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Abstract 

 
The main goal of this paper is to solve the first Painleve equation using the sinc-Galerkin method. In order to obtain this 

goal, we first describe briefly the sinc-Gelrkin method, and then we apply it to the first Painleve equation. At last, the 

numerical result is shown to demonstrate the power and accuracy of the method. 
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1 Introduction 

The Painleve equations were first found by Painleve and his collaborators more than a century ago when Painleve and 

his school began an investigation of the nonlinear second order ODEs class. They wanted to solve two different 

problems: to classify second-order differential equations of a certain form on the basis of their possible singularities of 

solutions, and to identify second-order differential equations which define new functions. The latter problem was 

formulated by Fuchs and Poincare in 1884. However, Fuchs and Poincare did not find any new functions because they 

considered the first-order ODE class. Painleve and his school found 50 canonical classes of equations whose solutions 

have no movable critical points. Furthermore, they also showed that among 50 equations there are exactly six second-

order ODEs that define new functions. At the present time these new functions are called Painleve transcendents; and 

equations with general solutions in the form of these transcendents are called Painleve equations. These six Painleve 

equations were first discovered from strictly mathematical investigations but these equations have recently appeared in 

several physical applications [1]. Many situations in science and engineering reduce to Painleve equations. Its 

applications include plasma physics, waves, optics and mechanics. The main goal of this research, here, is to use sinc 

methods for solving the first Painleve equation. The Painleve equations, first considered by Painleve, are defined as 

follows: 

 

"( ) ( , , '),u x f x u u  (1.1) 

 

where ( , , ')f x u u is a rational function in u and 'u , while f is analytic in x . In this paper, the first Painleve equation 

will be considered in the following form, 

 
2"( ) 6 ( ) , [0,1],u x u x x x    

(0) 1, '(0) 0.u u   

 

(1.2) 

 

Several numerical methods [6, 8] for approximating the solutions of the first Painleve equation have been implemented. 

In this study, a numerical method for solving the first Painleve equation based on the Sinc-Galerkin approximations is 

described. Most numerical approximation techniques are based on the use of polynomials. Polynomial approximation 

formulas are applicable for approximation over finite intervals, or finite contours. In more than one dimension, 

polynomials are the basis for finite element approximation. But, Sinc approximation formulas are applicable over finite, 
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semi-infinite, infinite intervals, or over contours. In more than one dimension, curvilinear regions are also readily dealt 

with. In addition, Sinc methods readily handle infinite regions. Polynomials and splines seem to have found their home 

in Sobolev spaces defined over bounded domains, whereas Sinc functions live more naturally in spaces of analytic 

functions defined over bounded or unbounded domains. Finite element methods were developed first, and this is 

perhaps why they are by far the most popular, whereas Sinc methods came later, and are much less widely in use. Sinc 

and finite element methods both enjoy simplicity and flexibility, although this is less well known for Sinc methods. The 

derived system of algebraic equations is usually more sparse for finite difference and finite element methods than for 

Sinc methods. In spite of this, if accuracy is desired in the solution of a differential or integral equation, the complexity 

of solving a differential equation problem via a finite difference or finite element method is usually far larger than the 

corresponding complexity for Sinc methods [16]. 

This paper is organized as follows: The sinc-Galerkin method is described in Section 2.  

In Section 3, the sinc-Galerkin method is developed for solving the first Painleve equation. Finally, numerical result is 

presented in Section 4. 

 

2 The Sinc-Galerkin method 

In this section, we will review Sinc function properties, Sinc quadrature rule, and the Sinc method. These are discussed 

thoroughly in [11] and [14]. Sinc methods for differential equations were originally introduced by Stenger in [15]. Since 

then they have become increasingly popular and have been well studied. These methods have been used for solving 

many differential and integral equations [2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 18]. Definitions, notation, and properties of 

Sinc functions and composite Sinc functions can be found in references [7, 10]. 

