} T jOTE[supOSSSﬂY(s)\P} ds

p-2
1% ] [swpocser 2601 as
Therefore, we have that

W)l < fo

E[SUPogng ‘ foT Z(s)d

It following from above, we deduce that

E[supo<s<r |Z(5)[7]ds.

B(supocser W61 ) <9 EEDP + 40127 K 17
P
+4P—12P—1K12 Tr—1 fOTE |:Sup0§s§7' \Y(u)V’] ds

P
+4r-top-tgrr-l (T [SupoSSST |Z(u)|l’} ds
4

1L2L 2 2 p
+4P=12 T K Z{W} T:

1 1
+4P=12P~ K2|: p1p1:|

h\] L
2(p—1)r-1 :

+4r 1 [T E {SUP0<5<T\Z s |p} ds.

{SUP0<Y<T ¥ (u)|? } ds

)
Lar-1op ik [ [supow 12 ()P }ds

Now, we assume that
C_
max{4p L gr=12%5 K TP 4r—1pp— lK TPt 4p—1pr- lK Tr-1

5
prt! p=2
—yr T 1} > }

E<supogsg|y<s>\f’) < CEE(T)P +C

12 | prt! Lop—11-3
74]7 272 K12 {W} T2 4]7 2P~ Kz 20

Therefore, we have that

+2Cc JTE (sup,@,gs \Y(u)|p> ds+CJTE (supogsg |z(u)\p) ds
+C+Cfy E (SUPOSng |Z(u) \”) ds+ Jy E <Supogsgr 1Z(s) |”) ds
< CE|E(T)|P +2C+2C JT E (supogsg |Y(u)\/’) ds
+3CJE (supogg \Z(s)v’) ds.
Notice that

E(supfrgsgﬂﬂsw) SEHéHPvE(supogsg|Y<s>\ﬂ),

we have that

E(supﬂg\nsw) <20+ CE|E(T)| P
+2c JTE (SupOSSST 1Y (u) |p> ds+3C [T E (SupOSSST |Z(s) |p> ds
<20+ CE|EM)IP 46y [(foTE(supogsg |Y<s>|2)ds>%

+(|TE (supogng |Z(s )|2) ds)g}

where C; > 5C. From Lemma (3.1), we obtain that
B((sup ccser V)1 ) <20+ CEIIET) P + GO,

with My = 2C + 3CC M + 2CE||&||PeCT, we have the result, and
consequently, we deduce that

E (supffgsg |z<s>\ﬁ) <.
O

In this point, we consider the following equation on the small inter-
val [l‘i7ti+1]

Yy =Y, + i f(5,Y (5),2(5), Y5, Zs)ds +

Ji ' 8(s,Y (), Y5)dB(s) — [/ Z(s)dW (s).
Now, we present the approximating solution as follows

1
Z

= mE[(Yi-&-l (1) +8(tiy1,Yip1(£),Yip1 (1 +0)) ABiy 1) AWy ],
l

)
and

Y, = E[Yi1(t) +8(tiv1,Yir1(2), Y1 (1 +0)) ABiy 1]
+ £, Yi(1),Zi(), Yi(t +0),Zi(t + 0)) Atiyq.  (6)

4. Representation results for BDSDDEs

This section is devoted to the study of the approximated solution of
BDSDDEs converges to the exact solution under Lipschitz condi-
tion. The main result of this section is the following

Theorem 4.1

Suppose that assumption (H2) is fulfilled. For each 1 <i < n, then
it holds that

limpy, 0 F [max]gign U <1< 1Y) — (1)

