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Abstract 
 

In this paper, a mathematical model consisting of a prey-partially dependent predator has been proposed and analyzed. It is assumed that 

the prey moving between two types of zones, one is assumed to be a free hunting zone that is known as an unreserved zone and the other 

is a reserved zone where hunting is prohibited. The predator consumes the prey according to the Beddington-DeAngelis type of function-

al response. The existence, uniqueness and boundedness of the solution of the system are discussed. The dynamical behavior of the sys-

tem has been investigated locally as well as globally with the help of Lyapunov function. The persistence conditions of the system are 

established. Local bifurcation near the equilibrium points has been investigated. Finally, numerical simulation has been used to specify 

the control parameters and confirm the obtained results. 
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1. Introduction 

It is well known that one of the most important subject in ecology 

and mathematical modeling in biology is the prey-predator inter-

action for which many problems still open. Since the pioneer work 

of Lotka-Volterra model many complex models are developed to 

study prey-predator interactions involving different types of fac-

tors [1]. The existence of reserved zone to protect the prey has 

become an important factor of prey-predator systems and its ef-

fects on stability have been focused in several models [2-5]. Most 

of these studies have been observed that use of refuges by prey has 

a stabilizing effect on prey-predator dynamics. Later on, Daga et 

al [6] investigated the local and global stability of Dubey model 

given in [3], where the carrying capacity in an unreserved zone is 

proportional with prey density. They assumed that the predator is 

wholly dependent on the prey species in an unreserved zone.  

Although the predator density dependent migration is not consid-

ered a lot in many models of prey refusal, it is observed that ref-

uge has a stabilizing effect on the equilibrium for a simple Lotka-

Volterra model. The role of predator density dependent migration 

in a generalized prey-predator system is investigated by Mukher-

jee [7]. He obtained the condition which influences the persistence 

of all the populations in general prey-predator system. Actually 

the prey population in prey-predator models facing extinction due 

to the effect of many factors, so in order to keep this species saves 

from extinction, suitable restrictions on these factors are consid-

ered. The construction of reserve zone/refuges and free zone in a 

given habitat is one of these restrictions, in which the predator 

density dependent migration of prey population plays a key role 

for the survival of the populations.  

Recently, in our previous paper [8], we proposed and studied a 

mathematical model consisting of prey-wholly dependent predator 

with a reserved zone. The stability analysis, persistence and bifur-

cation are investigated. In this paper however, a mathematical 

model for a prey - partially dependent predator system with a re-

served zone has been proposed and analyzed. It is assumed that 

the migration of prey species from an unreserved zone to a re-

served zone is proportional with the predator density. 

2. Model formulation 

Consider a prey-predator system in which the predator feeds on 

variety of food resources including the prey species, which living 

in a habitat consisting of two zones namely reserved zone and an 

unreserved zone. In order to formulate the mathematical model 

that describes the above real system the following hypotheses are 

adopted: 

1) The prey in a reserved zone is capable of reproducing in lo-

gistic fashion with carrying capacity 0K   and intrinsic 

growth rate 
1

0r  . While the prey in an unreserved zone / 

free zone is capable of reproducing in logistic fashion with 

carrying capacity 0L   and intrinsic growth rate 
2

0r  . 

2) The transition of prey from an unreserved zone to reserved 

zone is proportional with a natural moving rate 0   as 

well as predator density, while the transition in opposite di-

rection is proportional with a natural moving rate 0   on-

ly. However, the transition of predator species from an un-

reserved zone is not allowed. 

3) In the absence of prey species the predator growth logisti-

cally with carrying capacity 0M   and intrinsic growth rate 

3
0r  . However it consumes the prey species in an unre-

served zone according to Beddington-DeAngelis type of 

functional response with maximum attack rate 0a  , half-

saturation constant 0b   and a scale of the impact of the 

predator interference that given by 0c  . Finally, in case of 

lack of resources the predator will decay exponentially with 

a death rate given by 0d  . 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJAMR


2 International Journal of Applied Mathematical Research 

 
Now, let ( )x t  be the density of prey species in an unreserved zone, 

( )y t  be the density of prey species in a reserved zone and ( )z t  be 

the density of predator species at time 0t  , then according to the 

above hypothesis the dynamics of the above system can be de-

scribe by the following set of differential equations: 

 

1 1

2 2

3 3

1 ( ) ( , , )

1 ( ) ( , , )

1 ( , , )

dx x ax
r x z x y z F x y z

dt K b x cz

dy y
r y z x y F x y z

dt L

dz z eaxz
r z dz F x y z

dt M b x cz

 

 

 
       

  

 
      

 

 
     

  

                    (1) 

 

Here 0 1e   represents the conversion rate constant of food from 

prey to predator. The system is considered with following set of 

initial conditions ( ) 0x t  , ( ) 0y t   and ( ) 0z t  . Clearly the interac-

tion functions in the right hand side of system (1) given by the 

vector 
1 2 3

( , , )tF F F F  are continuously differential function on 3R

, 

Hence they are Lipschitizian. Therefore the solution of system (1) 

exists and is unique. Further, all the solutions of system (1) with 

non-negative initial condition are uniformly bounded as shown in 

the following theorem. 

 

Theorem 1: All the solutions of system (1) which initiate in 3R

 

are uniformly bounded. 

