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Abstract

In this paper, we attempt to introduce a new numerical approach to solve backward doubly stochastic differential delay equation (
shortly-BDSDDEs ). In the beginning, we present some assumptions to get the numerical scheme for BDSDDEs, from which we prove
important theorem. We use the relationship between backward doubly stochastic differential delay equations and stochastic controls by
interpreting BDSDDEs as some stochastic optimal control problems, to solve the approximated BDSDDEs and we prove that the numerical
solutions of backward doubly stochastic differential delay equation converge to the true solution under the Lipschitz condition.
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1. Introduction

Backward stochastic differential equations ( shortly-BSDEs) have
been first presented in Pardoux and Peng [16, 17] in order to proved
existence and uniqueness of the adapted solutions and presented
a new class of backward doubly stochastic differential equations,
further investigations being (see [3, 4, 11, 13]). A lot of mathe-
maticians interested in a numerical methods for approximating so-
lution of BSDEs ( see [1, 10, 14, 15, 18, 22]). Xuerong Mao et
al. [21] discussed the effects of environmental noise on the delay
Lotka-Volterra model. Brahim Boufoussi et al. [2] presented a new
class of backward doubly stochastic differential equations, this a
new class depend on an integral with respect to an adapted contin-
uous increasing process. Lukasz Delong [5, 6] studied applications
of a new class of time-delayed BSDEs and he gives examples of
pricing, hedging and portfolio management problems which could
be established in the framework of backward stochastic differential
delay equation. Wen Lu et al. [19] investigated a class of multi-
valued backward doubly stochastic differential delay equation, and
they proved the existence and uniqueness of the solutions for these
equations under Lipschitz condition. Using the Euler-Maruyama
method, Xiaotai Wu and Litan Yan [20] defined the numerical so-
lutions of doubly perturbed stochastic delay differential equations
driven by Levy process, and they proved the numerical solutions
converge to the exact solutions with the local Lipschitz condition.
Delong and Imkeller [7] presented a class of BSDEs with time de-
layed, and they established the existence and uniqueness of a solu-
tion for BSDEs with time delayed. Also, they [8] proved the exis-
tence and uniqueness as well as the Malliavin’s differentiability of
the solution for BSDEs with delayed time. Moreover, Diomande
and Maticiuc [9] proved the existence and uniqueness of a solution
for multivalued BSDEs with time delayed generators. Besides, Lu
and Ren [12] established the existence and uniqueness of the so-

lutions for a class of backward doubly stochastic differential equa-
tions with time delayed coefficients under Lipschitz condition.
The purpose of this work is to study the numerical convergent of
backward doubly stochastic delay differential equations ( shortly-
BDSDDEs ) that has the following

Y (t) = ξ +
∫ T

t
f (s,Y (s),Z(s),Ys,Zs)ds

+

∫ T

t
g(s,Y (s),Z(s),Ys,Zs)dB(s)−

∫ T

t
Z(s)dW (s) (1)

where {Wt ,0 ≤ t ≤ T} and {Bt ,0 ≤ t ≤ T} are a Brownian motion
defined on the probability space (Ω1,F1,P1) and (Ω2,F2,P2), re-
spectively, and T <∞ is a finite time horizon. The coefficients f and
g at time s and the terminal condition ξ depend on the past values
of a solution (Ys,Zs) = (Y (s+θ),Z(s+θ))−T≤θ≤0.
We point out that the main results in the present paper are different
from the Multivalued BDSDEs with time delayed coefficients and
Lèvy process established in [19] and [20], respectively. In our work,
we extend the approach of BDSDDEs in the general case, and in-
troduce some general assumptions on the numerical convergence of
backward doubly stochastic differential equations with time delayed
coefficients. Furthermore, we present a numerical scheme based on
iterative regression functions which are approximated by projection
on vector space of functions. Also, we discuss some theorems about
analysis of error. We prove that the approximated solution of BDS-
DDEs converges to the true solution under Lipschitz condition.
The present paper is organized as follows: In section 2, we present
some preliminaries that explain the approximation scheme for BDS-
DDEs. In section 3, we consider the approximation solution of
BDSDDEs and prove some problems that useful for our work. In
section 4, we have discussed the numerical convergence under Lip-
schitz condition.

Copyright © 2016 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.



International Journal of Applied Mathematical Research 147

2. Preliminaries and basic assumptions

In this section, we provide some assumptions and space used in
the sequel. Therefore, we consider two independent standard d-
dimensional Brownian motions {Wt ,0 ≤ t ≤ T} and {Bt ,0 ≤ t ≤
T}, defined on the complete probability spaces (Ω1,F1,P1) and
(Ω2,F2,P2), respectively, and a finite time horizon T < ∞. We
denote

FB
s,t = σ{Br −Bs,s ≤ r ≤ t},FW

t = σ{Wr,0 ≤ r ≤ t}.

