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Abstract 
 

Many mathematical models for the spread of infectious diseases in a population assume homogeneous mixing, but due to spatial distribu-

tion, there exist distinct patches with unique disease dispersion dynamics, especially if between patch mixing due to travel and migration 

is limited. In this paper, three levels of disease status in a 𝑛- patch metapopulation was studied using a simple SIR-HIV epidemic model 

in a one dimensional nearest neighbour coupling lattice. The basic reproductive ratio 𝑅0(𝑘), which is a function of coupling strength 𝑘, is 

shown to affect stability characteristics of equilibrium points. The disease free equilibrium (DFE) is globally asymptotically stable irre-

spective of the value of 𝑘 but the stability of the endemic equilibrium point (EEP) depends on the coupling strength 𝑘. It was found that 

at the critical value of coupling strength 𝑘 ≥ 0.67, the subpopulations dynamics are synchronized while for 𝑘 ≤ 0.3 the subpopulation 

dynamics are independent. Patch isolation strategy for the control of HIV dispersion requires a critical coupling strength of 𝑘𝑐 ≤ 0.15. 

This interaction restriction reduces 𝑅0 to values less than one, and the disease will be eliminated, making isolation effective. Demograph-

ic and epidemiological parameters of Vihiga County in Kenya were used in the study. 
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1. Introduction 

The study of infectious diseases has been a major challenge to 

scientists and epidemiologists, and the use of mathematical mod-

els has proven to provide basic information that forms the frame-

work for extended laboratory trials and field experiments. Infec-

tious diseases are either vector borne, airborne, waterborne or 

contagious. In all these means of transmission, the infected indi-

viduals are the immediate neighbours or those who interact with 

the infectives. Many transmission control strategies are applied at 

the interface, and their success depends on exact determination of 

pandemic plume boundaries.  

Many epidemic models assume that individuals mix homogene-

ously implying that all individuals in the population are equally 

likely to encounter each other making it difficult to determine the 

width of the spread of an epidemic. In reality, however, many 

populations are structured in space but interconnected by human 

travel, migration and by sharing of common facilities. Population 

may therefore be sub-divided into spatially separated patches also 

known as the subpopulations, each with its own distinct dynamics. 

A group of such a distinct subpopulation is known as a metapopu-

lation [10]. Metapopulation is therefore, a fragmented population 

in which population dynamics occurs at two distinct levels, name-

ly; within patch and between patch. Subpopulation interconnection 

may be random, all-to-all, one-to-many or nearest neighbour con-

nection topology [21]. In the simplest metapopulation models, 

individuals are assumed to migrate randomly among patches thus 

there is no spatial dimension. Such a model is known as spatially 

implicit model [10]. In this study, we assume nearest neighbour 

coupling of sub-populations in a one-dimensional lattice. In this 

case, the interface through which the patches are coupled can be 

used to delink infected patch from the rest and therefore, control 

the spread of the disease. 

There are different forms of nearest neighbour coupling, which 

include; coupling on a line; like in chemical reactors systems, 

coupling on a ring, coupling on a two-dimensional bravais lattice, 

one-to-all coupling, All-to-all coupling and coupling on a three-

dimensional bravais lattice. With the definition of coupling as 

arrangement of subpopulations in a manner that can influence 

each other, nearest neighbour coupling can represent many physi-

cal phenomena, for example, chemical reactors, neural networks, 

electrical circuits, metallurgy, the spread of an epidemic, just to 

mention but a few. The last example on the dispersion of infec-

tious diseases in space and time, between subpopulations is con-

sidered.  

Despite improved sanitation, antibiotics and extensive vaccination 

programs, infectious diseases continue to be major causes of suf-

fering and mortality. More importantly, infectious disease agents 

adapt and evolve so that new infectious diseases emerge and exist-

ing diseases re-emerge [12]. Diseases that have emerged in recent 

years include, Hepatitis C and E, Ebola hemorrhagic fever and 

Hantavirus. Human Immunodeficiency Virus (HIV) which is the 

etiological agent of Acquired Immune Deficiency Syndrome 

(AIDS) emerged in 1981 and has become the leading sexually 

transmitted disease in the cause of death throughout the world. 

Drug and antibiotic resistance have become serious issues for 

diseases such as tuberculosis, malaria and gonorrhoea. Malaria, 

dengue and yellow fever have re-emerged and are spreading into 

new regions as climate changes occur.  
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Invasion of an infectious agent is considered to be successful if the 

agent is able to enter into a given patch and spread rapidly within 

a completely susceptible population. That is, when an initial in-

fected host is able to infect other hosts in the population. When 

such an invasion occurs, the disease could either go extinct after 

an initial epidemic or might become endemic in the population 

without subsequent re-invasion. In homogeneously mixed popula-

tions, infectious agents tend to become extinct when the host pop-

ulation size is below a critical community size [10]. However, in 

metapopulations, the situation become more complex, due to the 

connectivity of the structure; the infection might become extinct in 

one patch but simultaneously invade other patches thereby in-

creasing the risk of re-invasion in the future. The between patch 

dynamics in metapopulation therefore, is important for the persis-

tence of the infectious agent. In addition, to spatial dynamics, 

demographic and epidemiological processes are important factors 

that influence persistence of infectious agent in metapopulations.  

Whether an outbreak of a disease will be an epidemic or endemic 

depends on the replacement ratio or the basic reproduction 

tio R0. The basic reproduction ratio is the average number of sec-

ondary infections produced when one infected individual is intro-

duced into a purely susceptible host population [17]. A disease 

becomes epidemic if it spreads to a large number of individuals in 

a given population within a short period of time (usually less than 

two years) and it is an endemic if it is constantly present to a 

greater or lesser degree in people of a certain class or certain geo-

graphical region [17]. For many deterministic models, an infection 

can get started in a fully susceptible population if and only if R0 > 

1 thus the basic reproduction number is considered as the thresh-

old quantity that determined when an infection invade and persist 

in a new host population. 

The geographic spread of human infectious diseases such as influ-

enza, measles, hemorrhagic fever, severe acute respiratory syn-

drome (SARS), Ebola, Swine flu and many other infectious dis-

eases are promoted by human travel, which occur on many large 

scales and are sustained by variety of means of transportation. The 

dispersal of individuals of a species is one of the key driving forc-

es of various spatiotemporal phenomena that occur on geograph-

ical scales. In the light of increasing international travel, the 

knowledge of dynamical properties of the spread of infectious 

diseases is of fundamental importance in administering disease 

control strategies. The understanding of the mechanisms by which 

the disease spreads and the ability to make predictions about the 

future course of the epidemic could enable scientists to evaluate 

inoculation or isolation plans, which may have a significant effect 

on the control of epidemic spread. Although people interact ran-

domly in an all-to-all manner, the basic building block of interac-

tion pattern is nearest neighbour interaction. It is for this reason 

that the spread of an epidemic in a one-dimensional linear meta-

population lattice is studied. The effect of coupling strength on 

synchrony of subpopulation dynamics and on the force of infec-

tion is also addressed.  

2. Literature review 

In this section, two main aspects are discussed, namely; epidemio-

logical dynamics in a metapopulation and synchronization of cou-

pled oscillators. The dynamics of an epidemic in a subpopulation 

will form an oscillator, coupled to other subpopulations in a meta-

population, and their eventual synchrony is discussed. 

