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Abstract

In the present paper, a numerical method is proposed for the numerical solution of a coupled system of KdV (CKdV) equation with ap-
propriate initial and boundary conditions by using collocation method with quintic B-spline on the uniform mesh points. The method is
shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms, are computed. Three invariants of
motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active
results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy

to apply. We make linearization for the nonlinear term.
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1. Introduction

The coupled Korteweg-de Vries equation (CKdV) has introduced
in 1981, by Hirota and Satsuma [1] as follows:

Ut —a (Uyyy +6Uuy )—2b v vy =0, 1)
Vi + Ve +3U vy =0. @)

Where and b are arbitrary constants and subscripts x and t denote
differentiation x distance and t time, is considered.
Boundary conditions

u(a,t)=fy(a,t),
v(a,t)=g1(t),
uy(a,t) =fz(a,t),
vy (a,t) =g3(at),

u(b, t) =f(b,1),

v(b,t) =gz (b, 1),
ux (b, t) =f4(b,1),
VX (bv t) = gA(b! t)x

0<t<T.

0<t<T.

(3)
And initial conditions.
u(x,0) =f(x),
v(x,0)=g(x), a<x<h. (4)

The CKdV has been also discussed numerically by many re-
searchers; Halim et al. [2], [3] have studied a numerical scheme
for CKdV systems. Ismail [4] discussed this system by using col-
location method and quintic splines but he hasn’t make lineariza-
tion of the nonlinear term, in this paper we solving the CKdV
equation by the same method but we take linearization of the non-
linear term we will see this linearization in section 3. Kaya and
Inan [5] studied this system by using Adomian decomposition
method. M. S. Ismail and H. A. Ashi, used a numerical solution

for Hirota-Satsuma CKdV Equation [6]. Assas [7] used variational
iteration method for solving this system. Abbasbandy [8] dis-
cussed the CKdV equation by using homotopy analysis method.
Wazwaz [9] produced a finite difference scheme for solving the
CKdV system. Kutluay and Ucar [10] solved the CKdV equation
by using a quadratic B-spline Galerkin approach. The numerical
solutions of coupled nonlinear systems are very important in ap-
plied science, for example, the coupled nonlinear Schrodinger
equation which admits soliton solution and it has many applica-
tions in communication and optical fibers; this system has been
discussed numerically by Ismail using finite difference and finite
element methods [11-13]. A finite element algorithm based on the
collocation method with trial functions taken as quintic B-spline
functions over the elements will be constructed. The quintic B-
spline basis together with finite element methods are shown to
provide very accurate solutions in solving some partial differential
equations and have been used before by several authors. In this
article we are going to derive a numerical solution of the CKdV
equations and to study the behavior of this solution for different
values of aand b . The brief outline of this paper is as follows. In
Section 2, quintic B-spline collocation scheme is explained. In
Sections 3 and 4, the method is described and applied to the
CKdV equation. In Section 5, stability of the method is discussed.
In Section 6, numerical examples are included to establish the
applicability and accuracy of the proposed method computational-
ly. Conclusion is given in Section 7 that briefly summarizes the
numerical outcomes.

2. Quintic b-spline functions

To construct numerical solution, consider nodal points (Xj,tn)

defined in the region [a,b]x[0,T] where
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a=XQ <X <..<XN =b,
b-a

h:XJ'_,_lej:—,

j=01...,N.
N

O=tp<ty<..<th <..<T,
tn =nAt, n=01... .

The quintic B-spline basis functions at knots are given by:

(x—xJ-_3)5, Xj-3 <X<Xj-2
(x—XJ,3)5—6(x—xI-,2)5, Xj-2 SX<Xjq
(X—XJ',3)5—
N
6(x—xJ_2) +
15(X—Xj_1)5, Xj-L SXEX;
5

o L EXEXGp3)

B](X)—h*S ; ®)
B(x-Xj+2)"-
15(x—x]-+1)5, Xj<X<Xjy
(x+xjyaP+
G(X*Xj+2)5v Xj#1 $X<Xjy2
(—X+Xj+3)5v Xj+2 SXSXjy3
0 otherwise

Using quintic B-spline basis function (5) the values of Bj(x) and

its derivatives at the knots points can be calculated, which are
tabulated in Table 1.

