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Abstract 
 

HIV/AIDS remains one of the leading causes of death in the world with its effects most devastating in Sub Saharan Africa due to its dual 

infection with opportunistic infections especially malaria and tuberculosis. This study presents a co infection deterministic model defined 

by a system of ordinary deferential equations for HIV/AIDS, malaria and tuberculosis. The HIV/AIDS only model is analyzed to 

determine the conditions for the stability of the equilibria points and assess the role of treatment and counseling in con-trolling the spread 

of the infections. This study shows that effective counseling reduces the value of the reproduction number for HIV/AIDS (RH) to less 

than unity eliminating the HIV/AIDS problem. Numerical simulations show that applying anti-retroviral treatment (ARV’S) without 

effective counseling increases the value of RH, worsening the HIV/AIDS problem, however ARV treatment coupled with effective 

counseling reduces the value of RH to a level below one eliminating the disease. The study further shows that when the proportion of 

those receiving ARV treatment without effective counseling increases, the value of RH also increases to a level above one. However 

effective counseling maintains the value of RH below unity therefore strategies for the control of HIV/AIDS should emphasize 

counseling and not only treatment. 
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1. Introduction 

Research at the interface of mathematics and biology is increasing, and virtually any advance in disease dynamics today requires a 

sophisticated mathematical approach in order to map out the parameters necessary for control and containment of epidemic outbreaks. 

Infectious diseases, alongside cardiovascular diseases and cancer have been the main threat to human health. Acute and chronic 

respiratory diseases, especially pulmonary tuberculosis, malaria and HIV/AIDS are responsible for a large portion of mortality especially 

in developing countries [16].  

Globally HIV/AIDS has killed more than 35 million people since it was first discovered in 1981 and almost 70 million people have been 

infected with the HIV/AIDS virus making it one of the most destructive epidemics in recorded history [22]. It remains one of the leading 

causes of death in the world with its effects most devastating in sub Saharan Africa. One of the key factors that fuels the high incidence 

of HIV/AIDS in Sub Saharan Africa is its dual infection with malaria and tuberculosis [16]. 

World Health Organization statistics show that tuberculosis (TB) is the most common illness and the leading cause of death among 

people living with HIV/AIDS, accounting for one in four HIV/AIDS related deaths and at least one-third of the 34 million people living 

with HIV/AIDS worldwide are infected with latent TB. Persons co infected with TB and HIV/AIDS are 21-34 times more likely to 

develop active TB disease than persons without HIV/AIDS. In 2011, there were an estimated 1.1 million HIV/AIDS positive new TB 

cases globally and about 79 percent of these people live in Sub-Saharan Africa [22]. According to the World Health Organization report 

of April 2008, malaria increases the viral load in HIV/AIDS patients. Conversely HIV/AIDS increases the risk of malaria infection and 

accelerate the development of clinical symptoms of malaria with the greatest impact on the immune suppressed persons [22]. Ever since 

the co infections were recorded, malaria has seen a 28 percent increase in its prevalence and malaria related death rates have also nearly 

doubled for those with co infections [7]. The co infection between malaria and HIV-1 is the commonest in Sub-Saharan Africa and, to a 

lesser extent, in other developing countries. It is estimated that 22 million Africans are infected with HIV-1, and around 500 million are 

suffering from malaria annually [22]. 

Hohman and Kami [10], discovered that HIV/AIDS and malaria have similar global distributions. The discovery motivated a study on 

the impact of HIV/AIDS and malaria co infection and established that globally, 500 million people are infected with malaria annually 

resulting in one million deaths yearly. Thirty-three million people get infected with HIV/AIDS and 2 million die from it every year. The 

study further showed that those with HIV/AIDS have more frequent episodes of symptomatic malaria and that malaria increases 

HIV/AIDS plasma viral load and decrease CD4+ cells. During episodes of parasitemia, HIV/AIDS infected people have an increase in 

viremia leading to potential increase in risk of HIV/AIDS transmission. A comparison of the geographical distributions of HIV/AIDS, 