+X S 1 Zis) —Zi(s)\zds} < oo,

where E |:m3.X1§l'§n SUpy, <<y, [Yir1 (1) — )N’,-+1(t)|2} < oo,

Proof. In the beginning, we take the first term
E[max)<j<pSup, <<y, [Yi(t) — Y:()[?], and from equation
(6)
Yi(t) = Yi(t)| = |E[Yi1 (£) = Vi (1)
+(8(tig1,Yir1 (1), Yir1 (1 +0))
—8(tir1, Vi 1(6), Yir1 (14 60))) ABiy 1]
+(f (@, Yi(1), Zi(2),Yi(1 + 0), Zi(1 + 0))
—f (0, Yi(0), Zi(t), Yi(t + 0), Zi(t + 0))) A .
Using elementary inequality |a + b|> < 2(|a|? 4 |b|?), we have that
Yi(t) = V(1) * < 2E (Y1 (1) = Vi (1)

(81, Yip1 (1), i1 (1 +6))
—g(tis1, Y1 (£), Yig1 (14 0)) ABiyy
+2|(f (13, Yi(2), Zi(1), Yi(1 + 6), Zi(1 + 0))
—f(6,%i(1). Z, () i(146),Zi(t+0)) A1 <
AE|Yi1 (1) = Vg1 (0)|* +4E|(g(tis1, Yip1 (1), Yig1 (1 4 6))
—g(tis1, Y1 (1), Yi1 (1 + 0)) ABiy 2
F2A7 4 f (1. Yi(0),Zi(0), Yi(t + 8), Zi(1 + 6))

—f (6, i(0), Zi(0), Vit + 0), Zi(1 + 0)) .

By taking the expectation, we get that
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ENYi(t) = Ti(t)? < 2E[E|Yii1 (1) = Tis1 ()]
+4E[E|(8(tis1,Yip1 (1), Yip1 (1 4 6))
—g(fz+1717i+1(t)jiﬂ(f+9)))‘2}E‘ABi+1|2
+207 (E|f(t;, Yi(1),Zi(1), Yi(1 + ), Zi(1 +6))
— (61, Yi(0), Zi(1), Yyt + 0), Zi(t + 6)) |

By using assumption (H2), we have that

EYi(t) = Yi(1)[* < 2E[Yi1 (1) = Vira (1) 2
+4Az+1E(K3\Yz+l() Vi (1)
+Ky [0 rYii1(t+60) = Yipi (14 0)[>(d6))
+2A,~+1E[K2(\Y() Yi(0)]>+1Zi(1) = Zi(1)?)
+K4(f 7 |Yi(t+0) —TYi(t+6)|*a(d6)
[0 |Zisa (14 0) = Zia (1+ 0)Pa(d0))].

Therefore, we have that

E|Yi(1) = Y;(1)]* =203, | KE|Y; (1) — ~(l)|~2§
2E|Y;q (1) - 1+1()| + 40 KE Yy (1) = Vi (1)

A KSE [O7 |Vig1 (14 60) — z+1f+9)\2 a(de)
20 KE|Zi(1) — Zi(1)[?
+2A1+1K4Ef_T|Y (t+6)—Ti(t+0)]>a(d0)
1202, K4E [°1 | Zi(t + 0) — Zi(t + 0)[u(d6).

And then, we get that

(1=202 DEY;(t) = Yi(1)* < (244011 K3)E|Yiy 1 (1) = Vi (1))
+2A,+1K2E\Z() ZinP
+(40i 1Ky + 207, K2)E [O7 Vit +0) — Ti(t + 6)[>a(d6)

207, KE [0 |Zi(1 +6) — Zile +9)\2 (de).

Now, we take the following

\Z, = 24| < | 5 —E[(Yi1 (t) = Y (1))
f(g(fwljyzﬂ(f) Yi(t+8)
—8(tix1,Yiy1(2), Yip1 (£ +0)) ABiy 1) AW 1]

Using elementary inequality |a+b[> < 2(|a|* + |b|?), we get that
|Zi(t) = Zi(1)|* < A%HEWHI(’) Y1 (0PE| AW 2

+A%HE|g(ti+1,Y,-+1(l) Yiti(r+6))
=8t 1,41 (1), Vi1 (1 + 0)) PE| ABiy [PE| AW [

By taking the expectation, we have that

E|Zi(t) = Zi(1)* < 52 E|Yip1 (1) = Vit (1))
+2E|g(ti1,Yir1 (1), Yig1 (1 +0)) — g(tig1, i1 (1), Yis1 (1 + 0)) 2.