3. Solution of CKdV equation

To apply the proposed method, we rewrite (1) and (2) as

ou(x,t) _a ou(x,t) +6u(x.1) au(x,t) )
ot 6X3 ' OX
Zb[v(x,t) w} -0,
O.
ov(x,t) . ov(x,t) £30 (0 ov(x,1) _
ot X ' OX

0,

n
i
famous Cranck—Nicolson scheme and forward finite difference
approximation for the derivative t,[14]. We get

We take the approximations u(x,t) = U and v(x,t) :an , then from

Uxxx?+l+ Uxxxn
Ur_1+1_Un IR S I

J +
i i_, 2 .
K (U LUy
[ &
2
(VW] + (Vv (®)
2b f 1

n+l n n+1 n
Vj *Vj VxxxJ' +Vxxxj'

k 2

. ™
(UVX)?+ +(UVX)?
] [ —

2

Where k =At is the time step?

Table 1: The Values of Quintic B-Spline and Its First and Second Deriva-
tives at the Knots Points

X Xj-3  Xj—2  Xj1  Xj Xj+1 Xj+2  Xj+3
Bj o0 1 26 66 26 1 0
B] o0 5 50 05
h h h h
B o 20 4 20 4w 20
J h2 h2 h2 h2 h2
-60 120 120 60
Bj o 3 3 0 = = O
h h h h

In the Crank—Nicolson scheme, the time stepping process is half
explicit and half implicit. So the method is better than simple fi-
nite difference method.

The nonlinear terms in Eqgs. (6) and (7) is linearized using the
form given by Rubin and Graves [15] as: we take linearization of
the nonlinear term as follows

Vy )0 = UMy M g0y 0 gy, D
(V)] = UV T+ UV = UV

(VVX)?+1 :vj”vx?+1+vj”+1vx? VIV )

n+l_ Ny on+l gn+lg on_nggen
(UUX)J- —UJUxJ +UJ UXJ UJUxJ

Expressing U(x,t) and V(x,t) by using quintic B-spline functions
Bj(x) and the time dependent parameters ¢ i® and & j(®), for U(x, 1)

and V(x,t) respectively, the approximate solution can be written
as:

N+2 N+2
UN(O= 2 cj(0Bj00. VnGeD= 3 90 Bjeo) ©)
== ==

Using approximate function (9) and quintic B-spline functions (5),
the approximate values U(x), V(x) and their derivatives up to sec-

ond order are determined in terms of the time parameters cj(t) and
3(t), respectively, as
Uj=U(xj)=cj_p +26Cj_1 +66Cj+26Cjs1+Cj+2,
Ly 5
j=Uxp= H(CJ‘+2 +10cj4+1-10cj1 —C¢j-2),
w_ ey ey 20 . . . .
uj=u (xJ)=h—2(cJ_2 +2Cj_1—6Cj+2Cj4 +Cj42),
w_ gy 00 ) . .
Uy =U"(xj) =h—3(—cJ_2 +2Cj_1—2Cj11 +Cj12),
10
Vj=V(Xj)=8j_2+2608j1+660j+265j1+3;2, (10)
, 5
Vi=V'(xj) = H(8j+2 +108j41-108j-1 -8j-2),
" 20
Vi=V (Xj):h—z(Sj_z +208j1-608)+28j11+8j12).
Vi=V"(X;j _&0 Sj 23j 23j Sj
= (XJ)_hT”(_ j-2+28j-1 2841 +8j42)-

On substituting the approximate solution for U, Vv and its deriva-
tives from Eq. (10) at the knots in Egs. (6) and (7) yields the fol-
lowing difference equation with the variables cj(t) and 3j(t) -



International Journal of Applied Mathematical Research

125

n+1

n+l n+1 n+1
Aqc j+1 +

-2 +A20j_1 +A3cj +AyC
n+1 n+l n+1 n+1
A5cj+2 +A65j_2 +A76j—1 +A88j
n+1
6j+1
n
-1

sh+l_

+Ag 2=

n
+A10 Allcj—Z +
n

J

n

n
j+1 j

Ar2e j+2

+A13C; +Aq4C;, . +A5C

n+1 n+l n+1 n+1
B]_SJ-_Z + Bzéj_l + B38j + B48j+1 +

n+1 n+l n+1
855j+2 + BBCJ'_Z + B7Cj_1

n+l
j+1

+ BgCEHl

n+l n
+ BlOCj_:rz = A118j_2 +

n n n n
A128j_1 + A138j + A148j+1 + A158j+2’