2.1. Metapopulation and epidemics 

The scientific study of causes and transmission of diseases in epi-

demiology is not limited to the origin, development and patterns 

of disease dispersal. Mathematical models based on the underlying 

transmission mechanism of a disease helped the scientific com-

munity understand the dynamics of disease spread in the commu-

nity. These models are important because they provide guidelines 

for application of mitigation strategies through simulation of how 

changes in the various assumptions and parameter values affect 

the course of the epidemic. The disease transmission mechanism 

from the infective to the susceptible is understood for many infec-

tious diseases and the spatial spread of the diseases through a 

chain of infections is known. However, the transmission interac-

tions in a metapopulation are very complex and are therefore, 

difficult to understand the large-scale dynamics of the disease 

spread without the formal structure of the mathematical model.  

The study of disease dynamics based on the assumption of homo-

geneously mixed freely interacting population, where the entire 

population is considered to be in one group is not realistic. The 

influence of spatial structure in population on dispersal dynamics 

of an epidemic is very significant. One way to incorporate struc-

ture in epidemiology is to consider metapopulations consisting of 

well-mixed, coupled patches also known as subpopulations or 

households. In metapopulation models, the patches are thought to 

be homogeneously mixed and contain individuals in different 

states of the disease. There are several choices for the underlying 

local dynamics, and they can be classified according to the con-

sidered phases of the disease (compartments) and the reaction 

between them. Hufnagel, et al., [9] considered the hierarchy in-

volved in human movements and found that disease spreading is 

significantly influenced by multilevel movements. Studies based 

on real human mobility data also provide evidence to support the 

argument that individual movements occur at different levels [4]. 

Human mobility tends to be more complex than animal migration 

or plant dispersal and is not necessarily related to geographic dis-

tances [5].  

On the metapopulation dynamics, Lloyd and Jansen [13] studied 

an n -patch model with k  different levels of individuals. Their 

study concentrated on the linear stability of the spatially homoge-

neous solutions of the model with population settings in which 

individuals migrated between patches according to a simple linear 

term. The dynamic behaviour of the endemic SIR model was de-

composed into spatial modes, where the out of phase modes de-

cayed much more rapidly than the in-phase modes for a broad 

range of coupling strengths. Higher migration rate would mean 

that an infectious individual would spend shorter time in one patch 

thus changing patches more frequently. By changing patches fre-

quently, the infectious individual increases the number of contacts 

with susceptible individuals which increase the probability of the 

persistence of the infectious agent [11]. 

A metapopulation model is built based on multilevel movements, 

including both patch coupling and migration. At the lowest level, 

where the population movements between the patches are most 

frequent, the patches will be coupled by the force of infection 

while patches with fewer frequent movements in between will be 

linked by migration. An epidemic, in which individuals can dis-

tinctly be classified into n - compartments based on the status of 

the disease infection, in p Subpopulations can be modelled using a 

system of np ordinary differential equations. Arino and Van den 

Driessche [1] studied SEIR model using 4p ordinary differential 

equations in a metapopulation, where each patch has independent 

dynamics coupled with the others by means of travel. In their 

study, they showed that the disease is dying out in each patch if 

the reproductive ratio R0 < 1 and the disease persists with solu-

tions tending to an endemic equilibrium if R0 > 1. They also ob-

served that if the travel rates of susceptibles and infectives are the 

same, there exists a unique globally attracting endemic equilibri-

um. The effect of travelling rates or generally interaction dynam-

ics were also studied by Colizza and Vespignani, [6] using SIR 

model on metapopulation networks with heterogeneous topology. 

They derived the basic reaction-diffusion equation describing the 

metapopulation system at the mechanistic level using degree block 

variables which allowed them to take into account arbitrary degree 

distribution of the metapopulation network. Their analytical re-

sults showed that along with the usual single population epidemic 

threshold the metapopulation network exhibits a global threshold 

for the subpopulation invasion. These results were used to deter-

mine the minimum number of individuals travelling among sub-

populations in order to have the infection of a macroscopic num-
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ber of subpopulations. This invasion threshold was defined as a 

function of factors such as the basic reproductive number, the 

infectious period and the mobility process and it was found to 

decrease for increasing network heterogeneity. 

Intervention strategies like vaccination, isolation or quarantine, 

treatment, public health educational campaign, use of contracep-

tives just to mention but a few, will be effective when the disease 

dynamics is known. Individual strategy may not be successful as 

observed by Sherry, et al., [19]. In their study, they used the time-

series data for the Ebola virus disease cases to estimate how the 

rate of exponential rise of new cases had changed over the out-

break and found that in the effective reproduction, number rose 

when the outbreak spread to densely populated cities, and the 

enforced quarantine measures were not effective control measures. 

On the other hand, Rajan, et al., [15] studied control strategies of 

influenza epidemic to reduce the deaths and established that the 

optimal vaccination strategy involves concentrating the vaccine on 

children with the left over vaccine going to the middle aged adults. 

Their study revealed that given a population of 280 million peo-

ple, it will be possible to prevent 31 million illnesses more by 

applying the optimal vaccination strategy when compared with the 

random mass vaccination. Meanwhile Caitlin, et al. [16], used 

existing data from Liberia and Sierra Leone to parameterize a 

mathematical model of Ebola and used the model to forecast the 

progression of the epidemic, as well as the efficacy of the several 

interventions, including increased contact tracing, improved infec-

tion-control practices, the use of hypothetical pharmaceutical in-

tervention to improve survival in hospitalized patients. Modeling 

results showed that increased contact tracing and improved infec-

tion control or the combination of the two can have a substantial 

impact on the number of Ebola cases, but the interventions were 

not sufficient to halt the progress of the epidemic. The hypothet-

ical pharmaceutical intervention while impacting mortality had a 

smaller impact on the forecasted trajectory of the epidemic.  

2.2. Synchronization of coupled subpopulations 

An Oscillator is a system of model equations, normally differential 

equations, with a non-constant solution that displays a repetitive 

behavior and its derivative with respect to time t, 

If it exists, is non-constant. Examples of oscillators in physical 

situation include pacemaker. 

In the heart, emission of light by fire flies, electric impulses, 

which propagate along a nerve. 

Fiber, periodic outbreak of common diseases, menstrual cycle in 

women, and periodic behavior of population models just to men-

tion but a few. The dynamics of an infectious disease in one sub-

population is here considered as an oscillator. The periodicity of 

solution of a system of equations representing infectious disease 

dynamics is due to complacency and re-infection, especially for 

diseases, which do not confer immunity [2]. Periodicity of the 

HIV/AIDS Epidemic in a Mathematical Model that incorporates 

Complacency was analyzed, and simulations showed that compla-

cency resulting from dependence of HIV transmission on the 

number of AIDS cases in a community leads to damped periodic 

oscillations in the number of infective with oscillations more 

marked at lower rates of progression to AIDS [7]. The implication 

of these results to public health with respect to monitoring the 

HIV/AIDS epidemic and widespread use of antiretroviral (ARV) 

drugs was discussed. In addition, the effect of time delay on the 

robustness of biological oscillators with respect to varying model 

parameters showed that time delay destabilize a stable steady state 

fixed point through Hopf Bifurcations implying oscillating behav-

iour [2]. 

