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Abstract 
 

A mathematical study or model is constructed with an aim to assist the design 

engineers for the making of various structures used in the satellite and 

aeronautical engineering. Visco-elastic plates are being increasingly used in the 

aeronautical and aerospace industry as well as in other fields of modern 

technology. To use them a good understanding of their structural and dynamical 

behavior is needed. In the modern technology, the plates of variable thickness are 

widely used in engineering applications. A mathematical model is presented for 

the use of engineers and research workers in space technology; have to operate 

under elevated temperatures. Rayleigh Ritz approach is applied for the solution of 

the problem. Fundamental frequencies and deflection functions are calculated for 

first mode of vibration of a clamped plate with diverse values of thermal gradient 

and taper constants. 
 

Keywords: Visco-elastic, Square plate, Parabolically, Thermal gradient, Taper 
constant. 

1      Introduction 

Vibration effects have always been a principle concern of engineers. In the epoch 

of science and technologies it is desired to design large machines with smooth 

operation and unwanted vibrations. Sometimes unwanted vibration causes 

fatigues. Unwanted vibration can damage electronic components of aerospace 
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system, damage buildings by earthquake, bring tsunami, and contribute to 

toppling of tall smokestacks, collapse of a suspension bridge in a windstorm. 

There are a multitude of applications where vibration effect is required e. g. in 

string and percussion instruments, in the design of loudspeakers, space shuttles, 

satellites where discrepancies in the temperature also affects the vibration effect. 

Controlled vibration effects are also required in health industry, paper industry, 

design of structures, building construction, reducing soil adhesion and many more 

areas engross vibration upshot. 

Hence vibrations totally affect our day-to-day life. Thus for design engineers and 

scientist, it has always been a necessity to optimize or to control the effect of 

unwanted vibrations as much as possible. Present work is a full-fleshed endeavor 

to assist the design officers, industry people to come up to the situation. 

In the recent past, there has been increasingly great interest in high strength, 

corrosion resistance and high temperature performance materials for structural 

components used in mechanical, aerospace, ocean engineering, electronic and 

optical equipments. Modern engineering structures are based on different types of 

design, which involve various types of anisotropic and non-homogeneous 

materials in the form of their structure components. Depending upon the 

requirement, durability and reliability, materials are being developed so that they 

can be used to give better strength and efficiency. The equipment used in air-jet, 

communications and in other similar technological industries take into 

consideration such materials, which not only reduce the weight and size but also 

are reliable in terms of efficiency, strength and economy.  

Recently, Leissa [1, 2] has given the solution for rectangular plate of variable 

thickness. Kishor and Rao [3] have discussed non linear vibration of rectangular 

plate on visco-elastic foundation. Gupta, Johri and Vats [4] have discussed the 

thermal effect on vibration of non-homogeneous orthotropic rectangular plate 

having bi-directional parabolically varying thickness. Gupta and Khanna [5] have 

solved the problem of free vibration of visco-elastic rectangular plate with linearly 

thickness variations in both directions. Singh and Saxena [6] have discussed the 

transverse vibration of rectangular plate with bi-directional thickness variation. 

Sobotka [7] has investigated the vibration of rectangular orthotropic visco-elastic 

plates. Lal [8] studied transverse vibrations of orthotropic non-uniform 

rectangular plates with continuously varying density. Warade and Deshmukh [9] 

discussed thermal deflection of a thin clamped circular plate due to partially 

distributive heat supply. Sobotka [10] discussed rheology of orthotropic visco-

elastic plates. Gupta and Kumar [12] analyzed vibration of non-homogeneous 

visco-elastic rectangular plates with linearly varying thickness. Hewitt [13] have 

considered vibration of triangular viscoelastic plates. Huffington and Hoppmann 

[14] have solved the problem of the transverse vibrations of rectangular 

orthotropic plates. Recently, Gupta and Kumar [15] study the effect of thermal 

gradient on free vibration of non-homogeneous visco elastic rectangular plate of 

parabolically varying thickness.  
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The aim is to study two dimensional thermal effects on the vibration of visco-

elastic square plate whose thickness varies linearly in x-direction and temperature 

varies bi-parabolically in another direction. It is assumed that the plate is clamped 

on all the four edges and its temperature varies linearly in both the directions. Due 

to temperature variation, we assume that non homogeneity occurs in Modulus of 

Elasticity.  For various numerical values of thermal gradient and taper constants; 

frequency for the first two modes of vibration are calculated with the help of latest 

software and all the results are shown in Graphs.   

