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Abstract

The aim of this paper is twofold first we will provide a numerical solution of the Navier Stokes equation using the Projection technique and
finite element method. The problem will be introduced in weak formulation and a Finite Element method will be developed, then solve in a
fast way the sparse system derived. Second, the projection method with Control volume approach will be applied to get a fast solution, in
iterations count.
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1. Introduction

We consider a fairly general version of the Navier Stokes equations,
but we will explain the steps involved in simplifying those equations
so that they are appropriate for the problems we actually wish to
consider, namely steady state, incompressible flow in a two dimen-
sional region, for example in [13], the author discuss the solution
of the steady convection-diffusion equation as well as the solution
of the steady, incompressible Navier Stokes equation. The additive
Schwartz method was used with domain decomposition method to
to solve the Navier Stokes equation, see [14]. We will consider the
Navier equation or system of diffusion equation might be solved. Let
us consider the numerical integration of the Navier-Stokes equations
describing transient incompressible fluid flows in primitive variables
subject to body forces f .

∂tu+u.∇u+∇P−ν∆u = f , ∇.u = 0 in Ω×]0,T [
ut=0 = u0
ut=T = u1

The terms:

• ∂tu : variation
• u.∇u : Convection term
• ∂tu+u.∇u: Inertia per volume
• ν∆u Diffusion term
• P(x, t) is the pressure
• u0: is a smooth initial velocity
• f is a smooth function (C ∞)
• ∇.u = 0: the incompressibility condition or the continuity equa-

tion.

The variable P(x, t) is necessary to impose the incompressibility
condition ∇.u = 0. This set of equations is solved with appropriate

initial and boundary conditions. We will consider only homoge-
neous Dirichlet boundary conditions. Initial conditions will provide
an incompressible velocity field at the beginning of the time integra-
tion. With the superscript 0 for this initial field. In Navier-Stokes
equations, the nonlinear advection terms account some difficulties
in the mathematical analysis of their solutions and in the numerical
integration process because they generate qualitative change of the
solutions in the phase space (called bifurcations), transition, and,
eventually, turbulence. The existence and uniqueness proofs of the
solutions of the Navier-Stokes equations have been investigated by
physicists, fluid dynamistic, and mathematicians since the early 19th
century, when those equations were derived. The books by Galdi
[1] and Témam [2] summarize the state of the art in this domain
and also introduce the reader to challenging open questions. In [7],
Chorin present a numerical solution of incompressible viscous flow.
Chorin use the velocities and the pressure as variables and is equally
applicable to problems in two and three dimensions, the method used
is based on artificial compressibility parameter into the motion and
the final solution is independent of this parameter. The method using
the velocities and pressure in two dimensional incompressible flow
problems have previously presented, for example in [8] the authors
give a procedure which appears quite natural and may indeed in
their problem be quite appropriate. In [9], the ICE technique for
numerical fluid dynamics has been revised considerably, and gen-
eralized in such a way as to extend the applicability to fluid flows
with arbitrary equation of state and the full viscous stress tensor. The
method is useful for the numerical solution of time-dependent fluid
flow problems in several space dimensions, for all Mach numbers
from zero (incompressible limit) to infinity (hypersonic limit). In
this paper, our goal is to extend and improve previous technique and
solve in a fast way the Navier stokes equation. we will try avoid this
problem by introducing two method, which allows us to compute
solution. first of all, we will give a simple summary about Navier
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stokes equations. The simplification to the Navier Stokes equations
occurs if we can assume that the flow problem has a steady behavior.
For instance, if we turn on the tap in a sink, the flow will at first be
very irregular; however, once the sink has filled up, and the water
is pouring out over the sides as fast as it is pouring in, at least the
rough form of the flow will be the same over time.
We might imagine that, to a reasonable approximation, even the
small scale structure of this flow becomes fixed as time progresses.
A flow which does not depend on time is known as a steady state
flow.
In cases where we know, or hope, that the fluid flow problem has a
steady state solution, we can certainly try to determine that solution
by solving the Navier Stokes equations and looking at the behavior
of the solution as time increases indefinitely.
An alternative way to reach the steady state solution is to assume
that the variables v, ρ , and p do not depend on time, plug them into
the Navier Stokes equations, and after simplification, arrive at the
steady state compressible Navier Stokes equations:

−µ∆v+ρ(v ·∇)v+∇p = 0 (1)

ρ∇ ·v = 0 (2)

The Steady State Incompressible Navier Stokes Equations.
Any physical fluid or gas will have variations in density. In many
cases, especially when (temperate) water is involved, these variations
are so small that the density may be taken to be a constant, as though
the fluid were incompressible. In that case, we may simplify the
equations by dividing through by the density to get the steady state
incompressible Navier Stokes equations:

− 1
ρ

∆v+(v ·∇)v+
1
ρ

∇p = 0 (3)

∇ ·v = 0 (4)

To make our equations slightly less cluttered, we replace the dynamic
viscosity by the kinematic viscosity ν :

ν =
µ

ρ
(5)

and we replace the pressure by a scaled pressure, p̄:

p̄(x) =
p(x)

ρ
(6)

However, pressure is not an “interesting” quantity, so we often don’t
care about its particular values or scaling. For convenience, then,
we will ignore this rescaling of the pressure, and persist in using the
old symbol p when in fact we will mean the new, rescaled pressure.
At this point, our cleaned up version of the incompressible steady
Navier Stokes equations looks like this:

−ν∆v+(v ·∇)v+∇p = 0 (7)

∇ ·v = 0 (8)

By using the appropriate scalings, our set of equations for the kine-
matic velocity v look as simple as the previous set of equations for
the mass velocity u, but are in fact simpler, since we have eliminated
consideration of the density ρ .
This is the vector form of the Navier Stokes equations that we will
be considering from now on. Our only further modification is to
specify the spatial dimension, and, for convenience, to write out a
scalar version of the equations. It might be helpful now to assume
that we are working in a two-dimensional spatial region, and to write
the steady incompressible Navier Stokes equations in a sort of scalar
form. Thus, instead of x we will write (x,y), and instead of the
vector quantity v we will write (u,v), where we are keeping track of
the horizontal and vertical components of the kinematic velocity.

From this perspective, our system now becomes three scalar equa-
tions, since our vector momentum equation is replaced by a pair of
horizontal and vertical momentum equations:

−ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 )+u

∂u
∂x

+ v
∂u
∂y

+
∂ p
∂x

= 0 (9)

−ν(
∂ 2v
∂x2 +

∂ 2v
∂y2 )+u

∂v
∂x

+ v
∂v
∂y

+
∂ p
∂y

= 0 (10)

∂u
∂x

+
∂v
∂y

= 0 (11)

The outline of the paper is the following: In Section 2, we introduce
the finite element method and projection method for solving Navier
stokes equations. In section 3, we will solve the Navier-Stokes
equations using variables (pressure and velocities), using a control
volume approach. In last section we conclude.

2. Projection method

In this section, we will introduce the method and technique used to
solve the Navier stokes equation. This technique is based on finite
element method and projection technique [10] which allows us to
solve the problem.