We say that synchronization has occurred if two or more oscilla-

tors, which previously had different patterns of behavior, begin to 

behave in the same way and simultaneously such that the 

knowledge of one can lead to prediction of the behaviour of the 

other. Analytically, synchronization of coupled oscillators means 

that there exists a smooth invertible map which carries trajectories 

on the attractor of one oscillator to the trajectories on the attractor 

of the other oscillator (see, for instance [8]). Coupled oscillators 

have been studied extensively for over a long period of time with 

emphasis in many of the studies being on the existence and stabil-

ity of limit cycles or equilibrium points. The nature and type of 

coupling of oscillators yields different topological frames. Consid-

ering the infectious disease dynamics in one subpopulation as an 

oscillator, coupling of different patches in a metapopulation forms 

a lattice structure which plays significant role in determining the 

regime of the dynamical behaviour and the dispersal of an epidem-

ic in a metapopulation. The strength of interaction, which in this 

case is the coupling strength could synchronize populations of 

interacting species, stabilize them or diversify their group dynam-

ics. 

The existence of the synchronization manifold has been the inter-

est of many researchers. Wasike [20] studied diffusive coupling of 

n-identical subsystemszj ∈ R
N, j = 1,2,3,… , n with the dynamics 

of zj governed by the solutions of the Nthorder ordinary differen-

tial equation żj = gj(zj). These systems were coupled with some 

linear term to obtain ż = A(k)z + f(z) , where f(z) =

(g(z1), g(z2),… , g(zn)), k = (k1, k2, … , kd) ∈ R
d  with each 

ki > 0  a constant positive constant representing the coupling 

strength and the linear function A(k) was chosen to be of the form 

kΔ1⊗ IN, where k ≥ 0 is a scalar and Δ1 ∈ R
n×n  is the nearest 

neighbour coupling configuration matrix and IN  is the N-

dimensional identity matrix. This represents symmetric nearest 

neighbour diffusive coupling on one dimensional lattice with 

Neumann boundary conditions. By the invariant manifold theory, 

he found out the following results: That there exist k0  and a 

bounded set U ∈ RnN such that, for each k with kj ≥ k0, 1 ≤ j ≤

d, the coupled subsystems have a compact global attractor Ak ⊂ U 

which is uniformly bounded in k, and that there is a critical con-

stant  k0  such that the coupled system is synchronized for 

allk ≥ k0 . Suppose also that the coupled system has a compact 

global attractor Ak for every k > 0, then we say that the system is 

synchronized if there exist a bounded diagonal-like, smooth invar-

iant manifold 

 
M1 ≔ {z ∈ Rnd: z1 = z2 = ⋯zn ≠ 0}  

 

For all t ≥ 0, if the global attractor Ak belongs to the set M1. We 

refer to the set  M1 as the diagonal or synchronization manifold 

in Rnd. If z belongs to the attractor Ak, it implies that the differ-

ences zj(t) − zj+1(t) → 0 as t → ∞ for all 1 ≤ j ≤ n − 1; that is, 

once the transients have died away, the knowledge of the state of 

one system allows one to predict the state of the other system. 

The synchronization manifold M1 is the most readily observed and 

of great interest in practical problems. For the system to be syn-

chronized, the diagonal M1 must be invariant under the flow de-

fined by the system equation and locally attracting. 

In many applications, one asks for local attraction. In this case, we 

say that the system is locally synchronized. Local synchronization 

refers to local attractivity of the set M1 in a small neighbourhood. 

In this study, synchronization means the subpopulations have 

attained the same epidemic or endemic status. When endemic 

status is achieved, it is required that it remains stable and robust. 

This is a question of stability and persistence. Stability relates to 

attractivity of the system linearized about the invariant 

fold M1. A system is stable if none of the eigenvalues (for auton-

omous system) of linearization is positive while Persistence is the 

ability of the invariant manifold to be insensitive to small pertur-

bations. It refers to the closeness of the invariant manifolds of the 

perturbed and the unperturbed systems [21].  

3. Model formulation and analysis 

In this section, a mathematical model is formulated using differen-

tial equations describing the dynamics of an epidemic in three 

compartments, namely; Susceptible (S), Infectives (I) and Re-

moved (R). We let S(t) denote the number of individuals who are 
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susceptible to the disease, I(t) the number of infected individuals, 

and able to spread the disease by contact with susceptibles and 

R(t) the number of individuals were infected at an earlier time and 

they have been removed either by isolation from the rest of the 

population, through immunization against infection, through re-

covery from the disease with full immunity against re-infection, or 

through adoption of less risk behaviour or by death caused by the 

disease. It is here assumed that the disease confers a short term 

immunity, after which the members in this class become suscepti-

ble again and can be re-infected, making the model SIRS. It is also 

assumed that the environment has distinctly isolated patches of 

subpopulations that can interact in a one dimensional bravais lat-

tice in a line through a nearest neighbour with coupling by means 

of travel and sharing of common facilities, irrespective of their 

disease status.  

3.1. Model assumptions, variables, parameters and 

equations 

In order to formulate the model the following assumptions which 

describe the relationship between variables and parameters is 

made. 

A1. The entire population is divided into three distinct compart-

ments only with respect to the disease. These are represented by 

the variables S, I and R, and no other group exists. 

A2. The mortality rates are denoted by μ1 > 0 for Susceptible and 

μ2 > 0 for Infective and Removed classes with μ2 > μ1  due to 

disease related factors leading to accelerated death rate.  

A3. Each subpopulation is well mixed and homogeneous. There is 

no distinction between male and female and they interact freely 

within the subpopulation. The contacts between individuals on 

each patch are frequent and hence random mixing applies within 

the sub-population. 

A4. The net migration of individuals between subpopulations is 

zero. 

A5. The recruitment rate into the susceptible class is constant at 

α > 0 and additional proportion τ of the removed individuals is 

re-admitted into the susceptible class. 

A6. Due to natural progression of the disease, an infected individ-

ual will move to the recovered class at a rate of γ > 0. 
A7. Due to free interaction, on average, a member of the popula-

tion makes contact sufficient to transmit infection with βN others 

per unit time, where N = S + I + R represents total population size 

(mass action incidence). Accordingly, the probability that an in-

fective comes in contact with a susceptible, who is capable to 

transmit infection is 
S

N
, and the number of new infections per unit 

time for each infective is (βN) (
S

N
), giving the total number of new 

infections as βSI, where β is a product β = qc of the number of 

contacts per unit time c andq: the probability of becoming infected 

during every contact.  

With these assumptions, variables and parameters, a mathematical 

model representing the dynamics in a single subpopulation is giv-

en by the system, 

 

 
 dS

dt
= α − kβSI − μ1S 

 

 
dI

dt
= kβSI − μ2I − γI                                                                    (3.1) 

 

 
dR

dt
= γI − μ2R 

3.2. The n-patch metapopulation model 

Interactions between individuals involve both within-patch inter-

actions and between patch interactions. With the assumption A3, 

disease dispersal is between batches is largely due to between-

patch interactions characterized by interaction between individuals 

from any two neighbouring patches and dominated by frequent 

movements such as people commuting to and from work, thus 

interacting with each other in a random manner, but between near-

est neighbour batches. A hierarchical system to describe a meta-

population model consisting of 3 levels of movement and having a 

total of n patches is formulated and analyzed following the work 

of Okuonghae and Okuonghae [14] and Bawa et al., [3].  