Moreover, we consider Ω = Ω1 ×Ω2, F = F1 ⊗F2 and P = P1 ⊗
P2. In addition, we put

Ft , FW
t ⊗FB

s,t ⊗N ,

where N is the collection of P-null sets of F .That is to say,
the σ−fields Ft , 0 ≤ t ≤ T , are P−complete, and the family of
σ−algebras F = {Ft}t∈[o,T ] is neither increasing nor decreasing, it
is not constitute a filtration.
We consider the Euclidian norm | · | in Rk and Rk×d , we use the
following spaces

i) Let L2
−T (Rk×d) is the space of measurable function Z :

[−T,0]→ Rk×d such that
∫ 0
−T |Z(t)|2dt < ∞.

ii) Let L∞
−T (Rk) is the space of measurable function Y : [−T,0]→

Rk such that sup−T≤t≤0 |Y (t)|2
< ∞.

iii) Let H2
T (Rm) is the space of F-predictable processes Y : Ω×

[0,T ]→ Rm such that E
∫ T

0 |Y (t)|2dt < ∞.
iv) Let S2

T (Rk) is the space of F-adapted, product measurable pro-
cesses Y : Ω× [0,T ]→ Rk such that E[sup0≤t≤T |Y (t)|2]< ∞.

The spaces H2
T (Rk×d) and S2

T (Rk) are done with the norm ||Z||2H2
T
=

E
∫ T

0 |Z(t)|2dt and ||Y ||2S2
T
= E[sup0≤t≤T |Y (t)|2], respectively. In

this paper, we consider the following BDSDE with time delayed
coefficients

d(Y (t)) = f (t,Y (t),Z(t),Yt ,Zt)dt +g(t,Y (t),Z(t),Yt ,Zt)dB(t)
−Z(t)dW (t),0 ≤ t ≤ T,
YT = ξ (YT ,ZT ),−T ≤ t ≤ 0,

(2)

where f and g are Borel-measurable functions at time set depend
on the past values of the solution Ys = (Y (s+θ))−T≤θ≤0 and Zs =
(Z(s+ θ))−T≤θ≤0. We always set Z(t) = 0 and Y (t) = Y (0) for
t < 0. Now, we make the following assumptions
Assumption (H1): There exist a positive constant K1 and for all
−τ ≤ s < t ≤ 0 such that

E[|ξ (t)−ξ (s)|2]≤ K1(t − s).

Assumption (H2): Suppose that f : Ω × [0,T ] × Rk × Rk×d ×
L∞
−T (Rk) × L2

−T (Rk×d) → Rk and g : Ω × [0,T ] × L∞
−T (Rk) ×

L2
−T (Rk×d)→ Rk×d are product measurable, there exist a positive

constants K2, K3 and K4, and a finite measure α on [−τ,0] such that

| f (t,Y 1,Z1,Y 1
t ,Z

1
t )− f (t,Y 2,Z2,Y 2

t ,Z
2
t )|2 ≤ K2(|Y 1 −Y 2|2 +

|Z1 −Z2|2)+K4(
∫ 0
−T |Y 1(t +θ)−Y 2(t +θ)|2α(dθ)

+
∫ 0
−T |Z1(t +θ)−Z2(t +θ)|2α(dθ)).

and

|g(t,Y 1,Z1,Y 1
t ,Z

1
t )−g(t,Y 2,Z2,Y 2

t ,Z
2
t )|2 ≤ K3(|Y 1 −Y 2|2 +

|Z1 −Z2|2)+K4(
∫ 0
−T |Y 1(t +θ)−Y 2(t +θ)|2α(dθ)

+
∫ 0
−T |Z1(t +θ)−Z2(t +θ)|2α(dθ),

for all t ∈ [0,T ],(Y 1,Z1),(Y 2,Z2)∈Rk×Rk×d ,(Y 1
t ,Z

1
t ),(Y

2
t ,Z

2
t )∈

L∞
−T (Rk)×L2

−T (Rk×d).
Assumption (H3)

E
∫ T

0 | f (t,0,0,0,0)|2dt < ∞,E
∫ T

0 |g(t,0,0,0,0)|2dt < ∞.

Assumption(H4)

f (t, ·, ·, ·, ·) = 0,g(t, ·, ·) = 0,

for t < 0.

Assumption (H5): There exists a positive constant K5 such that

| f (Y,Z)|2 ∨|g(Y,Z)|2 ≤ K5(1+ |Y |2 + |Z|2),

where a∨b = max{a,b}.