+Bgc

Where

30aAt  15a At 15a At
- 7+ z
h3 h h
30aAt gl At, . jglSa AL,
h3 h h
15a At
h

A =1+ 1,

Ap=26-2

Ag = 6666 25,

30aAt 15a At 2 _1015a At 73
h3 h h '
30aAt_lsat, 158 At,
3 h h b
5b At 5b At
Ro=——p ut

Ag =26 5bhAt 24 +10 04t

Ag=26+2

A =1-

z3,

Ag :—66%24,

Ag = —26%24 —10%23,

A 775bAtz 75bAtZ
10 o 4 h 3
30aAt
A11=1—73»
h
30aAt
hs

A1 =26+2

A13 =66,
30aAt
h3
30aAt
hS

A14=26-2

A5 =1+

(11)

(12)

30At  15At
Bi=1-——-——13,
1 3 on A
By = 26+2°080 _1154t,
h3 2h
30At 15At
B3 =66, By =26-2——+10——121,
3 4 3 on 2
30At  15At
Bg =1+ ——+——11,
5 3 "o A
15At
Bg =——124,
6 2h 4
15At
B7 =26——124,
7 2h 4
15At
Bg =66——124,
8 2h 4
15At
Bg =26——124,
9 2h 4
15At
Bi1g =——123.,
10 2h 4
Br1=1, B2 =26,
B13 =66, B4 = 26, Bis =1,

21 =Cj_2 +26Cj_1 +66Cj+26Cj]+Cj42,

23 =Cj;2 +10cj11 -10cj_1 —Cj_2,
23=08j_2+268j1+668j+268j1+3j12,
24 =38j42+108j41-108j1 -38j-2,

The system thus obtained on simplifying Egs. (11) and (12) con-
sists of (2N+2) linear equations in the (2N +10) unknowns

T
(€_2,C_1,Cp -+ CNHCN1:CN42) s

T
(6-2,6-1,80, -+ ON: SN+1,ON+2) -

To obtain a unique solution to the resulting system four additional
constraints are required. These are obtained by imposing boundary

conditions. Eliminating €_2,C_1,CN+L:CN+2 and
8_2,8_1,8N41, SN2 the system get reduced to a matrix system of

dimension (2N +2)x (2N+2) which is the penta-diagonal system
that can be solved by any algorithm.

4. Initial values

To find the initial parameters c? and 6(]-) , the initial conditions and
the derivatives at the boundaries are used in the following way
(U kx0,0) = %(c2 +10¢, —10c_; —c_,) =0,

, 20
(U )(xO,O) = h_2(sz +2c_4 —6Cy +2Cj,1 +Cji2) =0,
(U )(xj,O) =Cj_p +26Cj_1 +66¢C; +
26Cj+1+cj+2 = 0,

, 5
(U )(XN ,0) = F(CN +2 +10CN g —
10cy 3 —Cn-2) =0,
(U ”XXN y O) = 5—2(0N72 —+ 20N71 — 6CN -+
2cN4+1+CN+2) =0,
(V" )(%g,0) = %(52 +106, -1065 4 —5_5) =0,

" 20
V" X%, 0) = h—z(élz +264 -

635y +25, +5,) =0,
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(V)(xj,0) =6, +265; 4+
665, +26 5,1+ 5,2 =0,

, 5
vV )oxn . 0) = F(5N+2 +108N 41 —
106N —N-2) =0,

" 20
V" )oxn,0) = h—2(5N72 +26N-1 — 60N
+20N41 +0N42) =0,

Which forms a linear block pintadiagonal system for unknown
initial conditions c? and 6?, of order (2N+2) after eliminating the

functions values of cand & . This system can be solved by any
algorithm. Once the initial vectors of parameters have been calcu-
lated, the numerical solution of the CKdV equation U and V can

be determined from the time evaluation of the vectors c? and 8? ,

by using the recurrence relations

U(xj,tn) =c]_, +26c] § +66¢] +26¢],; +c]

j J+ j+2'
. _<h n n n n
V(x],tn)_6j72+266j71+666j +268j+1+6j+2.