Using system (3.1), we extend the dynamics into a metapopulation 

with 𝑛 subpopulations and obtain the model, 

 
𝑆𝑖
′(𝑡) = 𝛼𝑖 − ∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖𝐼𝑗

𝑖+1
𝑗=𝑖−1 − 𝜇1𝑆𝑖  

 

𝐼𝑖 
′ (𝑡) = ∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖𝐼𝑗

𝑖+1
𝑗=𝑖−1 − (𝜇2 + 𝛾)𝐼𝑖                                            (3.2) 

 
𝑅𝑖
′(𝑡) = 𝛾𝐼𝑖 − 𝜇2𝑅𝑖  

 

For 𝑖 = 1, 2,… , 𝑛 and the constant 𝑘  is used as a measure of the 

coupling strength or the force of interaction across and within a 

subpopulation. In vector form, system (3.2) is represented as;  

 
𝑋′(𝑡) = 𝛬 − 𝛽𝑋𝑇(𝑡)𝐾𝑌(𝑡) − 𝜇1𝑋(𝑡)  
 

𝑌′(𝑡) = 𝛽𝑋 𝑇(𝑡)𝐾𝑌(𝑡) − 𝜇2𝑌(𝑡) − 𝛾𝑌(𝑡)                                       (3.3) 

 
 𝑍′(𝑡) = 𝛾𝑌(𝑡) − 𝜇2𝑍(𝑡)  
 

With 

𝑋 = (𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛)
𝑇, 𝑌 = (𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛)

𝑇, 𝑍 = (𝑅1, 𝑅2, 𝑅3,… , 𝑅𝑛)
𝑇 , 

𝛽 = (𝛽𝑖𝑗)  and 𝛬 = (𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛)  while 𝐾 = (𝑘𝑖𝑗)  is the tri-

diagonal coupling matrix given by; 

 

𝐾 =

(

 
 
 
 

𝑘1,1 𝑘1,2 0 … 0 0

𝑘2,1 𝑘2,2 𝑘2,3 … 0 0

0 𝑘3,2 𝑘3,3 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 𝑘𝑛−1,𝑛−2 𝑘𝑛−1,𝑛−1 𝑘𝑛−1,𝑛
0 0 0 0 𝑘𝑛,𝑛−1 𝑘𝑛,𝑛 )

 
 
 
 

                  (3.4) 

 

Here, the subscripts (𝑘𝑖𝑗) denote the effect from the 𝑖𝑡ℎ subpopu-

lation on the 𝑗𝑡ℎ subpopulation. 

If the subpopulations are equally coupled by a common constant𝑘, 

then matrix (3.4) become 

 

𝐾 = 𝑘

(

  
 

1 1 0 … 0 0
1 1 1 … 0 0
0 1 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 1 1 1
0 0 0 0 1 1)

  
 

                                                     (3.5) 

 

Equally, assuming that the force of infection is equal across the 

board, 𝛽𝑖𝑗 = 𝛽 then the system (3.2) will reduce to; 

 

𝑆𝑖
′(𝑡) = 𝛼𝑖 − 𝑘𝛽𝑆𝑖 ∑ 𝐼𝑗

𝑖+1
𝑗=𝑖−1 − 𝜇𝑆𝑖  

 

𝐼𝑖
′(𝑡) = 𝑘𝛽𝑆𝑖 ∑ 𝐼𝑗

𝑖+1
𝑗=𝑖−1 − (𝜇 + 𝛾)𝐼𝑖                                                        (3.6) 

 
𝑅𝑖
′(𝑡) = 𝛾𝐼𝑖 − 𝜇𝑅𝑖  

 

Equilibrium points and stability at equilibrium points will be ana-

lyzed using model system (3.2) with non-homogeneous coupling 

strength 𝐾 given in equation (3.4) together with Neumann bounda-

ry conditions. 

3.3. Positivity and boundedness 

Since the model represents the population dynamics of living or-

ganisms, positivity and Boundedness is necessary. In order to do 

this, define a non-negative and ultimately bounded coneℝ = ℝ+0 +

ℝ+. 

Positivity 

Proposition 3.1. Let the initial conditions of system (3.2) at time 

𝑡 = 0 be chosen as𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,𝑅(0) = 𝑅0 ≥ 0. 

In the following define ℝ+0 = {𝑆, 𝐼, 𝑅|𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0} 
and ℝ+ = {𝑆, 𝐼, 𝑅|𝑆 > 0, 𝐼 > 0, 𝑅 > 0} . Then the solutions 
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𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) of system (3.1) are positive for all 𝑡 >  0. For 

the model system (3.1), the region ℝ is positively invariant and all 

solutions starting in ℝ+0orℝ+ approach, enter or stay in ℝ. 

Proof: Under the given initial conditions, it is easy to prove that 

the components of solutions of system (3.1), 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) 
are positive for𝑡 >  0. If not, we assume a contradiction that there 

exist a first time 𝑡0 such that 𝑆(𝑡0) =  0, 𝑆
′(𝑡0) ≤ 0 and 𝑆(𝑡)  >

 0 for 0 ≤ 𝑡 ≤ 𝑡0. Consider the first equation of system (3.1), with 

this assumptions, it follows that the value of the first derivative at 

𝑡 = 𝑡0 yields 

 
 𝑑𝑆(𝑡0)

𝑑𝑡
= 𝛼 − 𝑘𝛽𝑆(𝑡0)𝐼(𝑡0) − 𝜇𝑆(𝑡0) > 0                                        (3.7) 

 

This is a contradiction and thus there exist no such first time and 

thus 𝑆(𝑡)  > 0 for all 𝑡 ≥ 0. With 𝑆(𝑡) > 0 for all 𝑡 ≥ 0, the sec-

ond equation of system (3.1) can be integrated by separation of 

variables as, 

 
𝑑𝐼(𝑡)

𝑑𝑡
= [𝑘𝛽𝑆(𝑠) − (𝜇 + 𝛾)]𝐼(𝑡)  

 

With the solution  

 

𝐼(𝑡) = 𝐼0𝑒
[𝑘𝛽𝑆(𝑠)−(𝜇+𝛾)]𝑡                                                                (3.8) 

 

Which is positive for all 𝑡 ≥ 0. Similarly, the solution to the third 

equation of system (3.1) can be obtained using integrating factor 

as, is of the form 

 

𝑅(𝑡) =
𝛾

𝜇2
𝐼(𝑠) + 𝐶𝑒−𝜇2𝑡                                                               (3.9) 

 

Which is positive for all 𝑡 ≥ 0  and 𝐶 > 0  arbitrary constant, 

and0 ≤ 𝑠 ≤ 𝑡.  
Boundedness 

For boundedness, the sum of the three equations in system (3.1) 

reduces to 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝛼 − 𝜇𝑁 

With the solution 

 

𝑁(𝑡) =
𝛼

𝜇
+ 𝐶𝑒−𝜇𝑡                                                                   (3.10) 

 

Taking the limit of solution (3.10) as time 𝑡 → ∞, we obtain 

 

𝑁(∞) =
𝛼

𝜇
> 0                                                                         (3.11) 

 

The solutions in equations (3.7), (3.8), (3.9) and (3.10) show posi-

tivity while the limit in equation (3.11) shows Boundedness of the 

solutions, thus proved. 