 

Proof: Let ( ( ), ( ), ( ))x t y t z t  be any solution initiate in 3R


 and con-

sider the function 

 

1
( ) ( ) ( ) ( )w t x t y t z t

e
    

 

By differentiate ( )w t  with respect to time and then simplifying the 

resulting terms we get that 

 

1dw dx dy dz

dt dt dt e dt
     

 

2 2 23 31 2

1 2
( 1) ( 1) 1 1

r rr rdw d
r x x r y y z z x y z

dt K L e eM e

   
              

  

 

1 2

1 1 2 2

3

1

3 3

( 1) 1 ( 1) 1
( 1) / ( 1) /

1
( ) /

dw x y
r x r y

dt K r r L r r

r e z z
z x y

e M r e r e


   
        

    

    
        

     

 

 

Where
1

min.{1,( )}e d   . Now, since the logistic terms are 

bounded, then straightforward computation shows that 

 
22 2

31 2

1 2

1 2 3

( )( 1) ( 1)

4 4 4

M r eK r L rdw
w

dt r r er
 

 
      

 

Consequently by using the Gronwall lemma, we obtain that  

𝑤(𝑡) =
𝜇2

𝜇1
 for sufficiently large t . Hence all the species are uni-

formly bounded for any initial value in 3R

. 

3. Stability analysis and persistence 

There are at most four non-negative equilibrium points of system 

(1), the existence conditions and stability analyses of them are 

described below: 

The vanishing equilibrium point 
0

(0,0,0)E   always exists. 

The predator free equilibrium point
1

( , ,0)E x y , where 

1

1

r xx
y r

K




 
   

 
                                                                          (2) 

 

While x  is a positive root of the third degree polynomial 

 

2 22
3 21 2 1 2 2 2 2( ) ( ) 0

2 1 2 2

A r A A r A r
x x r A x r A

L L L
  

 
          

  
  

 (3) 

 

Here 1

1
0

r
A

K
   and 1

2

r
A






 , exists uniquely in the positive 

quadrant of xy  plane if and only if one of the following sets of 

conditions is satisfied 

 

𝛼 > 𝑟1                                                                                            (4) 

 

Or 

 

0 < 𝑟2 <
𝛽𝑟1

𝑟1−𝛼

(𝛼 − 𝑟1)
2𝑟2𝐾 < (𝑟2 − 𝛽)𝑟1𝛽𝐿
𝑟1�̅�

𝐾
+ 𝛼 > 𝑟1

                                                      (5) 

 

The prey free equilibrium point 
2

ˆ(0,0, )E z  where 

 

�̂� =
𝑀

𝑟3
(𝑟3 − 𝑑)                                                                             (6a) 

 

Exists uniquely on the positive direction of z  axis provided that: 

 

𝑟3 > 𝑑                                                                                          (6b) 

 

The positive equilibrium point, 
3

( , , )E x y z    exists uniquely in 

the interior of 3R

 ( 3.Int R


) provided that there is a positive solution 

to the following set of algebraic equations. 

 

1

2

3

1 ( ) 0

1 ( ) 0

1 0

x axz
r x z x y

K b x cz

y
r y z x y

L

z eax
r d

M b x cz

 

 

 
      

  

 
     

 

 
    

  

                                         (7) 

 

Solving the third and second equations with respect to x  and y  

respectively shows that: 

 

1 2

1

x
eaM

 



 


, * 3 1 2 32

2

2 2 1

( )
( ) 4

2 2 ( )

rL r L
y r

r r L eaM

  





   


             (8) 

 

Here *

1 3 3
( )d r M r z    , *

2
0b cz     and *

3
0z    , howev-

er z   is a positive root of the first equation. Clearly *x  and *y  

will be positive provided that 

 

*3 3

3 3

( ) ( )r d ea r d
M z M

r r

  
                                                          (9) 

 

Now, in order to investigate the local stabilities of the above equi-

librium points, we need to consider the Jacobian matrix 

( , , )DF J x y z  of system (1) that can be written as 

 

3 3
( , , ) ( )

ij
J x y z C


                                                                            (10) 

 

Where  
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1

11 1 2

2 ( )
( )

( )

r az b cz
C r x z

K b x cz



    

 
, 

12
C  , 

13 2

( )

( )

a b x x
C x

b x cz


  

 
,  

 

21
C z  , 

 

2

22 2

2r
C r y

L
   , 

23
C x , 

31 2

( )

( )

ae b cz z
C

b x cz




 
, 

32
0C  , 

 

3

33 32
1

( )

r acex z eax
C z r d

M b x cz M b x cz

   
        

     
. 