2.1. Basic idea

We recall that the finite element technique [11], [12] for finding an
approximate solution of boundary value and initial value problems
characterized by partial differential equation. It produces a stable
solution of the problem to minimize the error using the variational
method. The most distinctive feature of finite element method that
separate it from others is the division of a given domain into a set
of simple sub-domains, called finite elements. Any geometric shape
that allows computation of the solution or its approximation, or pro-
vides necessary relations among the values of the solution at selected
points, called nodes, of the sub-domain, qualifies as finite element.
Other features of the method include seeking continuous, often poly-
nomial, approximations of the solution over each element in terms
of nodal values, and assembly of elements equations by imposing
the interpellant continuity of the solution and balance of interpellant
forces. There are three stages in the whole process where errors are
generally introduced in most cases. The first is the partition of the
domain into smaller sub-domains and then assembling it back to
generate the original domain which introduces some errors in the
domain during the process. Second stage is when element equations
are derived. The dependent unknowns(u) of the problem are approxi-
mated with the idea that any continuous function can be represented
by a linear combination of unknown functions φi and undetermined
coefficients ci ( u ≈ uh = Σciφi ). Algebraic relations among the
undetermined coefficients ci are obtained by satisfying the govern-
ing equations over each element in a weighted integral sense. The
approximation functions φi are often taken to be polynomials and
are derived using the concepts from interpolation theory. Therefore
they are termed as interpolation functions. So in the second stage,
errors are introduced both in representing the solution u as well as in
evaluating the integrals. And lastly errors are introduced in solving
the assembled system of equations. Then we will develop a control
volume approach and Projection technique to solve two dimensional
flow. In this second case, we will approximate numerically all in-
tegral this allows us to transform the problem into discrete vector
equations, then with the help of the projection technique the system
will be solved. We recall that the projection method operates as
a two-stage fractional step scheme, a method which uses multiple
calculation steps for each numerical time-step. In many projection al-
gorithms, the steps are split as follows: First the system is progressed
in time to a mid-time-step position. This is called the predictor step.
At this step an initial projection may be implemented such that the
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mid-time-step velocity field is enforced as divergence free. The
corrector part of the algorithm is then progressed. These use the
time-centered estimates of the velocity, density, etc. to form final
time-step state. last step, the projection method is applied to enforce
the divergence restraint on the velocity field. The system now is fully
updated to the next step time. These steps of the projection method
will be presented in details in Section 3. This technique is developed
and presented with more details in [5], [6].

2.2. Discretization and Projection approach

The velocity u and the pressure P are coupled together by the incom-
pressibility condition ∇.u = 0 which makes the equation difficult
to solve numerically. In the late of 60’s Chorin [3] and Temam [4]
constructed the the Projection method which decoupled the veloc-
ity and the pressure. The projection method is an effective means
of numerically solving time-dependent incompressible fluid-flow
problems. It was originally introduced by Alexandre Chorin in 1967
as an efficient means of solving the incompressible Navier-Stokes
equations. The key advantage of the projection method is that the
computations of the velocity and the pressure fields are decoupled.
A possible algorithm, proposed by Chorin, is

1
δ t

(
um+1−um ◦Xm

)
+∇pm−µ∆um = 0

u|Γ = uΓ

µ∂nu|Γ out = 0

−∆pm+1 = −∇.um ◦Xm

∂n pm
|Γ = 0

pm+1
|Γ out = 0

where u◦X(x) = u(x−u(x)δ t) since ∂tu+u.∇u is approximated by
the method of characteristics (in practice we use the Characteristics-
Galerkin Method) in our numerical implementation. We use the
Chorin’s algorithm with free boundary condition at outlet: i.e. u =
0,ν∂nu = 0. to compute a correction, q, to the pressure.

−∆q = ∇.u,q = 0 on Γout

and define um+1 = ũ + P∇qδ t, pm+1 = pm − q where ũ is the
(um+1,vm+1) of Chorin’s algorithm, and where P is the L2 projec-
tion with mass lumping and exactly a sparse matrix. The geometry
is that of a channel with a backward facing step so that the in ow
section is smaller than the outflow section. This geometry produces
a fluid recirculation zone that must be captured correctly. This can
only be done if the triangulation is sufficiently fine, or well adapted
to the flow. Of course, a numerical treatment requires a bounded
domain, the domain will be considered is bounded hexagon domain
Ω = A0A1A2A3A4A5︸ ︷︷ ︸ where

A0 : = {x = 0;y = t; t ∈ [0,1]}
A1 : = {x = 2t;y = 0; t ∈ [0,1]}
A2 : = {x = 2;y =−t/2; t ∈ [0,1]}
A3 : = {x = 2+18t;y =−1/2; t ∈ [0,1]}