2     Methodology 

Let the plate is subjected to a study two dimensional parabolically temperature 

distribution [2] i.e. 

                           
2 2 2 2

0(1 / )(1 / )T T x a y a             
(1) 

where, T  denotes the temperature excess above the reference temperature at any 

point on the plate and 0T  denotes the temperature at any point on the boundary of 

plate and “a” is the length of a side of square plate. The temperature dependence 

of the modulus of elasticity for most of engineering materials can be expressed in 

this 

                           γτ-10EE                                      (2) 

Where, E0 is the value of the Young's modulus at reference temperature i.e. 0T   

and γ  is the slope of the variation of E with T . The modulus variation (2) 

become 

                         
2 2 2 2

0[1 (1 / )(1 / )]E E x a y a       (3) 

where, 
0(0 1)T      

 thermal gradient. 

Also, It is assumed that thickness also varies linearly in x- directions as shown 

below: 

                         0 1(1 / )h h x a 
          

                    (4) 

where, 1 is taper parameters in x- directions respectively and h=h0 at x=y=0. 

The governing differential equation of transverse motion for visco-elastic square 

plate of variable thickness in Cartesian coordinate is [1]: 

     

     1 xxxx xxyy yyyy 1 x xxx xyy 1,y yyy yxx

2

1,xx xx yy 1,yy yy xx 1,xy xy

[D W, 2W, W,  2D , W, W,  2D W, W,

D (W, W, ) D (W, W, ) 2(1 )D W, ] hp W  0      

      

      
     (5) 
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A comma followed by a suffix denotes partial differential with respect to that 

variable.  

Here, D1 is the flexural rigidity of plate i.e.  

                  
3 2

1 /12(1 )D Eh v                                                (6) 

and deflection function for free transverse vibrations of the plate can be written as, 

in the form of Levy type solution [5] 

                
2

1 2[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]W x a y a x a y a A A x a y a x a y a                           

(7) 

Put the value of E & h from equation (3) & (4) in the equation (6), one obtain 

               
2 2 2 2 3 3 2

1 0 0 1[ [1 (1 / )(1 / )] (1 / ) ] /12(1 )D E x a y a h x a v                    
(8) 

Rayleigh-Ritz technique is applied to solve the frequency equation. In this 

method, one requires maximum strain energy must be equal to the maximum 

kinetic energy. So it is necessary for the problem under consideration that 

                             
* *( ) 0V T                                        (9) 

for arbitrary variations of W satisfying relevant geometrical boundary conditions.  

Since the plate is assumed as clamped at all the four edges, so the boundary 

conditions are  

                         , 0, 0,xW W x a    
 
 

                         
, 0, 0,yW W y a  

   
                               (10) 

Now assuming the non-dimensional variables as 

                / , / , / , /X x a Y y a W W a h h a                    (11) 

The kinetic energy T* and strain energy V* are [2] 

                 

1 1
* 2 5 2

0 1
0 0

(1/ 2) [(1 ) ]T p h a X W dYdX     
     (12)  

and 

               

1 1
* 2 2 3 2 2

1
0 0

2

[1 (1 )(1 )](1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY

XX YY XY

V Q X Y X W W

vW W v W dYdX

      

  

        (13) 

where,   3 3 2

0 0 / 24(1 )Q E h a v   
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Using equations (12) & (13) in equation (9), one get 

                   
** 2 **( ) 0V T                            (14) 

where,        

              

1 1
** 2 2 3 2 2

1
0 0

2

[1 (1 )(1 )](1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY

XX YY XY

V X Y X W W

vW W v W dYdX

      

  

    (15)             

and  

               

1 1
** 2

1
0 0

[(1 ) ]T X W dYdX                               
(16) 

Here, 2 2 2 2

0 012 (1 ) /v a E h  
 
is a frequency parameter. 