3. A numerical scheme for BDSDDEs

In this section, we propose a numerical scheme is based upon a
descretization of (1). Moreover, for all integers n, l ≥ 1 and t ∈
[0,T ], let

−τ = t−l < t−l+1 < · · ·< 0 = t0 < t1 < · · ·< tn = T

be a partition of [−τ,T ], and denote

δ =△ti+1 = ti+1 − ti = T
n ,1 ≤ i ≤ n,△Bti+1 =

Bti+1 −Bti ,△Wti+1 =Wti+1 −Wti ,

where i = 0,1, ·, ·, ·,n−1, and △t = max−τ≤i≤n−1△ti. Now, on the
small interval [ti, ti+1] the equation

Yti =Yti+1 +
∫ ti+1

ti
f (s,Y (s),Z(s),Ys,Zs)ds+

∫ ti+1

ti
g(s,Y (s),Z(s),Ys,Zs)dB(s)

−
∫ ti+1

ti
Z(s)dW (s). (3)

We can be approximated by the discrete equation

Y n
ti = Y n

ti+1
+ f (ti,Y n

i (t),Z
n
i (t),Y

n
i (t +θ),Zn

i (t +θ))δ +
g(ti,Y n

i (t),Z
n
i (t),Y

n
i (t +θ),Zn

i (t +θ))△Bi+1 −Zn
i (t)△Wi+1,

with Y (T ) = ξ (T ) on −T ≤ t ≤ 0. Therefore, we consider a class
of BDSDDEs as the form

Y n
i (t) = ξ (T )+

∫ T
0 f (s,Y n

i (s),Z
n
i (s),Y

n
i (s+θ),Zn

i (s+θ))ds+∫ T
0 g(s,Y n

i (s),Z
n
i (s),Y

n
i (s+θ),Zn

i (s+θ))dB(s)−
∫ T

0 Zn
i (s)dW (s).

Now, let us define the Euler-Maruyama approximate solution by

Ỹ (t) = ξ (T )+
∫ T

0
f (s,Ỹ (s), Z̃(s),Ỹ (s+θ), Z̃(s+θ))ds

+
∫ T

0
g(s,Ỹ (s), Z̃(s),Ỹ (s+θ), Z̃(s+θ))dB(s)−

∫ T

0
Z̃(s)dW (s).

(4)

Now, we present some Lemmas that useful for our work.
Lemma 3.1
Assume the assumptions (H1)-(H2) are fulfilled, then it holds that

E
[

sup0≤t≤T |Y (t)|2 +
∫ T

0 |Z(t)|2dt
]
≤CM,

where M = E
[
|ξ |2 +

∫ T
0 | f (s,o,o,o,o)|2ds+

∫ T
0 |g(s,o,o,o,o)|2ds

]
.

Proof. By applying Itô′s formula |Y (t)|2, we have that

|Y (t)|2 +
∫ T

0 |Y (s)|2ds+
∫ T

0 |Z(s)|2ds ≤
|ξ |2 +2

∫ T
0 ⟨Y (s), f (s,Y (s),Z(s),Ys,Zs)⟩ds+∫ T

0 |g(s,Y (s),Z(s),Ys,Zs)|2ds+
2
∫ T

0 ⟨Y (s),g(s,Y (s),Z(s),Ys,Zs)dB(s)⟩−2
∫ T

0 ⟨Y (s),Z(s)dW(s)⟩,

where t ∈ [0,T ]. By using Young’s inequality and assumption (H2),
we get that
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2
∫ T

0 ⟨Y (s), f (s,Y (s),Z(s),Ys,Zs)⟩ds ≤
γ
∫ T

0 |Y (s)|2ds+ 1
γ
∫ T

0 | f (s,Y (s),Z(s),Ys,Zs)|2ds ≤

γ
∫ T

0 |Y (s)|2ds+ 3
γ
∫ T

0 | f (s,0,0,0,0)|2ds+ 6K2
2

γ
∫ T

0 (|Y (s)|2 +
|Z(s)|2)ds+ 3K4

γ
∫ T

0
∫ 0
−T (|Y (s+θ)|2 + |Z(s+θ)|2)α(dθ)ds

and ∫ T
0 |g(s,Y (s),Z(s),Ys,Zs)|2ds ≤

6K2
3
∫ T

0 (|Y (s)|2 + |Z(s)|2)ds+3
∫ T

0 |g(s,0,0,0,0)|2ds+
3K4

∫ T
0
∫ 0
−T (|Y (s+θ)|2 + |Z(s+θ)|2)α(dθ)ds.