5. Stability analysis of the method

The stability analysis of nonlinear partial differential equations is
not easy task to undertake. Most researchers copy with the prob-
lem by linearizing the partial differential equation. Our stability
analysis will be based on the Von-Neumann concept in which the
growth factor of a typical Fourier mode defined as

™ = AC" explijo),
) 13)
8] =B¢" exp(ijo),

Where A and B are the harmonics amplitude, o=kh , k is the

mode number, i=+/~-1and
g is the amplification factor of the schemes. We will be applied
the stability of the quintic schemes by assuming the nonlinear term

as a constants A,A» . This is equivalent to assuming that all the c?

and 8? as a local constants1,2p respectively. Atx=xj systems
(11) and (12) can be written as

n+1 n+1 n+l n+l
alcj_2 +a20j_1 +a3cj +a4cj+1 +
n+l n+1 n+1
a5cj+2 +a68j72 +a75j71

n+l n+l

+ a86j+1 + a96j+2 = alOC?_g + (14)

n n n n
alch;l + alzcj + a13cj+1 + a14cj+2

n+1 n+1 n+l n+l
7a66j_2 7a76j_1 7&861-_'_1 —a96j+2,

Where

a] =1+

h3
60aAt

ap=26————+

h3
a3 =66,

aq =26+

h3

ag=1- 3

2 1500AL,
h
ag = 1500,
h
5bAt

ag :Tkz,

2

30aAt
ag=1-=—75—-
h3

aj1 =26+
h3

60aAt
h3

30aAt

gy =1+—5—+
h3

a13=26-

n+1 n+1
d15j_2 + d26j_1

n n
d56j72 + d48j71

Where

30At 15

dp=1

do :26+&§t7
h
d3 =66,
d4=26—£§t+
h
30At

60aAt _150aAt

30aAt  15aAt

h L
150aAt
h

M,

60aAt _ 150aAt

h L

30aAt _15aAt

15aAt

h L

M,
hoM

150aAt
h
15aAt

2000,
h 1

M,

n+l n+l
+d36j +d46j+1

n n
+d38j +d28j+1

At

e T}
h3 2h
150aAt

oh L

150At M,
2h

15At

dg =1+ —+——N\
5 3 on 1

ajp =66,

+d18

+ d56n+l =

+2 - (15)

j+2

Substituting (13) into the difference (14), we get

[A[2co0s2¢

sin2¢
Cn+1

2
+sin¢
2

+52¢0s ¢ +66]+

A[30a3At
h

25[%@]

[ 60aAt _15aAt
nd h

B (150tht kz)

15aAt
+

k]_]Jr
7»1J+
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[ A[2c0s2¢ +52c0s @ +66]+ ]

2A 30aAt+15aAt A |-
. h3 h
sin2¢

2B($x2)

_oa[B0RAL_ 1528, |
h3 h

28(150tht 7\2]

_X+iY

X-iY’ (16)

Where

=A[2c0s2¢+52c0s -+ 66|

And

sin 20| 2A 30aAt 15aAtX ZB(SbAtK j
h3 h h

i)

Similar substituting (13) into the difference (15), we get

+sin q{ —2A [—GOZN - —15;N M
h

[2cos2¢+52c0sp+66]+

. 30At | 15At
Cn+1 sin 24{ {hT ZhMD

2i
. 60At 15At
—sin — -\
d{[ hd  2h 1j]

A[2cos2¢+52¢0s ¢+ 66]+

Sm%{[?;om 1t J
n
S P

20

_X-iY
X+iY’

We get

(1)

Where
X =[2c0s2¢+52c0s ¢+ 66]

And

. 30At  15At

20| | T+ ——A
. d{( h3 2h 1]]

. 60At 15At
—sin —_— A\
4{ [ hd  2h 1D

From (16) and (17) we get |g|<1, hence the schemes are uncondi-

tionally stable. It means that there is no restriction on the grid size,
i.e. on hand At, but we should choose them in such a way that the
accuracy of the scheme is not degraded.