3.4. Equilibrium points and stability analysis 

The stability of a system is locally studied near the fixed points, 

disease equilibrium point (DFE) and endemic equilibrium point 

(EEP), whose stability depends on the sign of the eigenvalues of a 

linearized system about the fixed points.  

Disease Free Equilibrium (DFE) and its Stability 

Using system (3.3), we obtain the disease free equilibrium 𝐸0 =

(𝑆0, 𝐼0, 𝑅0) = (
𝛼𝑖

𝜇1
, 0, 0). Stability matrix obtained by linearizing 

system (3.3) about the fixed point 𝐸0 is given by 

𝑀|𝐸0 = (

−𝜇1 −
𝛼𝑖

𝜇
∑ 𝑘𝑖𝑗𝛽𝑖𝑗
𝑖+1
𝑗=𝑖−1 0

0
𝛼𝑖

𝜇
∑ 𝑘𝑖𝑗𝛽𝑖𝑗 − (𝜇2 + 𝛾)
𝑖+1
𝑗=𝑖−1 0

0 𝛾 −𝜇2

)                      (3.12) 

 

Whose eigenvalues are; 𝜆1 = −𝜇1, 𝜆2 =
𝛼𝑖

𝜇1
∑ 𝑘𝑖𝑗𝛽𝑖𝑗 − (𝜇2 +
𝑖+1
𝑗=𝑖−1

𝛾) and 𝜆3 = −𝜇2. Clearly, the first and the last are negative. Sta-

bility of system (3.2) at DFE is guaranteed if the second eigenval-

ue is also negative, that is; 

 

𝜆2 =
𝛼𝑖

𝜇1
∑ 𝑘𝑖𝑗𝛽𝑖𝑗
𝑖+1
𝑗=𝑖−1 − (𝜇2 + 𝛾) < 0;  𝑖 = 1, 2,… , 𝑛  

 

This condition defines the basic reproductive ratio 𝑅0 as; 

 
1

𝜇1(𝜇2+𝛾)
∑ 𝛼𝑖𝑘𝑖𝑗𝛽𝑖𝑗
𝑖+1
𝑗=𝑖−1 =

𝛬𝛽𝐾

𝜇1(𝜇2+𝛾)
≔ 𝑅0                              (3.13) 

 

Where 𝛬 = (𝛼1, 𝛼2, … , 𝛼𝑛), and 𝐾 = ∑ 𝑘𝑖𝑗
𝑖+1
𝑗=𝑖−1 .  

Endemic Equilibrium Point (EEP) and its Stability 

This additional equilibrium point 𝐸𝑒of system (3.3) also referred 

to as has a chronic infection equilibrium denoted by 𝐸𝑒 ∶=
 {𝑆𝑒 , 𝐼𝑒 , 𝑅𝑒} is the Endemic equilibrium point where the disease is 

persistent. This is evaluated from equation (3.3) by solving S, I, R 

to obtain; 

 

𝐸𝑒 = (𝑆𝑒 , 𝐼𝑒 , 𝑅𝑒) = (
𝛼

𝜇1𝑅0
,
𝛼(𝑅0−1)

𝑅0𝑘𝛽
,
𝛼𝛾(𝑅0−1)

𝑅0𝑘𝛽𝜇2
),                       (3.14) 

 

With 𝑅0 defined in equation (3.13).  

The stability of EEP is determined by the sign of the eigenvalues 

of linearization matrix evaluated about the fixed point 𝐸𝑒 . This 

yields the stability matrix 

 
𝑀|𝐸𝑒 =

(

−∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝐼𝑗
𝑒 − 𝜇1

𝑖+1
𝑗=𝑖−1 −∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖

𝑒𝑖+1
𝑗=𝑖−1 0

∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝐼𝑗
𝑒𝑖+1

𝑗=𝑖−1 ∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖
𝑒 − (𝜇2 + 𝛾)

𝑖+1
𝑗=𝑖−1 0

0 𝛾 −𝜇2

)(3.15) 

 

Whose eigenvalues are 𝜉1 = −𝜇2 and the other two are obtained 

from the characteristic equation; 

 

𝜉2 − 𝜏𝜉 + 𝛿 = 0                                                                      (3.16) 

 

Where the coefficients 𝜏 = 𝑡𝑟𝑎𝑐𝑒 and 𝛿 = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 are de-

fined as; 𝜏 = ∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖
𝑒𝑖+1

𝑗=𝑖−1 −∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝐼𝑗
𝑒𝑖+1

𝑗=𝑖−1 − 𝜇1 − 𝜇2 − 𝛾 

and 𝛿 = (𝜇2 + 𝛾)(∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝐼𝑗
𝑒𝑖+1

𝑗=𝑖−1 + 𝜇1) − 𝜇1 ∑ 𝑘𝑖𝑗𝛽𝑖𝑗𝑆𝑖
𝑒𝑖+1

𝑗=𝑖−1 . 

EEP is created when 𝑅0 > 1 and its stability is determined by 

signs of the roots of the characteristic equation (3.16). The signs 

of the characteristic roots can be determined using Routh-Hurwitz 

stability condition in [18] which requires that the system leading 

to Equation (3.16) is stable if 𝜏 < 0 and 𝛿 > 0. Clearly, 𝛿 > 0 and 

thus the system is stable if, 

 

𝜏 =
1

𝑅0
(
𝑘𝛽𝛼

𝜇1
+ 1) − (𝛼 + 𝜇1 + 𝜇2 + 𝛾) < 0.  

 

This gives the critical value 𝑅𝑐 that guarantees stability as; 

 

𝑅0 > 𝑅𝑐 =
𝛼𝑘𝛽+𝜇1

𝜇1(𝛼+𝜇1+𝜇2+𝛾)
                                                        (3.17) 

 

This threshold value guarantees persistence of the disease. For 

1 ≤ 𝑅0 ≤ 𝑅𝑐 the disease dynamics oscillate. The presence of the 

coupling constant in the numerator signifies a direct proportion to 

the critical reproductive ratio 𝑅𝑐 . This implies that there exist a 

critical coupling strength 𝑘𝑐 > 0 such that 𝑅𝑐 ≤ 1 which leads to 

the disease extinction. 

4. Numerical results 

To bring out the analytic solutions in the previous section clear, 

the analytic results is illustrated with specific numerical example. 

A complete list of parameters and their estimated values that used 

for numerical simulations of the model are given in Table 1.  

Data collected from five health facilities are used to represent five 

distinct metapopulations. The assumption made here is that the 

subpopulations living around the health centre interact and live in 

isolation and the cases reported in the next clinic do not contain 

the same individuals from the other subpopulation. Data collected 

from five subpopulations in Vihiga County are presented in the 
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table below. The Subpopulations 𝑆1, 𝑆2, 𝑆3, 𝑆4  and  𝑆5  represents 

Mbale, Sabatia, Bugina, Kegondi and Vihiga health centres and 

their immediate environs respectively.  

