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Abstract

In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with
integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.
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1. Introduction

Fractional differential equations have been of great interest and
attracted many researchers in recent years; this is due to the devel-
opment of the above cited concept. It have found applications in
several different disciplines as physics, engineering, economics,
electrochemistry, electromagnetism etc. (See [3, 4, 9, 13, 20]).
Such equation have recently proved to be valuable tools in model-
ling of many phenomena. (See papers [2, 7, 12, 14, 16, 20] ).

In [10], Benchohra and Ouaar discussed the existence of solutions
to the boundary value problem:

CD%y()=f(t.y(t), ted =[0T ], a(01], (1)

y(0) = 1f] y(s)ds = y(T), @

CD? is the Caputo fractional derivative f :J xR —R is continu-

ous function and xeR™.
In [8], Sotoris K. Ntouyas investigated the existence and unique-
ness of solution of the following problem:

Cpax(t) = f(t, x(t)), 0<t<1 0<q<1, (3)
x(0) =l Px(n7), 0<13=<1, (4)

CbY denotes always the Caputo fractional derivative of order g,
f :[01]xR >R such that

a;:r(p*yp, T is the Euler function and 1P,
n

is continuous function, «eR

0< p=<1 is the Riemann-Liouville fractional integral of order p.

In this paper, we consider the following nonlinear fractional dif-
ferential equation with integral boundary conditions:

Co%y(t) = f(t, y), ted =[01] (5)
y(0) = [t y(s)ds ®)
yO =%jé(l—s)ﬁ_ly(s)ds @

Where ©D# is the Caputo fractional derivative of order a,
1<a<2, 0<p<land f :[0,1]xR >R is continuous function

2. Preliminaries

Now, we present some basic definitions and lemmas of fractional
calculus which will be used in our theorems [1], [4], and [18].

Definition 2.1: For a differentiable function h: [0, +w0) — R, the
Caputo derivative of fractional order « is defined by

1

“D%n() - rh-a)

[5&=9)"" ™ (s)ds,

n-l<a=n, n=[a]+1,

Where [«] denotes the integer part of ¢ and T' is the gamma
function.
Definition 2.2: The Riemann-Liouville fractional integral of order

a is given by

19h(t) = % -9 th(s)as,
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Where h:R* R is a Lebesgue measurable function, provided 1(1- z‘)
the integral exists? a==2lg~ h( )de. (13)
Lemma 2.1: [19] Let =0, then the differential equation Now, we operate (10) and (11), we get
Cp%n(t)=0 has solutions
a- S) Y(S)ds
h(t) =cg +olt+c2t2+...+cn,lt”’1, ¢j €R,i =0,1,2,..,n-1n :[a]+1. F(ﬂ) IO
Lemma 2.2: [19] Let a >0, then r( )F(ﬁ) Iofo( 1-5)PL(s—r)*Ih(r)drds
1% CDh(t) = h(t) +cq + ot + Cpt > +...+ gt ",
F(,B) jo(l s)? lds+r(ﬂ j (-s)Psds,
Where ¢; €R,i =0,1,2,..,n-1n :[a:|+1.
that is to say:
Lemma 2.3: Let 1< <2 and let h:J xR — R be a given contin-
uous function. Then, the boundary-value problem
j (1- s) h(s)ds+c0+c1
r( )70
Cp%y(t)=h(t), ted (8)
1 1s p-1 a1
= 1-s S—r h(r)drds
YO = [py(s)s © gy ot TEmDTO
A1 01 L1
N-—L (ta-s)fly(s)ds 10 fo(_) d5+ I(l s)7" “sds,
y(@® ) IO( )" Y(s) (10 r(ﬂ)
has a unique solution defined by: after the simplification we obtain:
_ a-1 1-s h s)ds+cg +
y()fr( )jo(t s)% Ih(s)ds + @ )Io( ) h(s)ds+c+oy
L-1 a-1
1-n)A1(r — )% gr - fof @-r)”"(r—s)“""h(s)drds
IOLJ( Ty ke - F(a)F(ﬂ)
a-1 =0
1-s) { 2rp j(l 9% Ih(s)ds T(B+1) T(B+2)
nl(a) nal'(a) ol(a)
which may be written,
Where
1 1
1-————|gg+|1-——— ¢
PIE SE U [l pm)s
r(B+1) L(B+2)
Proof of lemma 2.3 Applying lemma 2.2, we can reduce the prob- r(a)r(ﬁ) fof @-1)P(r-)* h(s)drds
lem (8)-(10) to an equivalent integral equation
y(©) = I§h(t) +cg + ot r( ) jo(l s) h(s)ds (14)
_[O(t )% In(s)ds + ¢ + o, (11) In outi 1 1
@ NP n R T Ty
. . . - (14) becomes:
for some constants c;,c, eR. By integrating and using Fubini's
theorem, we obtain 1% +7201
-0 o
[Ey(s)ds = [ h(r)dr+co+ 2. (12) IV EVEN ~ 1o s,
0 0 ol (a) 2 F(a)F(ﬁ) [oJe@=r)P7(r —5)* Ih(s)drds —Jo( 5 h(s)ds
Applying (9), we find y(0) =cy, Using (13), we obtain
and with (12), we arrive to 1 11 -1 a-l,
cozmjojs(lfr)ﬂ (r—s)*Ih(s)drds
¥(0) = jl(l 0 h(r)dr+co+c—21
then, "l )jo(l s) h(s)ds +71 j'o(l s) h(s)ds. (15)