A4 : =

{
x = 20;y =−0.5+

3
2

t; t ∈ [0,1]
}

A5 : = {x = 20t;y = 1; t ∈ [0,1]}

The convergence of the method will be tested with L2 norm of
the error. Figure ??, show the error according to the number of
iteration. We solved the incompressible Navier stokes equation
in the hexagon domain using uBcint = 4y(1− y)(y > 0)(x < 2) and
uBcout = 4./1.5(y+0.5)(1−y)(x> 19); and the Boundary condition
is defined as

ubc = uBCin +uBCout

Figure 1: Error vs Iteration

3. Two dimensional flow

We will solve the Navier-Stokes equations using variables (pressure
and velocities), using a control volume approach on a staggered grid.
We will introduce the problem that must be solved in discrete form
and the strategy used to get the solution adjusted to some boundary
conditions.

3.1. Equations

We consider the case of two dimensional flow where u = (u,v) The
Navier-Stokes momentum equation can be derived as a particular
form of the Cauchy momentum equation. The momentum equation
is:

∂

∂ t

∫
V

udV = −
∮

S
uu.nds− 1

ρ

∮
S

pnxds+ν

∮
S

∇u.nds

∂

∂ t

∫
V

vdV = −
∮

S
vu.nds− 1

ρ

∮
S

pnyds+ν

∮
S

∇v.nds∮
S

u.nds = 0

The domain of computation is the square volume [−1,1]2. The veloc-
ity at the end of each time step must satisfy conservation of mass,i.e∫

S u.nds = 0 . Integrate over the boundary and after simplification
we get:

un+1
i+1, j−un+1

i−1/2, j + vn+1
i, j+1/2− vn+1

i, j−1/2 = 0 .

When the mass conservation equation will be applied to a control
volume centered, we obtain the velocities at the edges. They could
be interpolated from values at the cell center.

• Unsteady term

– Rate of change of x-momentum, can be computed over
the control volume:

∂t

∫
V

udV =
un+1

i+1/2, j−un
i+1/2, j

δ t
h2

– Rate of change of y-momentum, can be computed over
the control volume:

∂t

∫
V

vdV =
vn+1

i, j+1/2− vn
i, j+1/2

δ t
h2

• Advection term
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– flow at x-momentum, can be computed and some approx-
imation can be done to simplify the approximation.∫

V
uu.nds = h

(
(u2)n

i+1, j− (u2)n
i, j

)
+ h

(
(uv)n

i+1/2, j+1/2− (uv)n
i+1/2, j−1/2

)

(u2)n
i+1, j =

(
un

i+3/2, j +un
i+1/2, j

2

)2

(u2)n
i, j =

(
un

i−1/2, j +un
i+1/2, j

2

)2

(uv)n
i+1/2, j+1/2 =

un
i+1/2, j +un

i+1/2, j+1

2

vn
i, j+1/2 + vn

i+1, j+1/2

2

(uv)n
i+1/2, j−1/2 =

un
i+1/2, j +un

i+1/2, j−1

2

vn
i, j−1/2 + vn

i+1, j−1/2

2

– In the same way, flow at y-momentum, can be computed, and we
have the following approximation∫

V
vu.nds =

(
(uv)n

i+1/2, j+1/2− (uv)n
i−1/2, j+1/2

)
h

+
(
(v2)n

i, j+1− (v2)n
i, j
)

h

(v2)n
i, j+1 =

(
vn

i, j+3/2 + vn
i, j+1/2

2

)2

(v2)n
i, j =

(
un

i, j−1/2 +un
i, j+1/2

2

)2

(uv)n
i+1/2, j+1/2 =

un
i+1/2, j +un

i+1/2, j+1

2

vn
i, j+1/2 + vn

i+1, j+1/2

2

(uv)n
i−1/2, j+1/2 =

un
i−1/2, j +un

i−1/2, j+1

2

vn
i, j+1/2 + vn

i−1, j+1/2

2

• Pressure term, the integration over the boundary gives:(∮
S

pnxds,
∮

S
pnyds

)
' h

(
pi+1, j− pi, j, pi, j+1− pi, j

)
• Viscous diffusion:

∮
S

∇unds '
(

∂u
∂x

)n

i+1, j
−
(

∂u
∂x

)n

i, j

+

(
∂u
∂y

)n

i+1/2, j+1/2
−
(

∂u
∂y

)n

i+1/2, j−1/2

where the derivatives at the boundary can be computed using these
approximation:(

∂u
∂x

)n

i, j
'

un
i+1/2, j−un

i−1/2, j

h
,(

∂u
∂y

)n

i+1/2, j+1/2
'

un
i+1/2, j+1−un

i−1/2, j

h

this lead to(
∂u
∂x

)n

i+1, j
−
(

∂u
∂x

)n

i, j
= un

i+3/2, j +un
i−1/2, j

− 2un
i+1/2, j

(
∂u
∂y

)n

i+1/2, j+1/2
−
(

∂u
∂y

)n

i+1/2, j−1/2
= un

i+1/2, j+1

− 2un
i+1/2, j

+ un
i+1/2, j−1

Therefore we have∮
S

∇u.nds ' un
i+3/2, j +un

i−1/2, j +un
i+1/2, j+1

+ un
i+1/2, j−1−4un

i+1/2, j∮
S

∇v.nds ' vn
i, j+3/2 + vn

i, j−1/2 + vn
i+1, j+1/2

+ vn
i−1, j+1/2−4vn

i, j+1/2

We collect all the terms together we obtain the following system

un+1
i+1/2, j−un

i+1/2, j

δ t
h2 = h

(
(u2)n

i+1, j− (u2)n
i, j +(uv)n

i+1/2, j+1/2

)
− h(uv)n

i+1/2, j−1/2

+ ν

(
(u2)n

i+1, j− (u2)n
i, j +(uv)n

i+1/2, j+1/2

)
− ν(uv)n

i+1/2, j−1/2

− h
(

pi+1, j− pi, j
)

vn+1
i, j+1/2− vn

i, j+1/2

δ t
h2 = −h

(
(uv)n

i+1/2, j+1/2− (uv)n
i−1/2, j+1/2

)
− h

(
(v2)n

i, j+1− (v2)n
i, j
)

+ ν

(
vn

i, j+3/2 + vn
i, j−1/2 + vn

i+1, j+1/2

)
+

(
vn

i−1, j+1/2−4vn
i, j+1/2

)
− 1

ρ
h
(

pi, j+1− pi, j
)

un+1
i+1, j−un+1

i−1/2, j + vn+1
i, j+1/2− vn+1

i, j−1/2 = 0

All previous equation can be in term of u i.e in vector form, and we have
exactly the following system: The divergence condition is approximated
numerically using: ∇.u = limε→0

1
ε

∮
u.nds

This allows us to define a discrete vector equations

un+1−un

δ t
= −Mn

i, j−∇Pi, j +Nn
i, j (12)

∇.un+1
i, j = 0 (13)

Equation (12) represent the evolution of the velocity and Equation (13)
represent the constraint on velocity. We notice that there is no explicit
equation for the pressure. To avoid this problem we will use projection
technique. Equations (12), (13) will be solved using projection technique.
We will introduce an auxiliary vector u

′
so that (12),(13) can be rewritten as:

u
′
i, j−un

i, j

δ t
= −Mn

i, j +Nn
i, j (14)

un+1
i, j −u

′
i, j

δ t
= −∇Pi, j (15)

Taking the divergence of
un+1

i, j −u
′
i, j

δ t =−∇Pi, j divergence of one can obtain an
equation for the pressure

∆Pi, j =
1
δ t

∇.u
′
i, j

So, we are going to solve the new system obtained using Projection technique:

u
′
i, j = un

i, j +δ t
(
−Mn

i, j +Nn
i, j
)

(16)

∆Pi, j =
1
δ t

∇.u
′
i, j (17)

un+1
i, j = u

′
i, j−δ t∇Pi, j (18)