By changing of integration order argument, we obtain that∫ T
0
∫ 0
−T |Y (s+θ)|2α(dθ)ds =

∫ 0
−T

∫ T
0 |Y (s+θ)|2dsα(dθ) =∫ 0

−T
∫ T+θ

θ |Y (t)|2dtα(dθ)≤ β
∫ T

0 |Y (t)|2dt

and∫ T
0
∫ 0
−T |Z(s+θ)|2α(dθ)ds =

∫ 0
−T

∫ T
0 |Z(s+θ)|2dsα(dθ) =∫ 0

−T
∫ T+θ

θ |Z(t)|2dtα(dθ)≤ β
∫ T

0 |Z(t)|2dt,

where β =
∫ 0
−T α(dθ).Therefore, we drive that

|Y (t)|2 +
∫ T

0 |Y (s)|2ds+
∫ T

0 |Z(s)|2ds ≤ |ξ |2 + γ
∫ T

0 |Y (s)|2ds

+
6K2

2
γ

∫ T
0 (|Y (s)|2 + |Z(s)|2)ds+ 3

γ
∫ T

0 | f (s,0,0,0,0)|2ds

+3
∫ T

0 |g(s,0,0,0,0)|2ds+6K2
3
∫ T

0 (|Y (s)|2 + |Z(s)|2)ds

+

(
3K4β

γ +3K4β
)∫ T

0 (|Y (s)|2 + |Z(s)|2)ds

+2
∫ T

0 ⟨Y (s),g(s,Y (s),Z(s),Ys,Zs)dB(s)⟩
−2

∫ T
0 ⟨Y (s),Z(s)dW(s)⟩.

By taking the expectation and t = 0, we obtain that

E|Y (0)|2 +C1E
∫ T

0 |Y (s)|2ds+C2E
∫ T

0 |Z(s)|2ds ≤
E|ξ |2 + 3

γ E
∫ T

0 | f (s,0,0,0,0)|2ds+3E
∫ T

0 |g(s,0,0,0,0)|2ds,

where C1 = 1− γ − 6K2
2

γ − 3K4β
γ −3K4β −6K2

3 ,C2 = ε − γ − 6K2
2

γ −
3K4β

γ −3K4β −6K2
3 ,ε > 0. For sufficiently small K4 and K3, choos-

ing ε > 0 and γ > 0 such that C1 > 0 and C2 > 0, then there exists a
constant C > 0 depending on ε,γ,K2,K3,K4 and β such that

E
∫ T

0 |Y (s)|2ds+E
∫ T

0 |Z(s)|2ds ≤

C
{

E|ξ |2 +E
∫ T

0 | f (s,0,0,0,0)|2ds+E
∫ T

0 |g(s,0,0,0,0)|2ds
}
.

Therefore, for γ choosing above, we obtain that

sup0≤t≤T |Y (t)|2 ≤
|ξ |2 + 3

γ
∫ T

0 | f (s,0,0,0,0)|2ds+3
∫ T

0 |g(s,0,0,0,0)|2ds

+2sup0≤t≤T |
∫ T

0 ⟨Y (s),g(s,Y (s),Z(s),Ys,Zs)dB(s)⟩|
+2sup0≤t≤T |

∫ T
0 ⟨Y (s),Z(s)dW(s)⟩|.

Now, by Young’s inequality and Burkholder-Davis-Gundy inequal-
ity, together with above inequality and assumption (H2), there exists
a constant r1 > 0 such that

2E
[

sup0≤t≤T |
∫ T

0 ⟨Y (s),g(s,Y (s),Z(s),Ys,Zs)dB(s)⟩|
]
≤

r1

[
λ1E

(
sup0≤t≤T |Y (t)|2

)
+

6K2
3+3K4β

λ1
E
∫ T

0 |Z(s)|2ds

+ 3
λ1

E
∫ T

0 |g(s,0,0,0,0)|2ds
]
.

Similarly, there exists a constant r2 > 0 such that

2E
[

sup0≤t≤T |
∫ T

0 ⟨Y (s),Z(s)dW(s)⟩|
]
≤

r2

[
λ2E(sup0≤t≤T

∫ T
0 |Y (s)|2ds)+ 1

λ2
E(

∫ T
0 |Z(s)|2ds)

]
,

where λ1,λ2 > 0. Then, choosing λ1 = 1
3r1

and λ2 = 1
3r2

, for suf-
ficiently small K3 > 0 and K4 > 0, there exists a constant C > 0
depending on ε,γ,K3,K4,β ,r1 and r2 such that

E
[

sup0≤t≤T |Y (t)|2 +
∫ T

0 |Z(s)|2ds
]
≤

CE
[
|ξ |2 +

∫ T
0 | f (s,0,0,0,0)|2ds+

∫ T
0 |g(s,0,0,0,0)|2ds

]
.