20

International Journal of Applied Mathematical Research

A combinaison of (11), (13) and (15) leads to

a -1
y(t)=ﬁfo(t h(s)ds

_ p-1 a-1
71T(a)F(ﬁ)JOI A=) (r—s)*""h(s)drds

Io @a- s) h(s)ds

71F(0!)
|2 Fa- $) h(s)ds,
nel (@) ar<a) 0
i.e.,
y(t) =m jo (t—3)?h(s)ds +
p-1 a-1

L’Llr(aor(mI A= rsy

a-1
@-s) +( 22 _ j(l 5% |h(s)ds m
nl(a) nel(e) ol(e)

3. Existence and uniqueness result

Theorem 3.1: (Fixed point theorem of Banach) [6] Let X a Ba-
nach space and T:X — X a contracting mapping. Then T has a

unique fixed point i.e.

JIxe X: Tx=x.

Our first result of existence is based on theorem of Banach con-

tracting application

Theorem 3.2: Suppose that the function f :[0,1]xR —R is con-

tinuous and there is a constant L >0 such that:

(Hy):|f @&.x)—f ¢, y)|<L|x -y|te[01], X,y eR.

If LA<1, then the boundary value problem (5)-(7) has a unique

solution, where

1 B(B,x) 1
“T(a+) |71| (a+ B)L(a)T(B) |71|1"(a +1)

2|7,] L2
|71|F(a+2) T'(ax+2)

Proof of theorem 3.2

We define the operator F, by:

(Fy)t) = r( ) —— [ =97 (s, y(s)ds
1 1 Ly e gty (=9
ol r@rep s TR S

(16)

Bp={y eC([O,l],R):"y"Sp} and p>

Let ye Bp,

IFy| = sup]{

N _
[1|T(@)T(B)

+
ol («)
te[O 1] { [(a)

N _
[1|T(@)T(B)

+|f (s,O)|)ds+

(| y() - F(s.0)+|f (s 0)|)ds+

ﬁ_
j’éjsl(lfr)

_ Jé 0 S)a+

J{ 2r2 ](1 s)“}f(s y(s)ds, te[01]

nat'(@) ol (a)

If we put sup |f(t,0)]=M we show that FB, =B,

te[0,1]
MA
1-LA

te[0,1], this leads to write:

@ [yt=9)* (s, y(s)as

- Jéﬁ @-nfr-s)* (s, y(s))drds

|7|F( )Joa )% (s, y(s))ds

2|72
|71] el (@)

fo@-9)" (s, y(s))ds

foa-9)7 (s, y(s))ds} <

! jéjsl(l—r)ﬁ’l(rfs)“’lx

(1. y(s) - 1 (5.0)|+| f(5,0) ) aras

|}, |F(a) fo(l s) (|f(s| y(s)) - f(s,0)|

2|72

1 o
|r1] T () Jolt=9)

(o)

j’é(l—s)“ (| f(s,y(s))— f(s.0)+| f (5,0)|)ds}.

S

Toput u =175 e,
1-r

1-r=(@1-u)@@-s), dr=(@-s)du

we obtain:

1 a1
(r —s)*drds

-1
i [sa-uf ety

_B(f.a)

a+p

, Where B

jo(t 5)* l(|f(s y(s) - (s,0)+| f (s, 0)|) S

1

(18)

(19)
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By substitution in (18), and after simplification, we get

el ot

B(S,2) 1
[r1|(a+ AT ()T (B) |71|r(0€ +1)

27y L2
|y1|F(a+2) [N(a+2)

<(Lp+M)A<p, (20)

which means that FB, < B,,. (21)

Now, suppose that x,y C ([0,1],R ) and te[0,1], then we have:

[(F) = (Fy))|

<

fo(t s)“‘1| (s.x(s))—f s,y(s))|ds

te[oplj{r(a

N/ -5)*

Inlr(a)rw) folstt-

If (s,x (s))~f (s,y (s))]lrds

um |F(a) o Jo@=9)" £ (s,x(5)) — £ (5, y(5))| s

272

[let (@) Jo@=9% | (sx(s) = (5. y(s))]ds

Yo )Io(l $)* | (s, x(s) - f (s, y(s))|ds}

<Ly Bpa) ___,
F(a+1) |y1|(a+ﬂ)F(a)F(ﬁ)

1 2|7, 2 }

|;/1|F(a+1) |}/1|1"(a+2) Ta+2)
~LAJx-y].
Since we assumed 0<LA=<1, then F is a contraction. Using the

principle of Banach fixed point; we deduce that the problem (5)-(7)
has a unique solution. m

Example 3.1 Consider the following boundary problem:

D/y()— i

|x| +tcos?t, te[O 1] (22)
¥(0) =[gy(s)ds (23)
y@) = RE 2y(s)ds. (24)

P

In this example, «=34, =1 and

+tcos?t.