Y=2

6. Numerical Tests and Results of CKdV

equation

In this section, we present some numerical examples to test validi-
ty of our scheme for solving CKdV equation.
The norms Lp -norm and L, -norm are used to compare the nu-

merical solution with the analytical solution [16].

N
Lo =|u®-u- > 6 —u?,
=0 (18)
Lo :m@x‘qu 7uN, j=0,1,---,N.

]

Where uE is the exact solution u and uN
solution Uy .

is the approximation

And the quantities 17,1o and I3are shown to measure conserva-
tion for the schemes.

I1 =2 u(x,tydx =h Z( )

J_
n
u(x,t)2+ N u?4
Iy =[® dx=h Y
275l 200002 | M| 2
3
[ u(x, t)3—
A+a) ¢

— t
ZUX(X ) iy

b u(x,t)v(x,t)z—
| \vx (x,t)2

1+a) +
1

I3= Iiooo
(19)

hy ,
7 ove);-

Now we can studying our scheme from these problems.
6.1. Single soliton

Consider the CKdV equation (1) and (2) with the following initial
and boundary conditions:

u(x,0) =v(x,0) =0, as<x<h.
And

u(a,t)=0, u(b,t) =0,

v(a,t) =0, v(b,t) =0,

ux(a,t)=0, uy (b, t) =0,

vy (a,t) =0, vy (b, t)=0, O0<t<T.

The exact solution is



128

International Journal of Applied Mathematical Research

u(x,t) =222 sech?(z),
1
v(x,t)fmsech(i),

1
2log(w)

, 0<t<T, a<x<h

&zk(xszt)Jr

m:—ibll
8(4a-+1)1

Now we can take three cases with different values of the parame-
tersa,b.

Case one: we can take a=05b=-3,1=05h=0.1 k=0.01 and
—-25<x <25,

Case two: we can take a=-0.5b=3A=05 h=0.1 k=0.01 and
—25<x <25,

Case three: we can take a=-0.125b=-3,1=0.5 h=0.1, k=0.01
and -25< x < 25.

Then we can studying case by case.
Case one:

Now, for comparison, we consider a test problem where,
a=05b=-3A=05 h=0.1, k=0.01 and-25<x<25 . The sim-

ulations are done up to t=5. The invariant Iy, 1> and I3 approach
to zero. Errors, also, at time 5 are satisfactorily small Ly -error =

1.88599x10~° and Lo, -error =1.05770 x107% for approximation
solution of u(x,t) and Ly -error = 2.95667x10™° and L., -error =

857852 x107° for approximation solution of v(x,t) . Our results
are recorded in Table 2 and Table 3. The motion of solitary wave

(B)

04 f

03 v o

\
.
L}
.
L]
L}
L]
L]
L]
1)
Ll
L]
L]
Ll
L}
L]
1]
L]
.
1)
L)

r —_—t 5

02 -=t 10

01 f

00 L ‘ ‘ ; ‘

20 10 0 10 20
X

Fig. 1: Single Solitary Wave with
a=05b=-31=05h=01 k=001 and -25<x<25. t=0,510

Respectively.

Case two:
Now, for comparison, we consider a test problem where,
a=-05b=31=05 h=01 k=001and-25<x<25. The simula-

tions are done up tot=2. The invariant 11, Io and I3 approach to
zero. Errors, also, at time 5 are satisfactorily small L, -error =

7.00355 x10~/ and L, -error = 4.09784 x10~/ for approximation
solution of u(x,t) and Ly -error = 1.77647x109 and L, -error =

1.30660 x10~ for approximation solution of v(x,t) . Our results

are recorded in Table 4 and Table 5. The motion of solitary wave
using our scheme is plotted at times t=0,5,10 in Fig.2. These re-

sults illustrate that the scheme has a highest accuracy.