TB and malaria especially in Africa, reveal that these three diseases have similar geographical distributions suggesting a possible 

existence of HIV/AIDS, TB and malaria co infection. This may be due to shared risk factors and/or the presence of opportunistic 

infections. 

http://creativecommons.org/licenses/by/3.0/
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Audu et al. [4] investigated the possible impact of co infections of tuberculosis and malaria on the CD4+ cell counts of HIV/AIDS 

patients and established the following: The healthy control group recorded a median CD4+ cell counts of 789 cells/ul (789 cells per mm3 

of blood); subjects infected with HIV/AIDS only recorded a median CD4+ cell counts of 386 cell/ul; subjects co infected with HIV/AIDS 

and TB recorded a median CD4+ cell counts of 268 cell/ul; subjects co infected with HIV/AIDS and malaria recorded a median CD4+ 

cell counts of 211 cell/ul and those co infected with HIV/AIDS, malaria and TB recorded the lowest median CD4+ cell counts of 182 

cell/ul. 

Motivated by these findings, this study aims at developing a deterministic model exploring the joint dynamics of the simultaneous co 

infections of HIV/AIDS, TB and malaria incorporating treatment and counseling for the HIV/AIDS infected population. It represents the 

first deterministic mathematical model incorporating HIV/AIDS, TB and Malaria co infections within a single model to gain insights into 

their combined transmission dynamics and determine effective control strategies. 

2. Model formulation and description 

To study the dynamics of HIV/AIDS, malaria and TB co infection, a deterministic model is formulated described by a system of ordinary 

differential equations. The model sub-divide the human population into the following epidemiological classes: SH(t) - Susceptible 

population at time t, IM(t) - Malaria infectives at time t, IH(t) - HIV cases at time t, IA(t) - AIDS cases at time t, IT (t) - TB cases at time t. 

IHM(t) - Those co infected with malaria and HIV at time t, IAM(t) - Those co infected with malaria and AIDS at time t, IMT (t) - Those co 

infected with malaria and TB at time t, IHT (t) - Those co infected with HIV and TB at time t, IAT (t) - Those co infected with AIDS and 

TB at time t, IHMT (t) - Those co infected with HIV, Malaria and TB at time t, IAMT (t) - Those co infected with AIDS, Malaria and TB at 

time t. The total human population (NH(t)) is therefore denoted by:  

NH(t) = SH(t)+IM(t)+IH(t)+IA(t)+IT(t)+IHM(t)+IAM(t)+IMT (t)+IHT (t)+IAT (t)+ IHMT (t) + IAMT (t). The vector (mosquito) population at time t 

denoted by NV (t) is sub-divided into the following classes: SV (t) - Vector susceptibles at time t, IV (t) - Vector infectives at time t. The 

total vector population NV (t) is given by NV (t) = SV (t) + IV (t). 

2.1. Definition of parameters 

It is assumed that susceptible humans are recruited into the population at a constant rate either by birth or recovery from malaria and TB. 

They acquire infection with either HIV/AIDS, malaria or TB and move to the infectious classes. Susceptible mosquitoes are recruited 

into the mosquito population at a constant rate. They acquire malaria infection following a blood meal feeding on infected malaria 

humans, becomes infectious and move to the infectious class. The recruitment rate of humans into the susceptible population is denoted 

by ΛH while that of vectors (mosquitoes) is denoted by ΛV and are both assumed to be constant. The natural death rate of humans is 

given by dn while that of vectors is given by dv. The death rates due to AIDS, malaria and TB in humans are da, dm and dt respectively. 

The parameters dam, dmt, dat and damt account for the combined death rates in the IAM, IMT, IAT and IAMT classes respectively. The 

parameters rm and rt are the recovery rates from malaria and TB respectively due to effective treatment. It is assumed that the recovered 

individuals do not acquire temporary immunity to either or both diseases thus become susceptible again. The model assumes that 

susceptible humans cannot simultaneously get infected with malaria, HIV/AIDS and TB since the transmission mechanics are completely 

different for the three diseases. The model further assumes that humans acquire HIV/AIDS through sexual contacts between an infective 

and a susceptible. The average force of infection for HIV/AIDS denoted λah is given by.  