 

Clearly, straightforward computation shows that the Jacobian 

matrix near the vanishing equilibrium point 
0

(0,0,0)E   is  

 

1

0 2

3

0

( ) 0

0 0

r

J E r

r d

 

 

 
 

  
  

                                                       (11) 

 

Thus the characteristic equation can be written as: 

 

 2

1 2 1 2 3
( ) ( ) ( )( ) [ ] 0r r r r r d                            (12) 

 

Hence the eigenvalues of 
0

( )J E are 

 

1 2

0 0

2

1 2 1 2

( ) ( )
,

2

1
[( ) ( )] 4[( )( ) ]

2

x y

r r

r r r r

 
 

    

  


       

                           (13a) 

 

0 3z
r d                                                                                     (13b) 

 

Here
0 x
 ,

0 y
  and 

0 z
  represent the eigenvalues of 

0
( )J E  in the x-

direction, y-direction and z-direction respectively. Clearly all the 

above eigenvalues will be negative provided that the following 

conditions hold 

 

1
r                                                                                            (14a) 

 

2
r                                                                                           (14b) 

 

1 2 1 2
rr r r                                                                                 (14c) 

 

3
r d                                                                                          (14d) 

 

Since condition (14c) can't satisfy simultaneously with conditions 

(14a) and (14b), hence 
0

( )J E  has one positive eigenvalues and 

then 
0

E  is a saddle point. 

The Jacobian matrix of the system (1) near the predator free equi-

librium point 
1

( , ,0)E x y  can be written as  

 

1

1

2

1 2

3

2
1

2
( ) ( )

0 0

ij

r a
r x x

K b x

r
J E r y x b

L

eax
r d

b x

 

 

  
     

  
 

    
 
 

   

            (15) 

 

Therefore the characteristic equation and the eigenvalues of 
1

( )J E  

can be written respectively as 

2 1 2

1 2

3

1 2

1 2

2 2

2 2
0

r r
r x r y

K L

r
r r

r x r y eax
dK L

b x

   

  


     
          

    

 
                          

          (16) 

 

211 22

1 1 11 22 11 22 12 21

1
, [ ] 4[ ]

2 2
x y

b b
b b b b b b 


                                  (17a) 

 

1 33 3z

eax
b r d

b x
    


                                                                 (17b) 

 

Now, since 𝑟1 −
2𝑟1

𝐾
�̅� − 𝛼 < 0 due to existence conditions (4-5), 

thus all these eigenvalues are negative or have negative real parts 

and hence 
1

E  is locally asymptotically stable in 3R

 provided that 

 

2

2

2r
r y

L
                                                                                 (18a) 

 

3

eax
r d

b x
 


                                                                               (18b) 

 

1 2 1

1 2 1

2 2 2r r r
r x r y r x

K L K
 

    
        

    
                                      (18c) 

 

The Jacobian matrix of the system (1) near the prey free equilibri-

um point 
2

ˆ(0,0, )E z  can be written as  

 

𝐽(𝐸2) =

(

 
 
𝑟1 − (𝛼 + �̂�) −

𝑎�̂�

(𝑏+𝑐�̂�)
𝛽 0

𝛼 + �̂� 𝑟2 − 𝛽 0
𝑎𝑒�̂�

(𝑏+𝑐�̂�)
0 −

𝑟3�̂�

𝑀 )

 
 
= (𝑐𝑖𝑗)       (19) 

 

Therefore the characteristic equation and the eigenvalues of 
2

( )J E  

can be written respectively as 

 

[𝜆2 − (𝑐11 + 𝑐22)𝜆 + (𝑐11𝑐22 − 𝑐12𝑐21)] [
−𝑟3�̂�

𝑀
− 𝜆] = 0           (20) 

 

211 22

2 2 11 22 11 22 12 21

1
, [ ] 4[ ]

2 2
x y

c c
c c c c c c 


                                 (21a) 

 

  𝜆2𝑧 = 𝑐33 = −
𝑟3�̂�

𝑀
                                                                    (21b) 

 

Clearly all these eigenvalues are negative or have negative real 

parts and hence 
2

E  is locally asymptotically stable in 3R

 provided 

that 

 

1

ˆ

ˆ

az
r

b cz



                                                                                   (22a) 

𝑟2 <
𝑟1− 

𝑎�̂�

(𝑏+𝑐�̂�)

𝑟1−(𝛼+�̂�)−
𝑎�̂�

(𝑏+𝑐�̂�)

𝛽                                                                 (22b) 

 

Finally, the Jacobian matrix of the system (1) near the positive 

equilibrium point 
3

E  can be written as 

 

3 3 3
( ) ( )

ij
J E a


                                                                                 (23) 

 

Where  

 

1

11 1 2

2 ( )
( )

( )

r az b cz
a r x z

K b x cz


 

 

 


    

 
, 

12
0a   , 
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13 2

( )
1 0

( )

a b x
a x

b x cz





 

 
    

  
, 

 

21
0a z    , 2

22 2

2r
a r y

L
   , 

23
0a x  ,  

 

31 2

( )
0

( )

ae b cz z
a

b x cz

 

 


 

 
, 

32
0a  , 3

33 2
0

( )

r acex
a z

M b x cz





 

 
    

  
 

 

Therefore the characteristic equation of 
2

E  can be written as fol-

low 

 
3 2

1 2 3
0A A A                                                                        (24) 

 

Where 

 

 1 11 22 33
A a a a     

 

2 11 22 12 21 11 33 13 31 22 33
A a a a a a a a a a a      

 

   3 33 11 22 12 21 31 12 23 13 22
A a a a a a a a a a a     

 

While 

 

     

 

1 2 3 11 22 11 22 12 21 11 33 11 33 13 31

22 33 22 33 11 22 33 12 23 31
2

A A A a a a a a a a a a a a a

a a a a a a a a a a

         

   
 

 

From the Routh-Hurwitz criterion [1], all the roots (eigenvalues of 

3
( )J E ) of Eq. (24) have negative real parts and hence 

3
( , , )E x y z    is locally asymptotically stable if and only if 

1
A ,

3
A  

and   are positive. Therefore in the following theorem we present 

the sufficient conditions of local stability of 
3

E . 