By using assumption (H2), we deduce that

E|Zi(t)—Zi(t)|* < AZHE\Y,-H( )—
—Ti1 (1)) + 2K4E [O7 Vi1 (14 6) —

Vi1 (0) P +2E (K3| Vi1 ()
Vir1(t+6)o(dB).

From above inequality, we have that

(1-2A2

BOENY: =T <

(24401 K3)EY; 1 (1) = Vi1 (1))

+207 K2 {EE‘Y:‘H( Vi1 (1) +2E(K3|Yi (1)

~Vip 1 (0)2) +2K4E [0 |Yig1 (14 0) = Tiy1 (14 0) P x(d6)

Ay 1208 KE [ (46 - Y(r+e>\2a<de>
F202 KA [0 Zi(t+6) ~ Zi(t + 0) P(d8).

Therefore, we have that

712 < 24001 Ki+4Ai 1 Ky +2Ks
E|Y; T, < LB b e gy,

4AL+1K2K4+4A:+1K4+2A/+'K“Ef r|Yig1 (1 +6)

1 2A2
~ A VAN
- ,-+1<r+e>\2a<de>+WEf 7 |Yi(t+6)

- 202 K. o
—Vi(r+0)a(d) + ]_Z’Aa‘tEj_T |Zis1(t+6)

~Zi1(t+0)a(de).

TP

+

By taking the Limit, we get that

lima,,, 0 EY, — ¥, < 2+ 2K3)E[Yip (1) — Vi (1) -

Therefore, we have that

lima, 0 E {maxlﬁiénsupt,-gtgt,-“ [Yi(r) — ~i(t)|2} <
(242K)E [maxlg,-gn Supy <o, [Yer (6) = Fio: (r)ﬂ <o,

By the same way above, we deduce that

hmAHHOE[ S 1Z4(s) - -(s)|2ds] < oo,

Remark 4.2
Suppose that assumption (H2)-(HS5) are fulfilled, we deduce that

im0 | 08150, 1)~ i)
1
ot ~ r
T i)~ Zils) s | < oo,
forallp>2and 1 <i<n.
Theorem 4.3
Suppose that assumption (H1)-(HS5) are fulfilled.If the Lipschitz co-
efficients K5, K3 and K are small enough, then there exists a unique
solution of (2).

Proof. Existence. By Theorem 4.1, then there exist ¥ € 5% (R¥)
and Z € H2(R¥?) such that

limy e (Y",Z") = (Y, Z).
Then Lemma 3.2 and Theorem 4.1 show that
limy e (¥Y")
in §%.(R¥) and
lim, o E[Y"(t) =Y ()> =0,0<t < T.

From Fatou’s Lemma, Lemma 3.1, Lemma 3.2 and Theorem 4.1,
we get the result.

Uniqueness. Let Y/(¢),Z/(¢)), i = 1,2 be two solutions of BDSDDE
(2). By 1t0’s formula, we deduce that

\Yl(t)—Yz(t)\2+fT|Y1(S) 2(S)|2<iS+f,TIZI(S)—Zz(S)IZdSS
2ftT<Y1() ()7(f(S7Y (5).21(s),Y! (s +6),Z' (s +6))
gr 2(s) Zz(s Y2( +9),22(s+9)))>ds
£ (s, (). Hs), ' (s+6),Z" (s +6))
—f(s Y2(s5),Z2(s),Y?(s +9 Zz(s+9))|2ds
+2 [T ) —Y2(1), (8(s,Y ' (),2 (), (s+6),2' (s +6))
—g(s,Y2(s),Z2(s), Y2(s 0),Z%(s+6)))dB(s))
=2 Y (s) = Y2(s), (Z" (5) = Z%(s))AW(s))-
As the same proof of Lemma 3.1, we have the result.
O
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