 

Definition.1. [11] If f is analytic in a domain D and 0 ,z D then f is called conformal at 0z if 0'( ) 0.f z  If 

'( ) 0f z  for all z D , then f is called a conformal mapping of D . The Sinc function is defined on the whole real 

line by 

 

sin( )
: 0

( )

1 : 0,

x
x

xSinc x

x








 
 

 

 

(2.1) 

 

Definition.2. [11] Let D be a domain in the w u iv   plane with boundary points a b . Let ( )z w be a one-to-

one conformal map of D onto the infinite strip 

 

{ : :| | },SD z C z x iy y d       (2.2) 

 

where ( )a    and ( )b   . Denote by ( )w z  the inverse of the mapping   and let  

 

{ : ( ), } ( ).w C w x x R R         (2.3) 

 

Let ( )B D  denote the class of functions analytic in D which satisfy for some constant a with 0 1,a 
 

 

( )
| ( ) | (| | ), ,a

x L
F w dw O x as x

 
   (2.4) 

 

where { :| | }L iy y d   and for   a simple closed contour in D  

 

( , ) lim | ( ) | .
D

N F D F w dw
 

  

 

(2.5) 

 

Now, we want to present the interpolation and quadrature rule based on the Sinc functions. The following theorem is 

the interpolation theorem for F . 
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Theorem.2.1. Let ' ( )F B D  and 0h  . Let  be a one-to-one conformal map of the domain D onto 

sD . Let 

1, ( )kw kh    and for ( )R  . Then for all , 

 

( ' )( ) ( ) ( )kk
F F F w   




  Sinc

( )
( ),

kh

h

  

 

(2.6) 

 

is bounded by 

 

( ' , )
|| ( ' ) || .

2 sinh( / )

N F D
F

d d h


 

 


 

(2.7) 

 

Further assume that there are positive constants α, β, and C so that 

 

exp( | ( ) |) ,
| ( ) |

exp( | ( ) |) , ,

a

b

F C
   


   

 
 

 

 

(2.8) 

 

where  

 

{ : ( ) ( ,0)}, { : ( ) [0, )},a bx x                

 

(2.9) 

 

If the selections  

 

1/2 2
[| 1|], ( ) ,

ln(2)

d d
N M h

M

  

 
   

 

(2.10) 

 

are made, then for all   the error 

 

, ( ' )( ) ( ) ( )
N

M N kk M
F F F w   


  Sinc

( )
( ),

kh

h

  
 

(2.11) 

 

is bounded by 

 
1/2

,|| ( ' ) || exp( ( ) ),M N F K M d M    

 

(2.12) 

 

and K is a constant depending on , , ,F d  and D . 

 

Proof: Refer to [11]. Under the assumptions of this theorem, we can state the quadrature rule [11, 12] which 

approximates the integral, i.e., 

 

,

( )
( ) ( ) ,

'( )

N k

M N k M
k

F w
F F d h

w
  


    

(2.13) 

 

and this is bounded by 

 
1/2

,|| ( ' ) || exp( ( ) ),M N F G d M    

 

(2.14) 

 

and G is a constant depending on , ,F d  and D . 

Now, we briefly discuss the Sinc-Galerkin method. For the Sinc method, the basis functions on the ( , )a b  are 

derived from the composite translated Sinc functions 

 

( ) ( , ) ( )jS x S j h x  Sinc
( )

( ),
x jh

h

 

 

(2.15) 
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where 0,h  j is an integer, that is, these functions are the basis functions, and the conformal map is given by 

 

( ) ln ,
x a

x
b x







 

(2.16) 

 

The Sinc  nodes kx are chosen so that 

 

1( ) ( ) .
1

kh

k kh

a be
x kh kh

e
  

  


 

(2.17) 

 

The Sinc -Galerkin method converges exponentially, even in the presence of boundary singularities as shown in [11, 

14]. The approximate solution for ( )u x is represented by the formula 

 

( ) ( ), 1.
N

m j j

j M

u x u S x m M N


   
 

(2.18) 

 

The unknown coefficients ju in equation (2.18) are determined by orthogonalizing the residual with respect to the basis 

functions, i.e.,The orthogonalization of the residual in the Sinc - Galerkin method for a differential equation of the form 

 

, ( , )Lu f on a b

 

(2.19) 

 

where L  is a differential operator, can be treated as follows: 

 

, 0, .m kLu f S M k N     

 

(2.20) 

 

The choice of the inner product that is used in equation (2.20), along with the choice of basis functions, determines the 

properties of the approximation method. The inner product that is used for the Sinc -Galerkin method is defined by 

 

, ( ) ( ) ( ) .
b

a
f g f x g x w x dx  

 

(2.21) 

 

Here  is a weight function that is chosen depending on the boundary conditions, the domain, and the differential 

equation. For our problem, it is convenient to take 

 

1
( ) .

'( )
w x

x


 

(2.22) 

 

A broad discussion of the choice of weight function can be found in [11, 14, 16]. The most direct development of the 

discrete system for (2.19) is obtained by substituting (2.18) into (2.20). This approach, however, obscures the analysis 

that is necessary for applying the Sinc  quadrature formulas. Instead of directly applying the quadrature rule to the inner 

products, the Sinc -Galerkin method proceeds as follows: Let us present it in the following section as it will be appllied 

to the first painleve equation.  