 

Theorem 2: Suppose that the positive equilibrium point 
3

E  of 

system (1) exists in 3.Int R

. Then 

3
E  is locally asymptotically sta-

ble if  

 

2K x                                                                                        (25a) 

 

2L y                                                                                        (25b) 

 

Proof: Straightforward computation gives that conditions (25a)-

(25b) guarantee that 
11

a  and 
22

a  are negative, hence by substitut-

ing the elements of 
3

( )J E  and then doing simple calculation, we 

get that 
1

A ,
3

A  and   are positive. Hence according to Routh-

Hurwitz criterion 
3

E  is locally asymptotically stable in 3.Int R

.  

In the following the global stability of the equilibrium points of 

system (1) is investigated with the help of Lyapunov method. The 

results of this study can be summarized in the following theorems. 

 

Theorem 3: Suppose that the predator free equilibrium point 

1
( , ,0)E x y  is locally asymptotically stable in the 3R


, then it is a 

globally asymptotically stable provided that 

 

3
( )

( )

b d r
y x

e a b






 


                                                                        (26) 

 

Proof Consider the following function

   1 1 2 3
ln ln yx

x yV c x x x c y y y c z             , where ; 1,2,3
i

c i   

are positive constants to be determined. Clearly 3

1
:V R R


 , is a 

continuously differentiable positive definite real valued function 

with 
1
( , ,0) 0V x y   and 

1
( , , ) 0V x y z   otherwise. Further, since 

1

1 2 3

dV x x dx y y dy dz
c c c

dt x dt y dt dt

   
    

   
 

 

Then by substituting the values of  
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
 from system (1) and 

then simplifying the resulting terms we obtains that 

 

 

 

2 21 1 2

1 2

1 2 1 2

1 2 3 3 1

23

1 3 2 3

( ) ( )

( ) ( )

( ) ( ) (1 )

( )

a
b

dV r r
c x x c y y

dt K L

xy xy
c y c x xy c y c x xy

xxyy

c c xz c d r c x z

raxz xyz
c c e c c z

R y M

   

    


   

     

   

  

 

Here R b x cz   . So, by choosing the positive constants as 
1

1c  , 

𝑐2 =
𝛽�̅�

𝛼�̅�
 and 𝑐3 =

𝑎+𝑏

𝑏(𝑑−𝑟3)
�̅�, which is positive under the local sta-

bility condition (18b). We get that 

 

2 2 21 1 2

3

( ) ( ) ( )

( )
1 1

( )

dV r ry
x x y y xy xy

dt K x L xxy

y e a b axz
xz x

x b d r R

 







      

   
     

   

 

 

Clearly, under the given condition 
𝑑𝑉1

𝑑𝑡
< 0  and 

𝑑𝑉1

𝑑𝑡
= 0  at 

1
( , ,0)E x y . Hence 

1
V  is a Lyapunov function and hence 

1
( , ,0)E x y  is a globally asymptotically stable.  

 

Theorem 4: Suppose that the prey free equilibrium point 

2
ˆ(0,0, )E z  is a locally asymptotically stable in the 3R


, then it is 

a globally asymptotically stable provided that 

 

231 2 ˆ( )
4 4

rr K r L
z z

e M
                                                                     (27) 

 

Proof. Consider the following function 𝑉2 = 𝑥 + 𝑦 +
1

𝑒
[𝑧 − �̂� − �̂�𝑙𝑛 (

𝑧

�̂�
)]. Clearly 3

2
:V R R


 , is a continuously differen-

tiable positive definite real valued function with 
2

ˆ(0,0, ) 0V z   and 

2
( , , ) 0V x y z   otherwise. Further, since 

 

2
ˆ1dV dx dy z z dz

dt dt dt e z dt


    

 

Then by substituting the values of  
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
 from system (1) and 

then simplifying the resulting terms we obtains that 

 

232

1 2
ˆ1 1 ( )

rdV x y
r x r y z z

dt K L eM

   
        

   
  

 

Now by using the boundedness of the logistic terms, it is easy to 

verify that 
𝑑𝑉2

𝑑𝑡
≤ 0 , and then 

𝑑𝑉2

𝑑𝑡
 is negative definite function. 

Therefore according to Lyapunov second theorem 
2

E  is a globally 

asymptotically stable in 3R

. 

Finally, in the following theorem the conditions of globally as-

ymptotically stable for a positive equilibrium point are established. 

 

Theorem 5: Suppose that the positive equilibrium point 

3
( , , )E x y z    is locally asymptotically stable in the 3R


, then it is 

a globally asymptotically stable provided that 

 

1
raz

bR K




                                                                                      (28a) 
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2

12 11 22
                                                                                      (28b) 

2

13 11 33
                                                                                      (28c) 

2

23 22 33
                                                                                      (28d) 

 

Here R b x cz     , 𝜉11 =
1

2
(
𝑟1

𝐾
−
𝑎𝑧∗

𝑏𝑅∗
) , 𝜉12 =

𝛽𝑦∗𝑧

𝛼𝑥∗𝑦
, 𝜉22 =

𝛽𝑦∗

2𝛼𝑥∗
(
𝑟2

𝐿
−
𝑥∗𝑧∗

𝑦𝑦∗
) , 𝜉13 =

𝑎𝑒(𝑏+𝑐𝑧∗)

𝑅𝑅∗
− (1 +

𝑎(𝑏+𝑥∗)

𝑅𝑅∗
) , 𝜉23 =

𝛽𝑦∗

𝛼𝑦
 and 

𝜉33 =
1

2
(
𝑟3

𝑀
+
𝑎𝑒𝑐𝑥∗

𝑅𝑅∗
). 