 

                                                                                                                                                                 (1) 

 

where βa is the average transmission probability of HIV/AIDS between an infective and a susceptible per sexual contact and c1 is the per 

capita number of sexual contacts of susceptible humans with HIV/AIDS infected individuals per unit time. The parameter δ measures the 

effectiveness of counseling through condom use and a reduction in the number of sexual partners, where 0 ≤ δ ≤ 1. Effective counseling 

reduces the value of the parameter c1. The model assumes that the classes IHMT, IA, IAM, IAT and IAMT do not transmit the virus due to acute 

ill health and noticeable AIDS symptoms. Define α1 as the number of bites per human per mosquito (biting rate of mosquitoes), βm as the 

transmission probability of malaria in humans per bite thus the force of infection with malaria for humans, denoted λmh is given by. 

 

                                                                                                                                                                                              (2) 

 

Whereas the average force of infection with malaria for vectors, denoted λmv is given by 

 

                                                                                                                                         (3) 

 

Where βv is the transmission probability of malaria in vectors from any infected human Finally the average force of infection for TB 

denoted λth is given by 

 

                                                                                                                                           (4) 

 

where βt is the transmission probability of TB in humans and c2 is the average per capita contact rate of susceptible humans with TB 

infected individuals. 

 

The rate of progression from HIV to AIDS for the untreated HIV cases is p. The parameters θ1p, θ2p and θ3p account for increased rates 

of progression to AIDS for individuals co infected with HIV - TB, HIV - malaria and HIV - malaria - TB respectively where θ1 < θ2 < θ3. 

Define α as the proportion of the HIV/AIDS infectives receiving effective treatment. This involves the administration of ARV‘S that 

keeps the HIV patients from progressing to AIDS while transferring the AIDS patients back to the HIV classes. The modification 
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parameters 
h

me , 
h

te  and 
h

mte  account for the reduced susceptibility to infection with HIV for individuals in the IM , IT and the IMT classes 

respectively due to reduced sexual activity as a result of ill health where 1m

h
e  ,  1h

te  , 1. The parameters , , , , 

account for the increased susceptibility to infection with malaria for individuals already infected with AIDS, HIV, HIV - TB and AIDS - 

TB respectively due to suppressed immune system where 1m

ae  , 1m

he  , 1m

hte  , 1m

ate  . It is also clear that 
m m

a ate e  and  < . 

The parameters , , , and 
t

mhe  account for the increased susceptibility to infection with TB for individuals already infected with 

HIV, AIDS, HIV - malaria and AIDS - malaria respectively due to suppressed immune system where  > 1,  > 1, 1t

mhe  , 1t

ame    . 

Again 
t t

h mhe e  and 
t t

a ame e . Malaria and TB does not lead to the depletion of the CD4+ cell counts, However their association with 

HIV/AIDS leads to a significant reduction in the CD4+ cell counts within an individual leading to faster progression to AIDS. 

2.2. The model equations 

Combining all the aforementioned assumptions and definitions, the model for the transmission dynamics of HIV/AIDS, TB and malaria 

is given by the following system of differential equations: 

 

                                                                                                      (5) 

3. Positivity and boundedness of solutions 

The model system 2.2.1 describes living populations therefore the associated state variables are non-negative for all time t ≥ 0. The 

solutions of this model with positive initial data therefore remain positive for all time t ≥ 0.  

 

Lemma 3.1. Let the initial data set be {SH(0); SV (0) > 0); (IM (0); IH(0); IA(0);IT (0); IHM (0); IAM (0); IMT (0); IHT (0); IAT (0); IHMT (0); 

IAMT (0); IV (0)} Ψ. Then the solution set {SH; SV ; IM ; IH; IA; IT ; IHM ; IAM ; IMT ; IHT ; IAT ; IHMT ;IAMT ; IV }(t) is positive for all time t 

>0. 
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Proof. Consider the first equation of 2.2.1 at time t 

 

 
 

From the second equation of 2.2.1 at time t 

 

 
 

We can proceed in a similar manner and show that all the state variables are positive for all time t. 