 

3 Application of Sinc-Galerkin method to the first order Painleve equation 

we can write the equation (1.2) as 

 

( ) ( ),Nu x f x  (3.1) 

 

Where N  and f  are as following 
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2( ) "( ) 6 ( ), ( ) .Nu x u x u x f x x    (3.2) 

 

The residual for equation (3.1) is 

 

( ) ( )( ),m mR x Nu f x 

 

(3.3) 

 

The orthogonalization of the residual in the above equation takes the form 

 

, ( , ) 0,mNu f S j h     (3.4) 

 

This orthogonalization of the residual is more conveniently treated by first considering the inner products in 

 

, ( , ) 0,Nu f S j h     (3.5) 

 

By writing in the integral form, we get, 

 
1 1

2

0 0

1

0

"( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )

( ) ( , ) ( ) ( ) 0.

u x S j h x w x dx u x S j h x w x dx

f x S j h x w x dx

 





 

 


 

(3.6) 

 

Using the quadrature rule to approximate each of the these integrals leads to the same discrete system as the system 

obtained from (3.4). In each inner product arising from (3.5) integrate by parts those terms containing derivatives of u

to remove the derivatives from u . For example, the inner product containing the second derivative of u reads 

 

"( ), ( ) "( )[ ( , ) ( )] ( )

( )[ ( , ) ( ) ( )]" .

b

j
a

b

T
a

u x S x u x S j h x w x dx

B u x S j h x w x dx





 

 




 

(3.7) 

 

Where 

 

( '( )[ ( , ) ( ) ( )]) | ( ( )[ ( , ) ( ) ( )]') | .b b

T a aB u x S j h x w x u x S j h x w x    (3.8) 

 

The reason for the integration by parts is twofold. Firstly, the selection of the weight w can be based on criteria such as 

forcing the boundary term TB to vanish. Secondly, mu can for suitable ju , 1( )jx jh  provide a good approximation 

of u [11]. Now, we are in a position to apply the approximation to formulate the discrete Sinc-Galerkin system for the 

problem (4.1). The Galerkin equations for ,...,0,...,j M N   are 

 

2

0 , ( , ) ( ) "( ), ( , ) ( )

6 ( ), ( , ) ( ) , ( , ) ( ) ,

Nu f S j h x u x S j h x

u x S j h x f S j h x

 

 

     

     
 

(3.9) 

 

Approximating the inner products using quadrature rule and replacing ( )ku x by ku  yield the discrete Sinc system 

 

(2) (1)

2

2

''( ) ( )1 1
[ ( ) ( ) ( 2 '( ))]

'( )

''( ) ( ) ( ) ( )
6 , ,...,0,..., .

'( ) '( ) '( )

N k k

jk k k jk k kk M
k

j j j j

j j

j j j

x w x
x w x w x u

h xh

w x w x f x w x
u u j M N

x x x


  



  




 

    


 

(3.10) 

 

where (2)

jk and (1)

jk are that introduced in the following theorem: 

 

Theorem.1. Let  be a conformal one-to-one map of the simply connected domain D onto sD . Then 
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(0)
1 :

( , ) ( ) |
0 : ,kjk x x

j k
S j h x

j k
  


  


 

(3.11) 

(1)

0 :

( , ) ( ) | ( 1)
: ,k

k j
jk x x

j k
d

h S j h x
j kd

k j

 








  
 

 

 

(3.12) 

 

and 

 
2

2
(2) 2

2

2

:
3

( , ) ( ) |
2( 1)

: ,
( )

kjk x x k j

j k
d

h S j h x
d

j k
k j



 


 


 


  

 
 

 

 

 

(3.13) 

 

Proof: Refer to [11]. This system (2.14) is identical to that generated from orthogonalizing the residual 

, ( , ) ( ) 0mvia Nu f S j h x    [11]. 

 

4 Numerical result 

In this section, we want to test the mentioned method through the test problems. Hence, three numerical example will 

be considered and their approximate and exact solutions are compared and the results are shown in the related tables. 

 

Example1: In order that mu satisfies the boundary conditions [11], it must be selected as 

 

( ) 1 ( ).
N

m j j

j M

u x u S x


    
(4.1) 

 

Now, by solving the system of nonlinear equations (3.10), we get the following result shown in the table1. 