In the simulation of the model (3.2), together with the values of 

the parameters presented in Table 1, the following initial values 

apply. 𝑆(0), 𝐼(0), 𝑅(0) = (100, 0.0001, 0) . Here 𝐼(0) = 0.0001 

is used to avoid trivial solution at DFE point. In the simulation, 

the initial number of infected individuals released into a subpopu-

lation is varied to determine the effects of coupling strength in the 

velocity of the spread from one subpopulation to the other.  

 
Table 1: Data for the Simulation of the Immune Response to TB Infection 

Model  

Parameter 

Description 

Sym

bol 

Value(s) of 5 subpopulations 

Mbale Sabatia 
Bugi-
na 

Kegon
di 

Vihi-
ga 

Naive re-

cruitment 
rate in to a 

subpopula-

tion 

𝛼𝑖 10 12 8 12 9 

Force of 

infection 
𝛽𝑖𝑗 0.00427 0.0665 

0.122

3 
0.0257 

0.072

3 

Natural 
death rate 

𝜇1 0.008 0.008 0.008 0.008 0.008 

Accelerated 

death rate 
due to in-

fection 

𝜇2 0.0862 0.0977 
0.106
3 

0.1039 
0.078
3 

Re-infection 
rate from 

removed to 

susceptible 

𝜏 0.1789 0.0865 
0.024

5 
0.0519 

0.133

6 

Rate of 

progression 

from infec-
tive to re-

moved 

𝛾 0.0018 0.7180 
0.756

6 
0.5779 

0.142

9 

Coupling 
Strength 

between 

Sub-
populations 

𝑘𝑖𝑗 Variable in the interval 0 ≤ 𝑘𝑖𝑗 ≤ 𝑘𝑐 (Critical) 

Initial Sus-

ceptible 
Population 

𝑆𝑖 134 110 90 118 100 

Initial In-

fected popu-
lation at 

DFE 

𝐼𝑖 0 0 0 0 0 

Initial In-

fected popu-

lation at 
EEP 

𝐼𝑖 0.001 0.001 0.001 0.001 0.001 

Initial Re-

moved 
population 

𝑅𝑖 0 0 0 0 0 

 

The following graphs were generated using MATLAB using 

Runge-Kutta numerical scheme of order 4-5. We adopt a mesh 

size of ℎ = 0.01 in a time interval of 𝑡 ∈ [0, 500] time units.  

The model equations used in programming MATLAB is given by 

the system below. 

𝑆1
′(𝑡) = 𝛼1 − 𝑘11𝛽11𝑆1𝐼1 − 𝑘12𝛽12𝑆1𝐼2 − 𝜇1𝑆1 + 𝜏𝑅1  

 

𝐼1
′(𝑡) = 𝑘11𝛽11𝑆1𝐼1 + 𝑘21𝛽21𝑆2𝐼1 − (𝜇2 + 𝛾)𝐼1  

 

𝑅1
′ (𝑡) = 𝛾𝐼1 − 𝜇2𝑅1 − 𝜏𝑅1  

 

𝑆2
′(𝑡) = 𝛼2 − 𝑘21𝛽21𝑆2𝐼1 − 𝑘22𝛽22𝑆2𝐼2 − 𝑘23𝛽23𝑆2𝐼3 − 𝜇1𝑆2 +

𝜏𝑅2  

 

𝐼2
′(𝑡) = 𝑘12𝛽12𝑆1𝐼2 + 𝑘22𝛽22𝑆2𝐼2 + 𝑘32𝛽32𝑆3𝐼2 − (𝜇2 + 𝛾)𝐼2  

 

𝑅2
′ (𝑡) = 𝛾𝐼2 − 𝜇2𝑅2 − 𝜏𝑅2  

 

𝑆3
′(𝑡) = 𝛼3 − 𝑘32𝛽32𝑆3𝐼2 − 𝑘33𝛽33𝑆3𝐼3 − 𝑘34𝛽34𝑆3𝐼4 − 𝜇1𝑆3 +

𝜏𝑅3  

 

𝐼3
′(𝑡) = 𝑘23𝛽23𝑆2𝐼3 + 𝑘33𝛽33𝑆3𝐼3 + 𝑘43𝛽43𝑆4𝐼3 − (𝜇2 + 𝛾)𝐼3  

 

𝑅3
′ (𝑡) = 𝛾𝐼3 − 𝜇2𝑅3 − 𝜏𝑅3  

 

𝑆4
′(𝑡) = 𝛼4 − 𝑘43𝛽43𝑆4𝐼3 − 𝑘44𝛽44𝑆4𝐼4 − 𝑘45𝛽45𝑆4I5 − 𝜇1𝑆4 +

𝜏𝑅4  

 

𝐼4
′(𝑡) = 𝑘34𝛽34𝑆3𝐼4 + 𝑘44𝛽44𝑆4𝐼4 + 𝑘54𝛽54𝑆5𝐼4 − (𝜇2 + 𝛾)𝐼4  

 

𝑅4
′ (𝑡) = 𝛾𝐼4 − 𝜇2𝑅4 − 𝜏𝑅4  

 

𝑆5
′(𝑡) = 𝛼5 − 𝑘54𝛽54𝑆5𝐼4 − 𝑘55𝛽55𝑆5𝐼5 − 𝜇1𝑆5 + 𝜏𝑅5  

 

𝐼5
′(𝑡) = 𝑘45𝛽45𝑆4𝐼5 + 𝑘55𝛽55𝑆5𝐼5 − (𝜇2 + 𝛾)𝐼5  

 

𝑅5
′ (𝑡) = 𝛾𝐼5 − 𝜇2𝑅5 − 𝜏𝑅5  

4.1. Dynamics of susceptible, infectives and recovered in 

one subpopulation 

The Simulation of the dynamics of the three distinct compartments 

of model system (3.1) using the data in Table 4.1 is shown in the 

Fig. 4.1 below. This represents the population dynamics in ab-

sence of the disease. 

 

 
 
Fig. 4.1: Dynamics of Susceptible, Infectives and Recovered in A Single 

Subpopulation in Absence of the Disease. Source: Data Simulation. 

 

Clearly, as seen in Fig. 4.1, the dynamics in absence of disease, 

the population of susceptibles increases steadily, while that of the 

infectives and recovered remain at zero throughout. Meanwhile, 

the introduction of one infected individual in the population of 

purely susceptible population leads to an increase of infectives and 

recovered as illustrated in Fig. 4.2.  

In the study of disease dynamics in a metapopulation, the im-

portant parameter is the coupling strength 𝑘𝑖𝑗 , 𝑖, 𝑗 = 1,2,3,4,5. This 

is a measure of how much the subpopulations interact, to allow the 

transmission of the disease across the boundaries. The boundaries 

are created by distance, natural barriers like forests, language dif-

ference, county administrative boundaries, proximity to health 

facility, tea plantations, poor road networks, academic institutions 

and many other factors that create a distinct group and hinder free 

and frequent interaction between the group and other such groups. 

 



International Journal of Applied Mathematical Research 79 

 

 
Fig. 4.2: Dynamics of Susceptible, Infectives and Recovered in A Single 
Subpopulation in Presence of A Disease. Source: Data Simulation. 