Lemma 3.2. The solutions of the model 2.2.1 are uniformly bounded in a proper subset Ψ = ΨH × ΨV 

Proof. Let {SH; SV ; IM ; IH; IA; IT ; IHM ; IAM ; IMT ; IHT ; IAT ; IHMT ;IAMT ; IV }(t)  , be any solution with non-negative initial 

conditions. The rate of change of the total human population with time is given by:  

 

 
 

The model system 2.2.1 has a varying human population size  0H
dN

dt
  and therefore a trivial equilibrium is not feasible. Whenever , 
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
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that 0 ( ) (0) (1 )n n
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N t N e e
d

− −
  + − , where NH(0) represents the value of NH(t) evaluated at the initial values of the respective 
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H
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H
nd

N t

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d
N  .This shows that NH is bounded 

and all the feasible solutions of the human only component of model 2.2.1 starting in the region ΨH approach, enter or stay in the region, 

where: ΨH = {(SH, IM, IH, IA, IT , IMH, IMA, IMT , IHT , ITA, IMHT , IMAT ) : ( ) H
H

n

N

d
N t  } 

Similarly let {(SV ; IV ) 
2

R+ }, be any solution with non-negative initial conditions. The rate of change of the total vector population 

with time is given by: ( )( ) ( )v
v v v v

dN

dt
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dt
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v
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variables. Thus as t → , 0 ( )
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v
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N
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d
  . This shows that NV is bounded and all the 

feasible solutions of the vector only component of model 2.2.1 starting in the region ΨV approach, enter or stay in the region, where: ΨV 

={(SV, IV ) : NV ≤
v

vd


}.  

4. HIV/AIDS-only model 

Before analyzing the full model (HIV/AIDS, Malaria and TB), it is instructive to gain insights into the dynamics of the HIV/AIDS only 

model, HIV/AIDS-malaria co infection model and the HIV/AIDS-TB co infection model. The model with HIV/AIDS only is obtained by 

setting IM = SV = IT = IHM = IAM = IMT = IHT = IAT = IHMT = IAMT = IV = 0 and obtain 

 12R+


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                                                                                                                                             (4.1) 

 

 

4.1. The basic reproduction number (R0) 

The basic reproduction number R0 is defined as the average number of secondary infections an infectious individual would cause over his 

infectious period in an entirely susceptible population. The basic reproduction number RH for the HIV/AIDS only model is defined as the 

number of secondary HIV/AIDS infections due to a single HIV/AIDS infective individual. When RH < 1, then an infectious individual is 

causing, on average, less than one new infection and thus the disease does not invade the population. On the other hand, when RH > 1 

then an infectious individual is causing, on average, more than one new infection 

and thus the disease invades and persist in the population. 

 
Table 1: Parameter Values for the HIV/AIDS - Malaria Co Infection Model 

 

4.1.1. Local stability of disease-free equilibrium (DFE) 

The model 4.0.1 has a DFE, obtained by setting the right-hand sides of the equations in the model to zero given by 
0 H H A

E S I I  = + +   

= , 0,0H

n
d

 
 
 

Define Fi as the rate of appearance of new infections in the class or compartment i and , where is the rate of 

transfer of individuals out of compartment i, and  is the rate of transfer of individuals into compartment i by all other means. 

Therefore:  

 

                                                                                                        (4.1.1) 

 

It measures the average number of new HIV infections generated by a single HIV/AIDS infected individual in a population where a 

certain fraction of infected individuals are treated and counseled. 