 

Proof Consider the following function  

 

𝑉3 = 𝑑1 [𝑥 − 𝑥
∗ − 𝑥∗𝑙𝑛 (

𝑥

𝑥∗
)] + 𝑑2 [𝑦 − 𝑦

∗ − 𝑦∗𝑙𝑛 (
𝑦

𝑦∗
)] +

𝑑3 [𝑧 − 𝑧
∗ − 𝑧∗𝑙𝑛 (

𝑧

𝑧∗
)],  

where ; 1,2,3
i

d i   are positive constants to be determined. Clearly

3

3
:V R R


 , is a continuously differentiable positive definite real 

valued function with 
3
( , , ) 0V x y z     and 

3
( , , ) 0V x y z   otherwise. 

Further, since 

 

3

1 2 3

dV x x dx y y dy z z dz
d d d

dt x dt y dt z dt

        
      

    
 

 

Then by substituting the values of  
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
 from system (1) and 

then simplifying the resulting terms we obtains that 

 

2 23 1 2

1 2

23

3

3 1

2 2

1

( ) ( )

( )

( ) ( )
1 ( )( )

( )( ) ( )( )

(

dV r raz x z
d x x d y y

dt K bR L yy

r aecx
d z z

M RR

ae b cz a b x
d d x x z z

RR RR

z x
d x x y y d y y z z

y y

x y xy
x y d y

xx yy


  

 

 







 

 

 



   

 

 

 

  
        

   

 
   

 

   
      

  

     


 

2 2 1
) ( )d x xy d x d y      

 

 

By choosing the positive constants as 𝑑1 = 1, 𝑑2 =
𝛽𝑦∗

𝛼𝑥∗
, 𝑑3 = 1, 

and using the given conditions we get after some algebraic manip-

ulation that: 

 

 

2 2
3

11 22 11 33

2 2

22 33

( ) ( ) ( ) ( )

( ) ( )

dV
x x y y x x z z

dt

y y z z x y xy
xx y

   


 

   

   



           
   

      
 

 

 

Clearly, 
𝑑𝑉3

𝑑𝑡
≤ 0  under the given conditions and 

𝑑𝑉3

𝑑𝑡
= 0  at the 

positive equilibrium point 
3

E . Then 
3

V  is a Lyapunov function 

and hence 
3

E  is a globally asymptotically stable.  

In the following the persistence of system (1) is investigated. It is 

well known that an ecological system persists if and only if each 

species persists. Mathematically this means that the solution of the 

system do not has omega limit set in the boundary planes. Conse-

quently, to establish the persistence conditions of system (1), we 

need to show whether there is a periodic dynamics in the xy 

plane or not. Straightforward computation shows that in the ab-

sence of predator system (1) reduces to the following subsystem in 

the interior of xy  plane:  

 

1 1

2 2

1 ( , )

1 ( , )

dx x
r x x y g x y

dt K

dy y
r y x y g x y

dt L

 

 

 
     

 

 
     

 

                                               (29) 

This 2D system (29) has a unique positive equilibrium point 

1
( , )E x y  in the interior of positive quadrant of xy  plane, which 

is globally asymptotically stable [8]. Consequently, in the follow-

ing theorem, the necessary and sufficient conditions, which guar-

antee the uniform persistence of system (1), are derived. 

 

Theorem 6: Suppose that the boundary points 𝐸1  and 𝐸2  exist, 

and let the following conditions hold 

 

𝑟3 +
𝑒𝑎�̅�

𝑏+�̅�
< 𝑑                                                                              (30a) 

(𝑟1 − (𝛼 + �̂�) −
𝑎�̂�

𝑏+𝑐�̂�
) 𝑟2 − 𝛽 (𝑟1 −

𝑎�̂�

𝑏+𝑐�̂�
) < 0                        (30b) 

(𝑟1 −
2𝑟1�̅�

𝐾
− 𝛼) (𝑟2 −

2𝑟2�̅�

𝐿
) − 𝛽 (𝑟1 −

2𝑟1�̅�

𝐾
) < 0                     (30c) 

 

Then system (1) is uniformly persistent. 

Proof Suppose that 𝑤 is any point in the positive octant and let 

𝑜(𝑤) is the orbit through 𝑤. Let Ω(𝑤) represents the omega limit 

set of the orbit through 𝑤. Since system (1) is bounded, Ω(𝑤) is 
bounded.  