 
Table 1: Numerical results 

jx  The values of ( )m ju x  jx  The values of ( )ju x  

0.0 1 0.6 2.71626 

0.1 1.03047 0.7 3.81083 

0.2 1.12626 0.8 5.56237 

0.3 1.30145 0.9 8.37161 

0.4 1.58238 1.0 12.85268 

0.5 2.20277   

 

Example 2: Consider the following two-point boundary value problem [11] 

 

2

1 1 19
( ) ( ) ( ) , 0 1,

6 6

(0) (1) 0,

u x u x u x x x
x x

u u

      

   

 

The exact solution of the above problem is 

 
3

2( ) (1 ).u x x x 

 
 

In this example, we must choose  



 

 

 
68 International Journal of Applied Mathematical Research 

 

 

( ) ( , ) ( ), , ,0, ,
N

m k

k M

u x u s k h x m M N


  
 

Where S  and   are as the same in preceding section. By a similar process in that section, one can get: 

 

(2) (1)

2

(1)

2

( )( ) ( )1 1
[ ( ) ( ) ( 2 ( ))]

( ) ( )

( ) ( )1 1 1 1
( )

6 6 ( )

( )( ) 19
, , ,0, , .

6 ( )( )

N
jk k

jk k k jk k k j

k M k j

N
j

jk k k j

k M k j

j jj

j

jj j

w xx w x
x w x x u u

h x xh

xw x
w x u u

h x x

x w xw x
u j M N

xx x


   

 











   

 


 



   





 

By solving this system of linear equations, we can find the approximate solution um. In table 2 the approximate and the 

exact solution of the above example are compared.  

 

Table 2: Numerical Result For example 2 

X The Approximate solution The exact solution Absolute error 

0 0 0 0 

0.1 0.028460493 0.028460499 5.50E-09 

0.2 0.071554161 0.071554175 1.43E-08 

0.3 0.115021711 0.115021737 2.59E-08 

0.4 0.151789288 0.151789328 3.96E-08 

0.5 0.176776639 0.176776695 5.53E-08 

0.6 0.185903128 0.185903201 7.26E-08 

0.7 0.175698514 0.175698606 9.14E-08 

0.8 0.143108239 0.143108351 1.12E-07 

0.9 0.085381364 0.085381497 1.33E-07 

1 0 0 0.00E+00 

 

Example 3: [11] as the third example discussed in this paper, consider the problem  

 

( ) ( ) ( ), 0 1,

(0) (1) 0,

u x u x f x x

u u

     

   
 

Where  is a constant. In the case ( )f x  , the exact solution of the problem is  

 

1
( ) .

1

xe
u x x

e






 

  
 

To solve the above problem using the Sinc-Galerkin method, one must choose 

 

( ) ( , ) ( ), , ,0, ,
N

m k

k M

u x u s k h x m M N


  
 

 
Similarly, we can obtain 

 

(2) (1)

2

(1)

( )( ) ( )1 1
[ ( ) ( ) ( 2 ( ))]

( ) ( )

( ) ( )1
( ) , , ,0, , .

( ) ( )

N
jk k

jk k k jk k k j

k M k j

N
j j

jk k k j

k M j j

w xx w x
x w x x u u

h x xh

w x w x
w x u u j M N

h x x


   

 

   
 






   

 

    
 




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Solving this system of linear equations, one can calculate the approximate solution. The numerical result for this 

example is shown in the table 3.  

 
Table 3: Numerical result for example 3 in the case k=10 

X The Approximate solution The exact solution Absolute error 

0 0 0 0 

0.1 0.099895629 0.099921986 2.63E-05 

0.2 0.199683538 0.199709924 2.63E-05 

0.3 0.299106991 0.299133478 2.64E-05 

0.4 0.397539588 0.397566537 2.69E-05 

0.5 0.493279343 0.493307149 2.78E-05 

0.6 0.581698768 0.581728931 3.01E-05 

0.7 0.650219109 0.650256073 3.69E-05 

0.8 0.664648939 0.664703974 5.50E-05 

0.9 0.532045187 0.532149258 1.04E-04 

1 0 0 0.00E+00 

 

As was observed, the numerical results show that the Sinc-Galerkin solutions are good approximations for the exact 

solutions of the first Painleve equation. It is seen that the Sinc-Galerkin method is a powerful and accurate method for 

finding the solution of first Painleve equation. Moreover, it is straightforward and avoids the hectic work of calculations. 

The authors believe that the procedure as described in the present paper will considerably be of benefits to engineers 

and scientists working in this field. 
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