4.2. Dynamics of susceptible, infectives and recovered in 

a metapopulation of five sub-population 

In absence of the disease in the entire metapopulation, the dynam-

ics of the Susceptibles are a reflection of Fig. 4.1, with small dif-

ferences due to difference in initial populations 𝑆𝑖. These are illus-

trated in Fig. 4.3 below. In this simulation, we assume that the 

force of infection is equal in all subpopulation and the coupling 

strength 𝑘𝑖 = 1 for all groups. This is equivalent to free and un-

limited interaction between the subpopulations. 

 

 
Fig. 4.3: Free Interacting Metapopulation Dynamics in Absence of Dis-

ease. 

 

Due to interconnection of the sub-populations, the disease can 

spread across the boundaries. The force of infection across the 

sub-population boundaries depends on the strength of interaction 

between individuals of the sub-populations.  

If the coupling strength is strong, introduction of one susceptible 

in one sub-population will slowly infect the entire metapopulation 

as shown in Fig. 4.4., but in case of weak coupling strength, the 

disease will affect one subpopulation where it was introduced. 

Some of the common barriers that can be used between sub-

populations include the use of public health campaign, intensive 

checks and tests at border entries, use of immunization in a sub-

population, restricting access of facilities outside home region. 

 

 
Fig. 4.4: Population Dynamics with Introduction of 1 Infective in Bugina. 

Notice from the graph the drastic drop in susceptibles of neigh-

bouring sub-populations (Sabatia and Kegondi) and corresponding 

increase in Infectives and Recoveries of Bugina sub-population.  

The infectives are drawn from Susceptibles of the neighbouring 

subpopulations and once infected; individuals remain in their 

home subpopulation until they recover. Boundary conditions to 

restrict the spread of the infection can be implemented to control 

the spread. Given that kij is the strength of the interaction of sub-

population i and subpopulation j, this parameter can be used to 

measure the level of efforts used to seal the spread of the disease 

across the boundaries. This parameter will have an inverse effect, 

so that the more the effort, the lesser the value of kij. Total or a 

complete seal of the boundary is equivalent to kij = 0. This is a 

very rare occurrence and 100% implementation is not easy be-

cause people cannot be isolated in the open. This can happen to 

animals (wildlife or domestic) who can be fenced off from the 

others. The dynamics in such a case are depicted in Fig. 4.5 below. 

Only the subpopulation where the infective was introduced will be 

affected, but all the others, remain steadily growing. Synergetic 

force of infection is evidenced when one infective is introduced in 

every subpopulation. 

 

 
Fig. 4.5: Dynamics of Introducing One Susceptible in an Isolated Meta-

population. Source: Author. 

 

 
Fig. 4.6: Metapopulation Dynamics when One Infective is introduced in 

Each Subpopulation. Source: Author. 

 

In absence of any intervention, the population dynamics of people 

with different disease status is depicted. See Fig. 4.6 above. 

4.3. DFE and EEP steady states and their stability 

There are two steady states as discussed in chapter three, namely 

Disease Free Equilibrium (DFE) and Endemic Equilibrium Point 

(EEP). Once any of the steady states is achieved, the system re-

mains stable for any future time. At DFE, the Infectives and Re-

covered will remain stable at zero while the susceptibles will tend 

to  𝑆0 =
𝛼

𝜇1
. In our case, this is equal to 250 as simulated and illus-

trated in Fig. 4.1, 4.3 and 4.5 above. The EEP is experienced when 

the disease becomes an epidemic. With time, the boundaries be-

tween the subpopulations become porous and equal interaction 

balances the number of infectives in each subpopulation. The con-

centrations in each group become equal and thus the system 

achieves a steady state.  
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4.4. Synchronization and coupling strength 

As defined earlier, synchronization is said to have occurred if two 

or more systems, which previously had different patterns of be-

haviour begin to behave in the same way and simultaneously such 

that the knowledge of one can lead to prediction of the behaviour 

of the other. Denote the five subpopulations as 𝑧1 , 𝑧2, 𝑧3, 𝑧4 and 𝑧5. 

Then synchronization means the differences  𝑧𝑖 − 𝑧𝑗 = 0, 𝑖 ≠ 𝑗  . 

Using nearest neighbour coupling configuration we obtain the 

system 

 

𝑆1
′(𝑡) = 𝛼1 − 𝑘11𝛽11𝑆1𝐼1 − 𝑘12𝛽12𝑆1𝐼2 − 𝜇1𝑆1 + 𝜏𝑅1 + 𝑘(𝑆2 −

𝑆1)  
 

𝐼1
′(𝑡) = 𝑘11𝛽11𝑆1𝐼1 + 𝑘21𝛽21𝑆2𝐼1 − (𝜇2 + 𝛾)𝐼1 + 𝑘(𝐼2 − 𝐼1)  

 

𝑅1
′ (𝑡) = 𝛾𝐼1 − 𝜇2𝑅1 − 𝜏𝑅1 + 𝑘(𝑅2 − 𝑅1)  

 

𝑆2
′(𝑡) = 𝛼2 − 𝑘21𝛽21𝑆2𝐼1 − 𝑘22𝛽22𝑆2𝐼2 − 𝑘23𝛽23𝑆2𝐼3 − 𝜇1𝑆2 +

𝜏𝑅2 + 𝑘(𝑆1 − 2𝑆2 + 𝑆3)  
 

𝐼2
′(𝑡) = 𝑘12𝛽12𝑆1𝐼2 + 𝑘22𝛽22𝑆2𝐼2 + 𝑘32𝛽32𝑆3𝐼2 − (𝜇2 + 𝛾)𝐼2 +
𝑘(𝐼1 − 2𝐼2 + 𝐼3)  
 

𝑅2
′ (𝑡) = 𝛾𝐼2 − 𝜇2𝑅2 − 𝜏𝑅2 + 𝑘(𝑅1 − 2𝑅2 + 𝑅3)  

 

𝑆3
′(𝑡) = 𝛼3 − 𝑘32𝛽32𝑆3𝐼2 − 𝑘33𝛽33𝑆3𝐼3 − 𝑘34𝛽34𝑆3𝐼4 − 𝜇1𝑆3 +

𝜏𝑅3 + 𝑘(𝑆2 − 2𝑆3 + 𝑆4)  
 

𝐼3
′(𝑡) = 𝑘23𝛽23𝑆2𝐼3 + 𝑘33𝛽33𝑆3𝐼3 + 𝑘43𝛽43𝑆4𝐼3 − (𝜇2 + 𝛾)𝐼3 +
𝑘(𝐼2 − 2𝐼3 + 𝐼4)  
 

𝑅3
′ (𝑡) = 𝛾𝐼3 − 𝜇2𝑅3 − 𝜏𝑅3 + 𝑘(𝑅2 − 2𝑅3 + 𝑅4)  

 

𝑆4
′(𝑡) = 𝛼4 − 𝑘43𝛽43𝑆4𝐼3 − 𝑘44𝛽44𝑆4𝐼4 − 𝑘45𝛽45𝑆4𝐼5 − 𝜇1𝑆4 +

𝜏𝑅4 + 𝑘(𝑆3 − 2𝑆4 + 𝑆5)  
 

𝐼4
′(𝑡) = 𝑘34𝛽34𝑆3𝐼4 + 𝑘44𝛽44𝑆4𝐼4 + 𝑘54𝛽54𝑆5𝐼4 − (𝜇2 + 𝛾)𝐼4 +
𝑘(𝐼3 − 2𝐼4 + 𝐼5)  
 