We first claim that 𝐸0 ∉ Ω(𝑤). If 𝐸0 ∈ Ω(𝑤), then according to 

Butler-McGehee lemma [9], there exists a point 𝑢 ∈ Ω(𝑤) ∩
𝑊𝑠(𝐸0) where 𝑊𝑠(𝐸0) represents the stable manifold of 𝐸0. Now 

since the 𝑜(𝑢) lies in Ω(𝑤) and 𝑊𝑠(𝐸0) is the z  axis (the eigen-

value of Jacobian matrix at 𝐸0 in the 𝑧 −direction is negative due 

to condition (30a)) then 𝑜(𝑢) is unbounded orbit which leads to 

contradiction. 

Now our claim is that 𝐸1 ∉ Ω(𝑤), otherwise 𝐸1 ∈ Ω(𝑤). Since 𝐸1  

is a saddle point with stable manifold in 𝑧𝑥 −plane or 𝑦𝑧 −plane 

due to conditions (30a) and (30c), hence again by Butler-McGehee 

lemma, there is a point 𝑢 ∈ Ω(𝑤) ∩𝑊𝑠(𝐸1), where 𝑊𝑠(𝐸1) rep-

resents the stable manifold of 𝐸1. Now since the 𝑜(𝑢) lies in the  

Ω(𝑤) and 𝑊𝑠(𝐸1) is 𝑥𝑧 −plane (similarly in case of 𝑦𝑧 −plane), 

hence 𝑜(𝑢) is unbounded orbit lies in the Ω(𝑤), which leads to 

contradiction. 

Similarly, if 𝐸2 ∈ Ω(𝑤), a contradiction will occurs due to condi-

tion (30b).  

Therefor Ω(𝑤)  doesn’t intersect any of the boundary planes of 

axis and then system (1) is persistent. In addition since system (1) 

is bounded then according to theorem of Butler et al [10], system 

(1) becomes uniformly persistent.  

4. The local bifurcation analysis 

In this section, an application of the Sotomayor's theorem [11] is 

used to investigate the occurrence of the local bifurcation near the 

equilibrium points of system (1). Since the existence of a non-

hyperbolic equilibrium point is a necessary but not sufficient con-

dition for bifurcation to occurs, a parameter that makes the Jacobi-

an matrix has a zero real part eigenvalue will be adopted as a can-

didate bifurcation parameter as shown in the following theorems.  

Consider now the Jacobian matrix of system (1) at ( , , )x y z  that 

given by Eq. (10). Then, with a straightforward computation, it is 

easy to verify that 

 
2

3 1
( , , )( , ) ( )

ij
D F x y z V V d


                                                               (31) 

 

Here 

21

11 1 1 33

2

21 3 3

3 3

( )
2 2

2 2
2 ( )

r a b cz z
d v v v

K R

av v acv
b bx bcz cxz b x x

R R

 
    

 

       

 

22

21 1 3 2

2
2

r
d v v v

L
   

2

21 31

31 3 3

23

33

22
( ) 2

( )
2

aev vaev
d b cz z b bx bcz cxz

R R

r acex b x
v

M R

        

 
  

 
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Here 

1 2 3
( , , )tV v v v  is any vector in 3R


. Moreover 

 

3

3 1
( , , )( , , ) ( )

ij
D F x y z V V V d


                                                            (32) 

 

Here 

 
23

2 21 31

11 4 4

2 2 3

2 21 3 3

4 4

66
( ) 2 ( )

2 6
2 ( )

av vav
d b cz z b bx cxz cz

R R

acv v ac v
b x bcz cxz b x x

R R

        

       

 

 

0
21

d   

 
23

2 21 31

31 4 4

2 2 3

2 21 3 3

4 4

66
( ) 2 ( )

6 6
2 ( )

aev vaev
d b cz z b bx cxz cz

R R

acev v ac ev
b x bcz cxz b x x

R R

       

       

 

 

Theorem 7: Assume that conditions (18a) and (18c) hold and let 

the parameter 𝑑  passes through the value �̃� = 𝑟3 +
𝑎𝑒�̅�

𝑏+�̅�
 , then 

system (1) near the predator free equilibrium point 
1

( , ,0)E x y  

has  

1) No saddle-node bifurcation. 

2) Transcritical bifurcation provided that 

 

213 22 12 23

3

12 21 11 22

( )
b b b b

abeM r b x aceMx
b b b b

 
   

 
                                       (33a) 

 

3) Pitchfork bifurcation provided that 

 

213 22 12 23

3

12 21 11 22

( )
b b b b

abeM r b x aceMx
b b b b

 
   

 
                                      (33b) 

 

Proof According to the Jacobian matrix at the predator free equi-

librium point 
1

( )J E  that given by Eq. (15) and their characteristic 

equation that given in Eq. (16), it’s easy to verify that 
1

( )J E  has 

zero eigenvalue 0   at �̃� = 𝑟3 +
𝑎𝑒�̅�

𝑏+�̅�
 and hence 

1
E  will be a 

non-hyperbolic point. Let 
1 2 3

( , , )tV v v v  be the eigenvector that 

associated with the zero eigenvalue 0   of the Jacobian matrix

( , )
1

J J E d , then  

 

0J I V    
13 22 12 23 11 23 13 21

3 3 3

12 21 11 22 12 21 11 22

, ,

t

b b b b b b b b
V v v v

b b b b b b b b

  
  

  
 

 

where 
3

v  represents any nonzero real number and 

; , 1,2,3
ij ij

b b i j    in Eq. (15) with
33

0b  . Clearly we have 

12 21 11 22
0b b b b   due to conditions (18a) and (18c). 