__1 X
M= Ty

We have

kb
4 (1+|x|)(1+|y|)

f €x)=F €)=

< Yabx-ol.

then, L=1/.
By a simple calculation, we find: LA =0.3715...<1, and by theo-

rem 3.1 we deduce that the problem (22)-(24) has a unique solu-
tion.

Theorem 3.3: (Arzela-Ascoli's theorem) [5]

Let AcC (K R”), (K =[ab]<=R). Ais relatively compact (i.e,

A is compact) if and if:
1) A is uniformly bounded.
2)  Aisequicontinuous .
e Recall that a function f is uniformly bounded in Aif there

exists a constant M =0 such that:

[f]=sup|f(O|<M, VfeA

xeK
Theorem 3.4: (Fixed point theorem of Krasnoselskii) [15]

Let F a non-empty set, closed and convex in a Banach space X.
Ty and T, are two applications of F in X such that

1) T)+Ta(y)eF, VxyeF,

2) T, isacontraction,

3) T, is compact and continuous.
Then, T, +T, has a fixed point in F, i.e, there exists xe F such
that Ty(x) +To(X) = x.

The second existence result is obtained by using the fixed point
theorem of Krasnoselskii.

Theorem 3.5: Let f :[0,1]xR >R be a continuous function
which that satisfies the conditions (Hy) and (Hp):|f (t, x)| < u(t),

v(t,x)e[0,1] and ueC([O,l],R*). Suppose that

L B(8,a) 1
7] (@ + B)T(@)T(B) |71| Ia +1)

(25)

2|7,] L2 }

|71|F(a +2) T'(a+2)

Then, the value problem (5)-(7) has a unique solution.

Proof of theorem 3.5

Let sup |u(®)|=|x-
xe[01]

We set
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. 1 B(B.2)
p'z IIﬂll{r(a ) @ Ar@re)

1 2|7, 2 }

|;/1|F(a +1) |71|F(a +2) " T'(ax+2)
and we consider the set
B ={v =C ([01].R):y[=p"}.

We define two operators P and Q on B, by:

(Py)(t):mfo(t §)*~ 1f(s y(s))ds, te[01]
Q)

mjof =05 dras
+}/1F(a) fo@-9"71 (s, y())ds
ﬁlo(l 8 1 (5,(s))ds
+F(a+1)IO(1 $)* £ (s,y())ds

te[0,1]

Let x,ye Bp* , we have

[Px+Qy] < M jg (t-s)*ds

|71|F|(|§|)|r(ﬂ) jofs1 (A=) (r—s)*Hdrds

2] 2rallel 1y e
@t +|y1|r(o:+1) Jott-syas
LA a
T+ T o9

<[l = D)
(e +1) |71| (a+ ﬁ)l"(a)l"(ﬁ)
1 2|, L2
|;/1|F(a+l) |y1|F(a+2) INa+2)

Sp.

Then, Px+Qye Bp*, we have
flox - Quf < Lfx - y]x

B(B,a) 1
[](a+ AT ()T (B) |n|r(a ¢

2|, L2 }

|y1|F(a+2) INa+2)

By exploiting (25), we deduce that Q is a contraction. According
to the definition of the operator P, we deduce that the continuity
of f implies that of P. In addition, we have:

t
e <y s

]
< m f (26)

which implies that P is uniformly bounded.
Now we show that P is compact. We have

(PY)(t) - (PY)(t2)

K 8t )% 1 (s,(s))ds

1"( )
F( ) 0 2ty —s)* 7 (s,y(s))ds
1 (4 -
:m( (t) (t, —s)* L (s.y(s))ds

-t -9)* 2 (s,y(5))ds
—jttlz (tp —s)* (s,y(s))ds).
Taking into account the condition (H;), we set

= sup

[t %)
(t.x)e[ 0.1]x Bp,,

Then we can write

[(PY)(ta) ~ (PY)(t2))

1

(@) ¢ [(tz -9 (- S)a_l} f(s,y(s))ds

-9 y(s))ds\

f*
[(a)

<

b [(tz Sy . s)“*l} ds

t -1
+ tlz (th—s)* ds‘,

a simple calculation leads to:

[Py - Py ol i | @)

The second member of (27) is independent of y and tends to zero
when t, —t; —0, so P is equicontinuous. Using the Arzela-Ascoli
theorem, we deduce that P is compact in Bp*. Thus all the as-

sumptions of the fixed point theorem of Krasnoselskii are satisfied.
Which implies that the boundary value problem (5)-(7) has a

unigue solution on [0,1].
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