𝑅4
′ (𝑡) = 𝛾𝐼4 − 𝜇2𝑅4 − 𝜏𝑅4 + 𝑘(𝑅3 − 2𝑅4 + 𝑅5)  

 

𝑆4
′(𝑡) = 𝛼5 − 𝑘54𝛽54𝑆5𝐼4 − 𝑘55𝛽55𝑆5𝐼5 − 𝜇1𝑆5 + 𝜏𝑅5 + 𝑘(𝑆4 −

𝑆5)  
 

𝐼5
′(𝑡) = 𝑘45𝛽45𝑆4𝐼5 + 𝑘55𝛽55𝑆5𝐼5 − (𝜇2 + 𝛾)𝐼5 + 𝑘(𝐼4 − 𝐼5)  

 

𝑅5
′ (𝑡) = 𝛾𝐼5 − 𝜇2𝑅5 − 𝜏𝑅5 + 𝑘(𝑅4 − 𝑅5)                               (4.1) 

 

In this model, the parameter 𝑘𝑖𝑗  denotes the probability of infect-

ing across the boundaries while the parameter 𝑘 is the coupling 

strength. 

The system above can be written in compact form as; 

 

(

  
 

𝑧′1
𝑧′2
𝑧′3
𝑧′4
𝑧′5)

  
 
= 𝑘

(

 
 

1 −1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1)

 
 
⊗ 𝐼3.

(

 
 

𝑧1
𝑧2
𝑧3
𝑧4
𝑧5)

 
 
+

(

 
 

𝑔(𝑧1)
𝑔(𝑧2)
𝑔(𝑧3)
𝑔(𝑧4)
𝑔(𝑧5))

 
 

      (4.2) 

 

Where 𝑧𝑖 = (𝑆𝑖 , 𝐼𝑖 , 𝑅𝑖) and 𝑔(𝑧𝑖) represent the dynamics of each 

subpopulation,  I3 represents the three levels of disease compart-

ments S, I, R and ⊗ is the knonecker product. 

Equation (4.2) can also be expressed as 

 

Z′ = kΔ1⊗ I3Z + G(Z)                                                             (4.3) 

 

Synchronization is illustrated using numerical simulation of sys-

tem (4.3) presented in the Fig. 4.7, 4.8 and 4.9 generated by vary-

ing the coupling strength. In each of these figures, subplot (a) 

shows the general dynamics against time, subplot (b) shows oscil-

latory behaviour of each system, subplot (c) shows the synchroni-

zation manifold that is the (diagonal) and subplot (d) shows the 

differences in the dynamics of the subsystems. 

 

 

 
Fig. 4.7: Uncoupled System  k = 0. Fig. (4.7 (a)) Population Dynamics, (4.7 (b)). Oscillatory Behaviour of Susceptible Against Infectives, (4.7 (c)) Syn-
chronization Manifolds, (4.7 (d)) Chaotic Deviations on Individual Dynamics. Source: Authors Simulation. 
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In absence of coupling, the disease dynamics in each subpopula-

tion is independent. This shows a case of isolated patches. Fig. 4.7 

above shows the dynamics of uncoupled System with k = 0. No-

tice the chaotic behaviour of the diagonal and the deviations. Also, 

the first subplot (a) shows distinct lines for each subpopulation. 

The behaviour of Susceptibles and Infectives is Oscillatory as 

shown in subplot (b). This implies that each subsystem will con-

verge to its own steady state as time grows. The differences will 

remain constant. 

Due to interaction of individuals between patches, the dynamics of 

each subpopulation influence each other towards equilibrium. This 

is simulated by increasing the coupling strength to k = 0.3. In Fig. 

4.8, the deviations and the diagonal seem to synchronize, while 

the individual dynamics converge towards one graph in subplot 

(a). 

 

 

 
Fig. 4.8: Weakly Coupled Systems k = 0.3. Fig. (4.8 (a)) Population Dynamics, (4.8 (b)), Oscillatory Behaviour of Susceptible Against Infectives, (4.8 
(c)) Synchronization Manifolds, (4.8 (d)) Chaotic Deviations on Individual Dynamics. Source: Authors Simulation. 

 

Putting in place zero movement restrictions and allowing individ-

uals to mix up freely between patches is equivalent to strongly 

coupled system at k = 0.67. This gives the same results as k = 1 

or 100% coupling, where the subpopulations interact like one 

homogeneous system. Clearly from the graph, all subpopulation 

graphs coincide to one line and the diagonal together with its tran-

sient deviations tends to zero. In this case, the dynamics of one 

subpopulation is equal to the dynamics of the other subpopulations 

and the knowledge of one, leads to correct prediction of the other. 

The population patches are therefore said to be synchronized. The 

threshold coupling strength necessary to create homogeneity is 

k = 0.67. Distinction of subpopulations can be achieved if inter-

action is controlled to a level less than 67%. Isolation is successful 

if interaction is at zero, but anything more than 67% is not signifi-

cant. Coupling at k = 0.67 is simulated in Fig. 4.9 below. 

The desired coupling strength for isolation strategy to be effective 

requires that the minimum threshold value of kc  should not be 

exceeded. This is simulated in Fig. 4.10 and confirms the analytic 

results. The value of kc depends on the force of infection β = qc 
where q is the probability that a susceptible can get infected each 

time when in contact with an infective and c is the number of con-

tacts with infected individuals. Reducing the coupling strength and 

reduces the number of contacts. The threshold value of coupling 

for the highest transmission probability β = 0.073 is obtained as 

kc = 0.15. This means not more than 15% of the individuals from 

different patches should be allowed to mix up for isolation strate-

gy to work. 
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Fig. 4.9: Strongly Coupled System k = 0.67, (4.9 (a)) Population Dynamics, (4.9 (b)). Oscillatory Behaviour of Susceptible Against Infectives, (4.9 (c)) 
Synchronization Manifolds, (4.9 (d)) Chaotic Deviations on Individual Dynamics. Source: Authors Simulation. 

 

 
Fig. 4.10: Graph of Coupling Strength (𝑘) Versus Reproductive Ratio R0 Showing the Threshold Maximum Coupling Strength that Guarantees Extinction 
of the Disease. Source: Author 

 

5. Summary of the main results, conclusions 

and recommendations 

The analytic and numerical simulation of the study showed that 

disease dispersal rates depend on the value of R0. This parameter 

is a function of infection probability, number of contacts and cou-

pling strength. The DFE exists and is stable if R0 < 1  and 

forR0 > 1, there exists another equilibrium point EEP where the 

disease persist. This EEP is stable if R0 > Rc. However, because 

of the effect of coupling strength on the force of infection, EEP 

can be eliminated by reducing the coupling strength k to less than 

critical value kc = 0.15. When coupling strength is zero (k = 0), 
there will be as many reproductive ratios as the number of batches 

but at  k ≥ 0.67 , the batch dynamics are synchronized and the 

metapopulation behave homogeneously. Since lower values of 

coupling strength would result in lower  R0 , it implies that re-

striction of movement of infected person would help in the control 

of the disease. We define this as isolation of patches strategy of 

controlling disease dispersion in a metapopulation. 
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