Hence, the proof is complete.

Lemma 3.2
Under assumption (H5), for every p ≥ 2, there exists a positive con-
stant M1, such that

E
(

sup−τ≤s≤T |Y (s)|p
)
≤ M1

and

E
(

sup−τ≤s≤T |Z(s)|p
)
≤ M2.

Proof. For any 0 ≤ s ≤ t ≤ T , we get from Eq. (1)

sup0≤s≤T |Y (s)| ≤ sup0≤s≤T |ξ (T )+
∫ T

0 f (Y (s),Z(S),Ys,Zs)ds
+
∫ T

0 g(Y (s),Z(S),Ys,Zs)dB(s)−
∫ T

0 Z(s)dW(s)|.

By taking the expectation, we obtain that

E
(

sup0≤s≤T |Y (s)|p
)
≤

E
[

sup0≤s≤T |ξ (T )+
∫ T

0 f (Y (s),Z(S),Ys,Zs)ds

+
∫ T

0 g(Y (s),Z(S),Ys,Zs)dB(s)−
∫ T

0 Z(s)dW(s)|p
]
.

Thanks to inequality

|a+b+ c+d|p ≤ 4p−1(|a|p + |b|p + |c|p + |d|p),

we have that

E
(

sup0≤s≤T |Y (s)|p
)
≤ 4p−1

{
E|ξ (T )|p

+E
[

sup0≤s≤T |
∫ T

0 f (Y (s),Z(S),Ys,Zs)ds|p
]

+E
[

sup0≤s≤T |
∫ T

0 g(Y (s),Z(S),Ys,Zs)dB(s)|p
]

+E
[

sup0≤s≤T |
∫ T

0 Z(s)dW(s)|p
]}

.

The Hölder inequality and assumption (H5) imply that

E
[

sup0≤s≤T |
∫ T

0 f (Y (s),Z(S),Ys,Zs)ds|p
]
≤

T p−1E
∫ T

0 | f (Y (s),Z(S),Ys,Zs)|pds ≤
T p−1E

∫ T
0 K

p
2

1 (1+ |Y (s)|2 + |Z(s)|2 + |Ys|2 + |Zs|2)
p
2 ds ≤

T p−1E
∫ T

0 K
p
2

1

(
1+2sup0≤s≤T |Y (s)|2+2sup0≤s≤T |Z(s)|2

) p
2

ds ≤

2
p−2

2 K
p
2

1 T p +2p−1K
p
2

1 T p−1 ∫ T
0 E

[
sup0≤s≤T |Y (s)|p

]
ds

+2p−1K
p
2

1 T p−1 ∫ T
0 E

[
sup0≤s≤T |Z(s)|p

]
ds.

By Burkholder-Davis-Gundy inequality ( Theorem 1.7.3 in [16])
and assumption (H5), we have that
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E
[

sup0≤s≤T |
∫ T

0 |g(Y (s),Z(S),Ys,Zs)dB(s)|p
]
≤[

pp+1

2(p−1)p−1

] p
2

E[
∫ T

0 |g(Y (s),Z(S),Ys,Zs)|2ds]
p
2 ≤[

pp+1

2(p−1)p−1

] p
2

T
p−2

2 E[
∫ T

0 |g(Y (s),Z(S),Ys,Zs)|pds]≤

2
p−2

2 K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p
2

+2p−1K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p−2

2
∫ T

0 E
[

sup0≤s≤T |Y (s)|p
]

ds

+2p−1K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p−2

2
∫ T

0 E
[

sup0≤s≤T |Z(s)|p
]

ds.

Therefore, we have that

E[sup0≤s≤T |
∫ T

0 Z(s)dW(s)|p]≤
∫ T

0 E[sup0≤s≤T |Z(s)|p]ds.

It following from above, we deduce that

E
(

sup0≤s≤T |Y (s)|p
)
≤ 4p−1E|ξ (T )|p +4p−12

p−2
2 K

p
2

1 T p

+4p−12p−1K
p
2

1 T p−1 ∫ T
0 E

[
sup0≤s≤T |Y (u)|p

]
ds

+4p−12p−1K
p
2

1 T p−1 ∫ T
0 E

[
sup0≤s≤T |Z(u)|p

]
ds

+4p−12
p−2

2 K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p
2

+4p−12p−1K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p−2

2
∫ T

0 E
[

sup0≤s≤T |Y (u)|p
]

ds

+4p−12p−1K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p−2

2
∫ T

0 E
[

sup0≤s≤T |Z(u)|p
]

ds

+4p−1 ∫ T
0 E

[
sup0≤s≤T |Z(s)|p

]
ds.