Lemma 4.1. The DFE of the HIV-only model is locally asymptotically stable (LAS) if RH < 1, and unstable otherwise. Lemma 4.1 

follows from Theorem two by Van, P. and Watmough, J. (2002). This lemma is illustrated graphically in figure 1 showing total infectives 

(IH + IA) against time in years 

 

i i iv v v− += −
iv−

iv+
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Fig. 1: Reproduction Number (RH)= 0.517234. 

5. Simulating the role of counseling and treatment 

From equation 4.1.1, it is evident that strategies for the reduction of HIV/AIDS infections in humans should target the reduction of the 

parameter c1 (per capita number of sexual contacts) through counseling. Effective counseling where δ = 1, reduces the value of c1 and RH 

to zero eliminating the HIV/AIDS problem. The graph of RH against c1 is shown in figure 2a. 

 

 
Fig. 2a: The Graph of RH Against C1. 

 

This figure shows that effective counseling (δ = 0.9) reduces the value of RH to less than unity and therefore very effective in controlling 

the HIV/AIDS problem. This is further illustrated in terms of the infective population sizes against time in years as shown in figure 2b 

where δ = 0 and RH = 5.17234 and figure 2c where δ = 0.9 and RH = 0.517234. 

 

 
Fig. 2b: δ = 0 and RH = 5:17234. 
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Fig. 2c: δ = 0.9 and RH = 0.517234. 

 

Figure 3a combines the parameters for ARV treatment (α) and counseling (δ) within the same graph. The graph shows that ARV 

treatment without effective counseling (α = 0.6 and δ = 0), increases the value of RH, worsening the HIV/AIDS problem, however ARV 

treatment coupled with effective counseling (α = 0.6 and δ = 0.9) reduces the value of RH to a level below one eliminating the disease. 

This figure suggests that there is a threshold level of counseling below which ARV treatment is disastrous. Above the threshold level, 

ARV treatment and counseling would be very effective 

 

 
Fig. 3a: Graph of RH Against Per Capita Number of Sexual Contacts. 

 

When the proportion of those receiving ARV treatment without effective counseling increases, the value of RH also increases to a level 

above one, however effective counseling maintains the value of RH below unity as shown in figure 3b. Therefore strategies for the 

control of HIV/AIDS should emphasize counseling and not only treatment. 

 

 
Fig. 3b: Graph of RH Against Per Capita Number of Sexual Contacts. 

 

To further investigate the potential impact of counseling and treatment on disease progression, we carry out sensitivity analysis of the 

reproduction number with respect to counseling and treatment. The sensitivity index of RH with respect to δ is given by 

 

                                                                                                                                                                                            (5.1) 

 

The negative sign in equation 5.0.1 indicates that there is an expected decline in the rate of new HIV/AIDS infections when counseling is 

scaled up. Similarly, the sensitivity index of RH with respect to α is given by 
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                                                                                                                                (5.2) 

 

Numerical simulations shows that the sensitivity index of RH with respect to treatment is positive indicating that an increase in the 

proportions of those treated leads to an increase in new HIV cases as shown in figure 4. 

 

 
Fig. 4: Graph of Sensitivity Index of RH With Respect to Treatment. 

 

Biologically, lemma 4.1 implies that HIV/AIDS can be eliminated from the community when RH < 1. This is only true if the initial sizes 

of the sub-populations of the model are in the basin of attraction of E0. To ensure that elimination of the virus is independent of the initial 

sizes of the sub-populations, it is necessary to show that the DFE is globally asymptotically stable. 

 

5.0.1. Global stability of disease-free equilibrium (DFE) 

The global asymptotic stability (GAS) of the disease-free state of the model is investigated using the theorem by Castillo-Chavez et al. 

(2002). The model is rewritten as follows: 

 

                                                                                                                                                                                        (5.3) 

 

                                                                                                                                                                       (5.4) 

 

where the components of the column-vector X  Rm denote the uninfected population and the components of Z  Rn denote the infected 

population. ( )0
,0E X =  denotes the disease free equilibrium of this system. The fixed point ( )0

,0E X =  is globally asymptotically 

stable (GAS) equilibrium for this system provided that R0 < 1 and the following two conditions satisfied: 

 

 
 

Theorem 5.1. The fixed point  is a globally asymptotically stable equilibrium of system 4.0.1 provided that RH < 1 and the 

assumptions H1 and H2 are satisfied. 