Let 
1 2 3

( , , )t     be the eigenvector that associated with the 

zero eigenvalue 0   of the transpose of Jacobian matrix 

1
( , )t tJ J E d , then  

 

0tJ I       3
0,0,

t

   

 

where 
3

  represents any nonzero real number. 

Now let ( , , )X x y z  then since  

 

1

0 0

( , ) 0 ( , ) 0

0

d d
F X d F E d

z

   
   

     
      

 

Here ( , )
d

F X d  represents the derivative of 
1 2 3

( , , )tF F F F  with 

respect to d . Then we get that  

 

1
( , ) 0t

d
F E d   

 

Thus according to the Sotomayor's theorem for local bifurcation, 

the saddle-node bifurcation can't occur while the first condition of 

transcritical and pitchfork bifurcation is satisfied. Further, since 

 

1

0 0 0 0 0 0

( , ) 0 0 0 ( , ) 0 0 0

0 0 1 0 0 1

d d
DF X d DF E d

   
   

     
       

 

 

Here ( , )
d

DF X d  represents the derivative of ( , )
d

F X d  with respect 

to ( , , )X x y z , consequently we get 

 

1 3 3
( , ) 0t

d
DF E d V v        

 

Moreover, by substituting 
1

E  , d  and V  in Eq. (31), it is ob-

served that 

 

13 22 12 232

2 3 3

1 12 21 11 222

2

3

2
[ ( , )( , )]

( )
( )

t

b b b b
abeMv

D F E d V V b b b b
M b x

r b x aceMx


  
  

    


    

 

 

Cleary, if condition (33a) holds then 2

1
[ ( , )( , )] 0t D F E d V V   and 

hence transcritical bifurcation occurs. However if condition (33b) 

holds; then 2

1
[ ( , )( , )] 0t D F E d V V  , and hence the transcritical 

bifurcation can't occur. Further by substituting 
1

E  , d  and V  in 

Eq. (32), it is observed that 

 
3

1

3

3 3 13 22 12 23 13 22 12 23

3

12 21 11 22 12 21 11 22

[ ( , )( , , )]

6
0

( )

t D F E d V V V

aev b b b b b b b b
c b cx

b x b b b b b b b b



 

    
      

     

 

 

Therefore pitchfork bifurcation occurs and the proof is complete. 

 

Theorem 8: Assume that conditions (22a) and (22b) hold and let 

the parameter passes through the value �̂� =
𝑐1̂1𝑟2

(𝑟1−
𝑎�̂�

𝑏+𝑐�̂�
)
, then system 

(1) near the prey free equilibrium point 
2

ˆ(0,0, )E z  has  

1) No saddle-node bifurcation. 

2) Transcritical bifurcation provided that  

 

21 2 1 1

1 1 1 2 1 2 12
ˆ( ) (1 )

ˆ( )

r r a
z b

K L b cz

 
         


                            (34a) 

 

3) Pitchfork bifurcation provided that 

 

21 2 1 1

1 1 1 2 1 2 12
ˆ( ) (1 )

ˆ( )

r r a
z b

K L b cz

 
         


                            (34b) 

2 2

1 1 2 2 1 2
ˆ ˆ3 3 3z c z cb b                                                         (34c) 

 

Here 12 3112 21

1 2 1

11 11 33 11

ˆ ˆˆ ˆ
, ,

ˆ ˆ ˆ ˆ

c cc c

c c c c
        and 

îj ij
c c  for all , 1,2,3i j   in 

Eq. (19), where ˆ  . 

Proof According to the Jacobian matrix at the prey free equilibri-

um point 
2

( )J E  that given by Eq. (19) and their characteristic 

equation that given in Eq. (20), it’s easy to verify that 
2

( )J E  has 

zero eigenvalue ˆ 0   at ˆ   and hence 
2

E  will be a non-
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hyperbolic point. Let 
1 2 3

ˆ ˆ ˆ ˆ( , , )tV v v v  be the eigenvector that associ-

ated with the zero eigenvalue ˆ 0   of the Jacobian matrix 

2

ˆˆ ( , )J J E  , then  

 

ˆˆ ˆ 0J I V   
   1 2 2 2 2

ˆ ˆ ˆ ˆ, ,
t

V v v v   

 

Where 
2

v̂  represents any nonzero real number.  

Let 
1 2 3

ˆ ˆ ˆ ˆ( , , )t     be the eigenvector that associated with the 

zero eigenvalue ˆ 0   of the transpose of Jacobian matrix 

2

ˆˆ ( , )t tJ J E  , then  

 

ˆˆ ˆ 0tJ I    
   1 2 2

ˆ ˆ ˆ, ,0
t

    

 

where 
2

̂  represents any nonzero real number. 