. X . - Table 4: Single Soliton (Conserved uantities) for t=5.0 |,
using our scheme is plotted at times t=0,5,10in Fig.1. These re- g ( Q )
. . a=-05b=3A1=05 h=0.1 k=0.01 and-25<x<25.
sults illustrate that the scheme has a highest accuracy.
T I Io I3
Table 2: Single Soliton (Conserved Quantities) for t=5.0 , 0.0 2.00000 0.10000 0.30000
a=05b=-31=05h=0.1 k=0.01 and-25<x <25. 1.0 2.00000 0.10000 0.30000
2.0 2.00000 0.10000 0.30000
T Iy 12 13 3.0 2.00000 0.10000 0.30000
0.0 2.00000 -0.33333 -0.10000 4.0 2.00000 0.10000 0.30000
1.0 2.00000 -0.33333 -0.10000 5.0 2.00000 0.10000 0.30000
2.0 2.00000 -0.33333 -0.10000
3.0 2.00000 -0.33333 -0.10000 Table 5: Lp - Norm and L, - Norm for t=20 |,
4.0 2.00000 -0.33333 -0.10000
5.0 2.00000 -0.33333 -0.10000 a=-05b=3A1=05 h=0.1 k=0.01 and-25<x<25.
u(x,t) v(x,t)
Table 3: Lp - Norm and L, - Norm for t=50 , Lo - norm Ly - norm Lo - norm Lo - norm
a=0.5b=-3A1=05 h=0.1 k=0.01 and -25<x<25. 0.0 0.00000000 0.00000000 0.00000000 0.00000000
a0 Voo D) 05 4.15923E-7 2.96761E-7 9.64209E-7  7.91019E-7
' ' 1.0 5.59712E-7 3.42588E-7 1.34329E-6  1.03821E-6
L2 - norm Loo - norm Lo-norm Ly -norm 15 6.41255E-7 3.75058E-7 157957E-6  1.10122E-6
0.0 0.00000000 0.00000000 0.00000000  0.00000000 2.0 7.00355E-7 4.09784E-7 1.77647E-6 _ 1.30660E-6
1.0 6.06802E-7 3.97188E-7 4.43377E-6  3.02357E-6
2.0 8.99862E-7 5.47651E-7 6.08938E-6  3.83209E-6 (A)
3.0 1.18161E-6 6.89839E-7 7.21810E-6  4.73962E-6 05 [ Y B
4.0 1.28135E-6 6.98286E-6 1.06873E-5 2.21990E-6 H
5.0 1.88599E-6 1.05770E-6 2.95667E-5 8.57852E-5 04l H ]
L [ ]
.
A . H
05 F ( ) q 0.3 ; 00 : i
= r —_t 5 H
04 ] 02 [ ——t 10 ' ]
| ]
i H
L ] 01 - B
0.3 r t o L “
= —t' 5 >

==1 10

01|

0.0 |-

00 [
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— —(B) _
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Fig. 2: Single Solitary Wave with . . X .
Fig. 3: Single Solitary Wave with
= =3 A= = = —25<x<25. t=
a=-05b=32=05h=0L k=001 and -25<x<25 1t=0510 .7 415 33 _05 h-01 k=001 and -25<x<25. t=0510
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Respectively.
Case three:

Now, for comparison, we consider a test problem where,
a=-0.125b=-3,4=05 h=01 k=001 and -25<x<25 . The

simulations are done up to t=1.5. The invariant I, 1> and I3
approach to zero. Errors, also, at time 5 are satisfactorily small Ly

-error =2.97019x10 % and L., -error =8.94033 x10~° for approxi-
mation solution of u(x,t) and Ly -error = 9.91664x10~/ and Lo -

error = 7.21469 x10~ for approximation solution of v(x,t) . Our
results are recorded in Table 6 and Table 7. The motion of solitary
wave using our scheme is plotted at times t=0,5,10 in Fig.3. These

results illustrate that the scheme has a highest accuracy.
Table 6:

Single Soliton

Table 8: Comparison of Numerical Results of the Problem (1) with the
Results Obtained from [16] and [6] for the Variable u and v with,
a=05b=-31=05 -25<x<25att=1.

u(x,t) v(x,1)

Schemesatt=1 Ly- Lo - Lp- Lo -

norm norm norm norm
our scheme
Petrov-Galerkin [6] 0.000000  0.000000  0.000004  0.000003
Product approxima- - 0.000051 - 0.000027
tion [6] - 0.000014 - 0.000019
Collocation (Ismail - 0.000000 - 0.000003
[4)