In our discretization we will consider these parameters: the

• Coefficients: µ = 0.1, β = 1.2;
• nx = 10: number of nodes in x-direction
• ny = 10; number of nodes in y-direction
• dt = 0.02; time step-size
• nstep = 200; maximum number of step in time
• maxit = 100; maximum of iteration



International Journal of Applied Mathematical Research 67

Table 1: Pressure values

0 0 0 0 0 0 0 0 0 0 0
0 -0.0642 -0.0538 -0.0555 -0.0810 -0.1446 -0.2687 -0.4956 -0.9101 -1.6758 0
0 -0.0747 -0.0665 -0.0736 -0.1033 -0.1652 -0.2709 -0.4288 -0.6255 -0.7493 0
0 -0.0727 -0.0650 -0.0722 -0.0981 -0.1480 -0.2253 -0.3220 -0.4022 -0.3800 0
0 -0.0550 -0.0504 -0.0560 -0.0743 -0.1087 -0.1595 -0.2152 -0.2452 -0.2096 0
0 -0.0269 -0.0275 -0.0306 -0.0389 -0.0551 -0.0795 -0.1040 -0.1105 -0.0912 0
0 0.0020 -0.0035 -0.0033 0.0006 0.0066 0.0142 0.0265 0.0463 0.0524 0
0 0.0211 0.0128 0.0167 0.0333 0.0649 0.1149 0.1861 0.2683 0.3003 0
0 0.0235 0.0147 0.0200 0.0449 0.0991 0.1976 0.3598 0.5908 0.7954 0
0 0.0124 0.0011 0.0004 0.0217 0.0817 0.2113 0.4690 0.9604 1.8416 0
0 0 0 0 0 0 0 0 0 0 0

Table 2: Velocity u

0 0 0 0 0 0 0 0 0 0 2.0000
0.0034 -0.0034 -0.0135 -0.0228 -0.0323 -0.0432 -0.0553 -0.0634 -0.0292 0.2630 1.7370
0.0151 -0.0151 -0.0414 -0.0648 -0.0870 -0.1065 -0.1152 -0.0890 0.0440 0.4750 1.5250
0.0283 -0.0283 -0.0699 -0.1051 -0.1363 -0.1576 -0.1515 -0.0801 0.1304 0.5984 1.4016
0.0370 -0.0370 -0.0878 -0.1299 -0.1657 -0.1866 -0.1685 -0.0667 0.1851 0.6571 1.3429
0.0374 -0.0374 -0.0888 -0.1317 -0.1691 -0.1917 -0.1735 -0.0672 0.1931 0.6662 1.3338
0.0292 -0.0292 -0.0718 -0.1092 -0.1444 -0.1706 -0.1655 -0.0835 0.1498 0.6245 1.3755
0.0156 -0.0156 -0.0427 -0.0683 -0.0951 -0.1211 -0.1337 -0.0982 0.0638 0.5108 1.4892
0.0034 -0.0034 -0.0136 -0.0238 -0.0357 -0.0510 -0.0679 -0.0741 -0.0196 0.2890 1.7110

0 0 0 0 0 0 0 0 0 0 2.0000
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Figure 2: (a): Temporary u velocity used in projection method ((b): Temporary v velocity used in projection method

Equations (16), (17), (18) will be solved using a refined grid and we get
the following figures: Figures 3(a) and 3(b) shows vectors specified by u
and v at equally spaced points in the (x,y) plane. Figure 3(c) shows the
pressure p and Figure 3(d) shows velocity vectors as arrows with components
(u,v). Tables ??, ?? and ?? gives the value of our unknowns function in the
grid, one can see that we have used a p = 0 on the boundary of the domain
[−1,1]2. Figures 2(a) and 2(b) gives the temporary u and v velocity used in
the projection technique.