Now, we assume that

C =

max
{

4p−1,4p−12
p−2

2 K
p
2

1 T p,4p−12p−1K
p
2

1 T p−1,4p−12p−1K
p
2

1 T p−1

,4p−12
p−2

2 K
p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p
2 ,4p−12p−1K

p
2

1

[
pp+1

2(p−1)p−1

] p
2

T
p−2

2

}
.

Therefore, we have that

E
(

sup0≤s≤T |Y (s)|p
)
≤CE|ξ (T )|P +C

+2C
∫ T

0 E
(

sup−τ≤u≤s |Y (u)|p
)

ds+C
∫ T

0 E
(

sup0≤s≤T |Z(u)|p
)

ds

+C+C
∫ T

0 E
(

sup0≤s≤T |Z(u)|p
)

ds+
∫ T

0 E
(

sup0≤s≤T |Z(s)|p
)

ds

≤CE|ξ (T )|p +2C+2C
∫ T

0 E
(

sup0≤s≤T |Y (u)|p
)

ds

+3C
∫ T

0 E
(

sup0≤s≤T |Z(s)|p
)

ds.

Notice that

E
(

sup−τ≤s≤T |Y (s)|p
)
≤ E||ξ ||p ∨E

(
sup0≤s≤T |Y (s)|p

)
,

we have that

E
(

sup−τ≤s≤T |Y (s)|p
)
≤ 2C+CE||ξ (T )||p

+2C
∫ T

0 E
(

sup0≤s≤T |Y (u)|p
)

ds+3C
∫ T

0 E
(

sup0≤s≤T |Z(s)|p
)

ds

≤ 2C+CE||ξ (T )||p +C1

[
(
∫ T

0 E
(

sup0≤s≤T |Y (s)|2
)

ds)
p
2

+(
∫ T

0 E
(

sup0≤s≤T |Z(s)|2
)

ds)
p
2

]
,

where C1 ≥ 5C. From Lemma (3.1), we obtain that

E
(

sup−τ≤s≤T |Y (s)|p
)
≤ 2C+CE||ξ (T )||p +C1CM,

with M1 = 2C + 3CC1M + 2CE||ξ ||peCT , we have the result, and
consequently, we deduce that

E
(

sup−τ≤s≤T |Z(s)|p
)
≤ M2.

In this point, we consider the following equation on the small inter-
val [ti, ti+1]

Yti = Yti+1 +
∫ ti+1

ti f (s,Y (s),Z(s),Ys,Zs)ds+∫ ti+1
ti g(s,Y (s),Ys)dB(s)−

∫ ti+1
ti Z(s)dW (s).

Now, we present the approximating solution as follows

Zti =
1

△ti+1
E[(Yi+1(t)+g(ti+1,Yi+1(t),Yi+1(t+θ))△Bi+1)△Wi+1],

(5)

and

Yti = E[Yi+1(t)+g(ti+1,Yi+1(t),Yi+1(t +θ))△Bi+1]

+ f (ti,Yi(t),Zi(t),Yi(t +θ),Zi(t +θ))△ti+1. (6)

4. Representation results for BDSDDEs

This section is devoted to the study of the approximated solution of
BDSDDEs converges to the exact solution under Lipschitz condi-
tion. The main result of this section is the following
Theorem 4.1
Suppose that assumption (H2) is fulfilled. For each 1 ≤ i ≤ n, then
it holds that

lim△ti+1→0 E
[

max1≤i≤n supti≤t≤ti+1
|Yi(t)− Ỹi(t)|2

+∑n
i=1

∫ ti+1
ti |Zi(s)− Z̃i(s)|2ds

]
< ∞,

where E
[

max1≤i≤n supti≤t≤ti+1
|Yi+1(t)− Ỹi+1(t)|2

]
< ∞.

Proof. In the beginning, we take the first term
E[max1≤i≤n supti≤t≤ti+1

|Yi(t) − Ỹi(t)|2], and from equation
(6)

|Yi(t)− Ỹi(t)|= |E[Yi+1(t)− Ỹi+1(t)
+(g(ti+1,Yi+1(t),Yi+1(t +θ))

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ)))△Bi+1]
+( f (ti,Yi(t),Zi(t),Yi(t +θ),Zi(t +θ))

− f (ti,Ỹi(t), Z̃i(t),Ỹi(t +θ), Z̃i(t +θ)))△i+1|.