(Conserved Quantities) for t=5.0 ,
a=-0.125,b=-3,A=0.5,h=0.1, k=0.01 and -25<x < 25.
T Ih Iy I3
0.0 2.00000 0.50000 0.15000
1.0 2.00000 0.50000 0.15000
2.0 2.00000 0.50000 0.15000
3.0 2.00000 0.50000 0.15000
4.0 2.00000 0.50000 0.15000
5.0 2.00000 0.50000 0.15000
Table 7: Lp - Norm and L, - Norm for t=15 ,
a=-0.125,b=-3,12=0.5,h=0.1, k=0.01 and -25<x < 25.
u(x,t) v(x,t)
Lo - norm Ly - NOrm Lo - norm Ly - NOrm
0.0 0.00000000 0.00000000 0.00000000 0.00000000
0.5 1.65004E-7 1.42865E-7 6.06562E-7 5.17435E-7
1.0 2.92610E-7 1.88360E-7 8.43919E-7 6.79108E-7
15 2.97019E-6 8.94033E-6 9.91664E-7 7.21469E-7
(A)
05 A Y 1
[ .
]
L .
04 r l. 4
L]
H
03 to H ]
= r —t 5 H
02 ¢ -=-t 10 H ]
.
L .
0.1 - % 4
A}
L
00 [ ‘ ‘ - :

In table 8 we show that our results are related with the results in
[4] and better than the results in [6].

6.2. Interaction of two solitary waves
The interaction of two solitary waves having different amplitudes
and traveling in the same direction is illustrated. We consider

CKdV equation with initial conditions given by the linear sum of
two well separated solitary waves of various amplitudes

uj(x,t) =2kj2 sechz(ﬁj),

Vj(x,t):z\/lw_jsech(gj),
(20)

%ZM(*H)*W((D])'

-b

8(4a+1)rj*

0j= as<x<h.

Where j=1,2, Ajand yjare arbitrary constants. In our computa-
tional work. Now, we choose A1=0.9, 1y =05y;=-5 y2=5

a=05b=-3h=01 k=0.01with interval [-25, 25]. In Figs. 3

and 4, the interactions of these solitary waves are plotted at differ-
ent time levels.
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A) uJ-(x,t)=2kj2 sechz(éj),
15 T 1
Vi(x,t)=——=sech(&;i],
0=, o (&)
of ] (21)
10 E)J':Xj(xfyj)+7,
= 2|og(mj)
—t 0 -b
05 1 Of=————7, as<x<h
8(4a+1)1j
0ot ‘ ‘ ‘ ‘ = Where j=1,2,3, Aj and yjare arbitrary constants. In our computa-
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6.3. Interaction of three solitary waves 20 10 0 10 20

The interaction of two solitary waves having different amplitudes
and traveling in the same direction is illustrated. We consider
CKdV equation with initial conditions given by the linear sum of
three well separated solitary waves of various amplitudes
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Fig. 6: Interaction Three Solitary Waves with

M =1 212 =0.9,A3=0.8y; =-20, yp =-16,
yp =—-12,h=0.1k=0.01, —25<x<25at Time t=40 for Values u and
v Respectively.

7. Conclusions

In this paper a numerical treatment for the nonlinear CKdV equa-
tion is proposed using a collection method with the quintic B-
splines. The stability analysis of the method is shown to be un-
conditionally stable. We make linearization for the nonlinear term.
We tested our schemes through a single solitary wave in which the
analytic solution is known, then extend it to study the interaction
of solitons where no analytic solution is known during the interac-
tion. The accuracy of our scheme was shown by calculating error
norms Lo and L, this document can be used as a template for

Microsoft Word versions 6.0 or later. Do not submit papers writ-
ten with other editors than MS Word, it will not be accepted for
review. Save the files to be compatible with many versions of
MSWord (avoid other document extension than *.doc, *.docx or
*.rtf). Do not submit papers without performing a carefully spell-
check and English language grammar check. The style from these
instructions will adjust your fonts and line spacing. Please do not
change the font sizes or line spacing to squeeze more text into a
limited number of pages.
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