4. Conclusion

The Navier Stokes equation is solved using two different method based on
variational form and Finite element method. Numerical solution of Navier
stokes equation is always not obvious because it implies re-scaling those
values to get a figure for the computer that is considered as the standard
tool at the time of comparison. Furthermore, this kind of procedure will
conclude to the detriment of spectral methods. Since they are global methods,
each computational node is coupled to more neighbors than standard finite
difference, finite volume or finite element methods and, therefore, imply

more computational work per grid point. In real computations, the user
should give the numerical error bar of the simulation in order to promote
better results. We consider that this will bring an enormous improvement
in assessing fluid flow computational results. The control volume approach
bring us the solution of the Navier stokes equation as well the system of
Navier stokes equation. In the next work we are going to consider the case of
Navier stokes equation in three dimensional case. Also, we will try to solve
Navier Stokes equation in two dimensional singular domain using Domain
decomposition method and artificial boundary condition.
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Table 3: Velocity v

0 -0.0034 -0.0168 -0.0396 -0.0720 -0.1151 -0.1704 -0.2339 -0.2630 0
0 0.0034 0.0168 0.0396 0.0720 0.1151 0.1704 0.2339 0.2630 0
0 0.0117 0.0396 0.0816 0.1363 0.1997 0.2596 0.2851 0.2119 0
0 0.0132 0.0418 0.0821 0.1313 0.1824 0.2187 0.2098 0.1235 0
0 0.0086 0.0266 0.0513 0.0808 0.1098 0.1268 0.1134 0.0587 0
0 0.0004 0.0014 0.0031 0.0065 0.0116 0.0166 0.0171 0.0091 0
0 -0.0082 -0.0251 -0.0476 -0.0723 -0.0933 -0.1012 -0.0849 -0.0417 0
0 -0.0136 -0.0427 -0.0837 -0.1330 -0.1825 -0.2144 -0.1998 -0.1137 0
0 -0.0122 -0.0413 -0.0858 -0.1452 -0.2153 -0.2811 -0.3051 -0.2218 0
0 -0.0034 -0.0170 -0.0408 -0.0765 -0.1274 -0.1953 -0.2694 -0.2890 0
0 0.0034 0.0170 0.0408 0.0765 0.1274 0.1953 0.2694 0.2890 0
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Figure 3: Solution of two dimensional flow Navier stokes equation (a): Velocity u ((b): Velocity v, (c): pressure, and (d) Velocity vectors as arrows with
components (u,v).
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Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal.,
33 (1969), pp. 377-385.

[5] Chorin, A. J. The numerical solution of the Navier-Stokes equations for
an incompressible fluid. Bull. Am. Math. Soc. 73 (1967) 928-931.

[6] Chorin, A. J.; J. E. Marsden. A Mathematical Introduction to Fluid
Mechanics (3rd ed.). Springer-Verlag. (1993) ISBN 0-387-97918-2.

[7] Chorin, A. J. A numarical method for solving imcompressible viscous
flow problems. Journal of computational physics 135, 118-125 (1997).

[8] F.H. Harlow and J.E. Welch. Phys. Fluids 8, 2182 (1965).

[9] Francis H Harlow, Anthony A Amsden. A numerical fluid dynamics cal-
culation method for all flow speeds. Journal of Computational physics.
Volume 8, Issue 2,(1971) 197-213.

[10] Claude Brezinski. Projection methods for systems of equations. Studies
in computational mathematics 7. ISBN 0444 82 7773.

[11] J.N. Reddy. An introduction to the finite element method. Third edition.
McGraw Hill Newyork 2005.

[12] Klaus Jurgen Bathe. Finite element procedures. Prentice hall Pearson
Education,Inc. ISBN 978 0979004902.

[13] E. M.Ronquist. A Domain Decomposition Solver for the Steady Navier-
Stokes Equation. ICOSAHOM’95: Proceedings of the Third Interna-
tional Conference on Spectral and High Order Methods. 1996 Houston
Journal of Mathematics, University of Houston.

[14] X.C. Cai and O.B. Widlund, Multiplicative Schwarz algorithms for
some nonsymmetric and indefinite problems. SIAM J. Numer. Anal.,
30(4), pp. 936-952 (1993).


	Introduction
	Projection method
	Basic idea
	Discretization and Projection approach

	Two dimensional flow
	Equations

	Conclusion