Using elementary inequality |a+b|2 ≤ 2(|a|2 + |b|2), we have that

|Yi(t)− Ỹi(t)|2 ≤ 2E|Yi+1(t)− Ỹi+1(t)
+(g(ti+1,Yi+1(t),Yi+1(t +θ))

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ)))△Bi+1|2
+2|( f (ti,Yi(t),Zi(t),Yi(t +θ),Zi(t +θ))

− f (ti,Ỹi(t), Z̃i(t),Ỹi(t +θ), Z̃i(t +θ)))△i+1|2 ≤
4E|Yi+1(t)− Ỹi+1(t)|2 +4E|(g(ti+1,Yi+1(t),Yi+1(t +θ))

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ)))△Bi+1|2
+2△2

i+1| f (ti,Yi(t),Zi(t),Yi(t +θ),Zi(t +θ))
− f (ti,Ỹi(t), Z̃i(t),Ỹi(t +θ), Z̃i(t +θ))|2.

By taking the expectation, we get that
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E|Yi(t)− Ỹi(t)|2 ≤ 2E
[
E|Yi+1(t)− Ỹi+1(t)|2

]
+4E

[
E|(g(ti+1,Yi+1(t),Yi+1(t +θ))

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ)))|2
]
E|△Bi+1|2

+2△2
i+1E| f (ti,Yi(t),Zi(t),Yi(t +θ),Zi(t +θ))

− f (ti,Ỹi(t), Z̃i(t),Ỹi(t +θ), Z̃i(t +θ))|2.

By using assumption (H2), we have that

E|Yi(t)− Ỹi(t)|2 ≤ 2E|Yi+1(t)− Ỹi+1(t)|2
+4△i+1E(K3|Yi+1(t)− Ỹi+1(t)|2

+K4
∫ 0
−T |Yi+1(t +θ)− Ỹi+1(t +θ)|2α(dθ))

+2△2
i+1E

[
K2(|Yi(t)− Ỹi(t)|2 + |Zi(t)− Z̃i(t)|2)

+K4(
∫ 0
−T |Yi(t +θ)− Ỹi(t +θ)|2α(dθ)

+
∫ 0
−T |Zi+1(t +θ)− Z̃i+1(t +θ)|2α(dθ))

]
.

Therefore, we have that

E|Yi(t)− Ỹi(t)|2 −2△2
i+1K2E|Yi(t)− Ỹi(t)|2 ≤

2E|Yi+1(t)− Ỹi+1(t)|2 +4△i+1K3E|Yi+1(t)− Ỹi+1(t)|2
+4△i+1K4E

∫ 0
−T |Yi+1(t +θ)− Ỹi+1(t +θ)|2α(dθ)

+2△2
i+1K2E|Zi(t)− Z̃i(t)|2

+2△2
i+1K4E

∫ 0
−T |Yi(t +θ)− Ỹi(t +θ)|2α(dθ)

+2△2
i+1K4E

∫ 0
−T |Zi(t +θ)− Z̃i(t +θ)|2α(dθ).

And then, we get that

(1−2△2
i+1)E|Yi(t)−Ỹi(t)|2 ≤ (2+4△i+1K3)E|Yi+1(t)−Ỹi+1(t)|2

+2△2
i+1K2E|Zi(t)− Z̃i(t)|2

+(4△i+1K4 +2△2
i+1K4)E

∫ 0
−T |Yi(t +θ)− Ỹi(t +θ)|2α(dθ)

+2△2
i+1K4E

∫ 0
−T |Zi(t +θ)− Z̃i(t +θ)|2α(dθ).

Now, we take the following

|Zti − Z̃ti | ≤ | 1
△i+1

E[((Yi+1(t)− Ỹi+1(t))
+(g(ti+1,Yi+1(t),Yi+1(t +θ)

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ)))△Bi+1)△Wi+1]|.

Using elementary inequality |a+b|2 ≤ 2(|a|2 + |b|2), we get that

|Zi(t)− Z̃i(t)|2 ≤ 2
△2

i+1
E|Yi+1(t)− Ỹi+1(t)|2E|△Wi+1|2

+ 2
△2

i+1
E|g(ti+1,Yi+1(t),Yi+1(t +θ))

−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ))|2E|△Bi+1|2E|△Wi+1|2.

By taking the expectation, we have that

E|Zi(t)− Z̃i(t)|2 ≤ 2
△i+1

E|Yi+1(t)− Ỹi+1(t))|2

+2E|g(ti+1,Yi+1(t),Yi+1(t +θ))−g(ti+1,Ỹi+1(t),Ỹi+1(t +θ))|2.

By using assumption (H2), we deduce that

E|Zi(t)− Z̃i(t)|2 ≤ 2
△i+1

E|Yi+1(t)− Ỹi+1(t))|2 +2E(K3|Yi+1(t)

−Ỹi+1(t)|2)+2K4E
∫ 0
−T |Yi+1(t +θ)− Ỹi+1(t +θ)|2α(dθ).