Equation (16) consists two unknown constants i.e. A1 & A2 arising due to the 

substitution of W. These two constants are to be determined as follows 

                          
** 2 **( ) / 0nV T A     

    , n = 1, 2            (17) 

On simplifying (2.17), one gets 

                           1 1 2 2 0bn A bn A        , n =1, 2                  (18) 

where, bn1, bn2 (n=1,2) involve parametric constant and the frequency parameter. 

For a non-trivial solution, the determinant of the coefficient of equation (18) must 

be zero. So one gets, the frequency equation as 

                                        

11 12

21 22

0
b b

b b


       

(19) 

With the help of equation (19), one can obtains a quadratic equation in λ
2 

from 

which the two values of λ
 2 

can found. These two values represent the two modes 

of vibration of frequency i.e. λ1(Mode1) & λ2(Mode2) for different values of taper 

constant and thermal gradient for a clamped plate. 

3      Result and Discussion 

All calculations are carried out with the help of latest Matrix Laboratory computer 

software. Computation has been done for frequency of visco-elastic square plate 

for different values of taper constants 1 and thermal gradient , at different 

points for first two modes of vibrations have been calculated numerically. 
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In Table and Fig I: - It is clearly seen that value of frequency decreases as value 

of thermal gradient increases from 0.0 to 1.0 for β1=0.4 and β1=0.6 for both modes 

of vibrations. 

In Table and Fig II: - Also it is obvious to understand the increment in frequency 

as value of tapper constant β1 from 0.0 to 1.0 for α=0.4 and α=0.6 for both modes 

of vibrations. 

On the comparison of above discussion we have seen that frequency is decreases 

when we increase the value of thermal gradient from 0.0 to 1.0 for β1=0.4 and 

β1=0.6 for both modes of vibrations and frequency is increases when the value of 

tapper constant β1 from 0.0 to 1.0 for α=0.4 and α=0.6 for both modes of vibration. 

Table I: Frequency Vs Thermal gradient 

α 
β1=0.4 

Mode 1            Mode 2 

β1=0.6 

Mode 1              Mode 2 

0 

0.2 

0.4 

0.6 

0.8 

1 

162.18 

153.63 

144.58 

134.94 

124.57 

113.26 

41.57 

39.85 

38.04 

36.11 

34.03 

31.74 

174.41 

164.55 

154.06 

142.83 

130.66 

117.26 

44.72 

42.96 

41.19 

39.11 

36.94 

34.49 

 

Fig I:- Frequency Vs Thermal gradient 
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Table II: Frequency Vs Taper constant 

β1 
α =0.4 

Mode 1             Mode 2 

α =0.6 

Mode 1           Mode 2 

0 

0.2 

0.4 

0.6 

0.8 

1 

125.71 

135.23 

144.61 

154.16 

163.86 

174.15 

32.53 

35.16 

38.12 

41.19 

44.28 

47.57 

117.37 

126.65 

134.94 

142.83 

150.69 

158.76 

30.63 

33.26 

36.11 

39.11 

42.21 

45.35 

 

Fig II:- Frequency Vs Tapper Constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5      Conclusion  

The objective of this paper is to clarify the characteristics of vibration of plates 

with variable thickness. Authors conclude that the results of present paper have a 

good convergence and satisfactory accuracy with available literature.   

It is an approach to provide the guidelines (through theoretical models) for 

technocrats and design engineers so that they can analyze the models before 

finalizing any design of machine.   
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