Proof. From the system 4.0.1 

 

 
 

Notice that ( )ˆ , 0G X Z=   in ΩH. Therefore the DFE of model 4.0.1 is globally asymptotically stable if RH < 1. This shows that 

HIV/AIDS will be completely eliminated from the community if the epidemiological threshold, RH can be brought to a value less than 

unity independent of the initial sizes of the sub-populations as shown numerically in figure 5. 

 

 

( )0 , 0E X =
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Fig. 5: Global Stability of Disease-Free Equilibrium (DFE). 

6. Existence and stability of the endemic equilibrium 

To find conditions for the existence of an equilibrium for which HIV/AIDS is endemic in the population, the steady states of the system 

4.0.1 are determined by solving 
1

( ) 0
H H A

E f S I I  = + + = . The equations for the population proportions are considered by first scaling 

the sub-populations for SH; IH and IA using the following set of new variables: 
H

H

H

S

N
s = , H

H

H
N

I
i = , A

A

H
N

I
i = . 

The system 4.0.1, is therefore given by 

 

                                                                                                                                        (6.1) 

 

                                                                                                                                                                                     (6.2) 

 

 
 

                                                                                                                                (6.3) 

 

where π = α + da + dn. Since  is positive, then {β1(1 - δ)c1π1 + α(1 - α)p} >{dnπ1 + pπ1(1 - α)} which indicates the existence of only one 

unique endemic equilibrium point suggesting that there is no bifurcation. When {β1(1 - δ)c1π1 + α(1 - α)p} <{dnπ1 + pπ1(1 - α)}, then the 

model has no positive equilibrium. It can also be verified by a theorem by Castillo Chavez and Song (2002), that the model 6.0.1 has a 

unique endemic equilibrium which is LAS whenever RH > 1 as shown below. The equations in 6.0.1 are solved in terms of the force of 

infection at steady-state λah, given by 

 

                                                                                                                                                                                    (6.4) 

 

Setting the right hand sides of the model 4.0.1 to zero and noting that  at equilibrium gives 

 

                                                                                                                                                                                (6.5) 

 

Using 6.0.5 in the expression for  in 6.0.4 shows that the nonzero endemic equilibria of the model satisfy  

 

                                                                                                                                                                                         (6.6) 

 

HI

ah ah =

ah
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where a12 = RH - 1 and 11

11

ah

a
a


= . It is clear that a11 > 0, and a12 > 0 for RH > 1. Thus, the linear system 4.0.1 has only one unique 

positive solution, given by 
12

11

ah

a

a
a = , whenever RH > 1. This result is numerically illustrated in figure 6a where RH = 1.03447 and 6b 

where RH = 5.17234 

 

 
Fig. 6a: Global Stability of the Endemic Equilibrium (EE). 

 

 
Fig. 6b: Global Stability of the Endemic Equilibrium (EE). 

 

These results are summarized in lemma 6.1.  

Lemma 6.1. The HIV-only model 4.0.1 has a unique endemic equilibrium whenever RH >1, and no endemic equilibrium otherwise. 

When an endemic equilibrium point of a disease is unique and stable, then we would expect easier management of the disease because 

there is no bifurcation and therefore reducing the value of RH to less than one eliminates the disease. 

7. Conclusion 

The HIV-only model 4.0.1 has a globally-asymptotically stable DFE whenever RH > 1, and a unique endemic equilibrium point 

whenever RH > 1. This study shows that effective counseling reduces the value of the reproduction number for HIV/AIDS (RH) to less 

than unity eliminating the HIV/AIDS problem. When the proportion of those receiving ARV treatment without effective counseling 

increases, the value of RH also increases to a level above one, however effective counseling maintains the value of RH below unity 

therefore strategies for the control of HIV/AIDS should emphasize counseling and not only treatment.  
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