From above inequality, we have that

(1−2△2
i+1)E|Yti − Ỹti |2 ≤ (2+4△i+1K3)E|Yi+1(t)− Ỹi+1(t))|2

+2△2
i+1K2

[
2

△i+1
E|Yi+1(t)− Ỹi+1(t)|2 +2E(K3|Yi+1(t)

−Ỹi+1(t)|2)+2K4E
∫ 0
−T |Yi+1(t +θ)− Ỹi+1(t +θ)|2α(dθ)

]
+(4△i+1K4 +2△2

i+1K4)E
∫ 0
−T |Yi(t +θ)− Ỹi(t +θ)|2α(dθ)

+2△2
i+1K4E

∫ 0
−T |Zi(t +θ)− Z̃i(t +θ)|2α(dθ).

Therefore, we have that

E|Yti − Ỹti |2 ≤
2+4△i+1K3+4△i+1K2+2K3

1−2△i+1
2 E|Yi+1(t)− Ỹi+1(t)|2

+
4△2

i+1K2K4+4△i+1K4+2△2
i+1K4

1−2△2
i+1

E
∫ 0
−T |Yi+1(t +θ)

−Ỹi+1(t +θ)|2α(dθ)+ 4△i+1K4+2△2
i+1K4

1−2△2
i+1

E
∫ 0
−T |Yi(t +θ)

−Ỹi(t +θ)|2α(dθ)+ 2△2
i+1K4

1−2△2
i+1

E
∫ 0
−T |Zi+1(t +θ)

−Z̃i+1(t +θ)|2α(dθ).

By taking the Limit, we get that

lim△i+1→0 E|Yti − Ỹti |2 ≤ (2+2K3)E|Yi+1(t)− Ỹi+1(t)|2.

Therefore, we have that

lim△i+1→0 E
[

max1≤i≤n supti≤t≤ti+1
|Yi(t)− Ỹi(t)|2

]
≤

(2+2K3)E
[

max1≤i≤n supti≤t≤ti+1
|Yi+1(t)− Ỹi+1(t)|2

]
< ∞.

By the same way above, we deduce that

lim△i+1→0 E
[

∑n
i=1

∫ ti+1
ti |Zi(s)− Z̃i(s)|2ds

]
< ∞.

Remark 4.2
Suppose that assumption (H2)-(H5) are fulfilled, we deduce that

lim△ti+1→0 E
[

max1≤i≤n supti≤t≤ti+1
|Yi(t)− Ỹi(t)|p

+∑n
i=1

∫ ti+1
ti |Zi(s)− Z̃i(s)|pds

] 1
p

< ∞,

for all p ≥ 2 and 1 ≤ i ≤ n.
Theorem 4.3
Suppose that assumption (H1)-(H5) are fulfilled.If the Lipschitz co-
efficients K2, K3 and K4 are small enough, then there exists a unique
solution of (2).

Proof. Existence. By Theorem 4.1, then there exist Y ∈ S2
T (Rk)

and Z ∈ H2
T (Rk×d) such that

limn→∞(Y n,Zn) = (Y,Z).

Then Lemma 3.2 and Theorem 4.1 show that

limn→∞(Y n)

in S2
T (Rk) and

limn→∞ E|Y n(t)−Y (t)|2 = 0,0 ≤ t ≤ T.

From Fatou’s Lemma, Lemma 3.1, Lemma 3.2 and Theorem 4.1,
we get the result.
Uniqueness. Let Y i(t),Zi(t)), i= 1,2 be two solutions of BDSDDE
(2). By Itô’s formula, we deduce that

|Y 1(t)−Y 2(t)|2 +
∫ T

t |Y 1(s)−Y 2(s)|2ds+
∫ T

t |Z1(s)−Z2(s)|2ds ≤
2
∫ T

t ⟨Y 1(s)−Y 2(s),( f (s,Y 1(s),Z1(s),Y 1(s+θ),Z1(s+θ))
− f (s,Y 2(s),Z2(s),Y 2(s+θ),Z2(s+θ)))⟩ds
+
∫ T

t | f (s,Y 1(s),Z1(s),Y 1(s+θ),Z1(s+θ))
− f (s,Y 2(s),Z2(s),Y 2(s+θ),Z2(s+θ))|2ds

+2
∫ T

t ⟨⟨Y 1(t)−Y 2(t),(g(s,Y 1(s),Z1(s),Y 1(s+θ),Z1(s+θ))
−g(s,Y 2(s),Z2(s),Y 2(s+θ),Z2(s+θ)))dB(s)⟩
−2

∫ T
t ⟨Y 1(s)−Y 2(s),(Z1(s)−Z2(s))dW(s)⟩.

As the same proof of Lemma 3.1, we have the result.
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