Now let ( , , )X x y z  then since  

 

2

0

ˆ( , ) ( , ) 0

0 0

y

F X y F E
 

 

   
   

     
   
   

 

 

Here ( , )F X


  represents the derivative of 
1 2 3

( , , )tF F F F  with 

respect to  . Then we get that  

 

2

ˆˆ ( , ) 0t F E


   

 

Thus according to the Sotomayor's theorem for local bifurcation, 

the saddle-node bifurcation can't occur while the first condition of 

transcritical and pitchfork bifurcation is satisfied. Further, since 

 

2

0 1 0 0 1 0

ˆ( , ) 0 1 0 ( , ) 0 1 0

0 0 0 0 0 0

DF X DF E
 

 

   
   

     
   
   

 

 

Here ( , )DF X


  represents the derivative of ( , )F X


  with respect 

to ( , , )X x y z , consequently we get 

 

1 3 3
( , ) 0t

d
DF E d V v        

 

Moreover, by substituting 
2

E  , ̂  and V̂  in Eq. (31), it is ob-

served that 

 

21 2 1 1

1 1 1 222

2 2 2

1 2 1

ˆ( )
ˆˆ ˆ ˆ ˆˆˆ ( )[ ( , )( , )] 2

(1 )

t

r r a
z b

K L b czD F E V V v

 
   

 

 

 
     

 
   

 

 

Cleary, if condition (34a) holds then 2

1
[ ( , )( , )] 0t D F E d V V   and 

hence transcritical bifurcation occurs. However if condition (34b) 

holds, then 2

1
[ ( , )( , )] 0t D F E d V V  , and hence the transcritical 

bifurcation can't occur. Further by substituting 
2

E  , ̂  and V̂  in 

Eq. (32), it is observed that 

 
3

3 2 21 1 2 2

1 1 1 2 2 1 23

ˆˆ2
ˆ ˆ[ ( , )( , , )] 3 3 3

ˆ( )

t a v
D F E d V V V z c z cb b

b cz

  
          


 

 

Therefore 3

1
[ ( , )( , , )] 0t D F E d V V V   and hence pitchfork bifurca-

tion occurs if condition (34c) holds and then the proof is complete. 

Theorem 9: Assume that condition (25a) holds together with the 

following condition and let the parameter 𝐿 passes through the 

value 2 1

2 1 12 2

2

( )

r y
L

r a




   
. 

 

2 1 12 2
( ) 0r a                                                                           (35) 

 

where
1 13 31 11 33

0a a a a    ; 
2 21 33 23 31

0a a a a     and 

; , 1,2,3
ij ij

a a i j    in Eq. (23) while �̌�22 = 𝑟2 −
2𝑟2

�̌�
𝑦∗ − 𝛽. Then 

system (1) near the positive equilibrium point 
3

( , , )E x y z    has a 

saddle-node bifurcation but neither transcritical bifurcation nor 

pitchfork bifurcation can occur.  

Proof According to the Jacobian matrix at the positive equilibrium 

point 
3

( )J E  that given by Eq. (23) and their characteristic equa-

tion given in Eq. (24), it’s observed that  

 

2

3 2 1 1 12 2

2
( )

r y
A r a

L




        

 

Thus it is easy to verify that 
3

0A   and hence 
3

( )J E  has zero ei-

genvalue 0   at the parameter value L , which is positive under 

condition (35). Hence 
3

E  is a non-hyperbolic equilibrium point. 

Let 
1 2 3

( , , )tV v v v  be the eigenvector that associated with the zero 

eigenvalue 0   of the Jacobian matrix 
3 3 3

( , ) ( )
ij

J J E L a


  . Then  

 

0J I V      33 21 33 23 31

3 3 3 1 3 2 3 3

31 22 31

, , , ,

t

ta a a a a
V v v v v v v

a a a
 

 
   
 

 

 

Here 
3

v  is any nonzero real number and 
21 33 23 31

0a a a a   always.  

Let 
1 2 3

( , , )t     be the eigenvector that associated with the 

zero eigenvalue 0   of the transpose of Jacobian matrix 

3
( , )t tJ J E L , then  

 

0tJ I       

 

 13 22 12 2322

2 2 2 1 2 2 2 2

12 12 33

, , , ,

t

ta a a aa

a a a
       

 
    

 
 

 

Here 
2

  represents any nonzero real number.  

Now let ( , , )X x y z  then since  

 

𝐹𝐿(𝑋, 𝐿) = (

0
𝑟2𝑦

2

𝐿2

0

) ⇒ 𝐹𝐿(𝐸3, �̌�) = (

0

𝑟2𝑦
∗2

�̌�2

0

) 

 

Here ( , )
L

F X L  represents the derivative of 
1 2 3

( , , )tF F F F  with 

respect to L . Then we get that  

 
2

2

3 2
( , ) 0t

L

r y
F E L

L




    

 

Thus according to the Sotomayor's theorem for local bifurcation, 

the transcritical and pitchfork bifurcation can't occur while the 

first condition of saddle-node bifurcation is satisfied. Further, 

straightforward computation gives that  

 

2

3 3 1
( , )( , ) ( )

ij
D F E L V V d


  

 

where 
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2 2 21

11 1 3 1 33

2 2

21 3 3

3 3

( )
2 2

2 2
2 ( )

r a b cz z
d v v

K R

a v acv
b bx bcz cx z b x x

R R

 



 



     

 

 
    

 

       

 

 

2 2 22

21 1 3 2 3

2
2

r
d v v

L
    

 
2 2 2

21 3 1 3

31 3 3

23

33

2 2
( ) 2

2 ( )

ae v ae v
d b cz z b bx bcz cx z

R R

r ace
b x x v

M R

      

 

 



        

 
   

 

 

 

Hence we obtain that 

 

2

2 1 2 11 2 21 2 2 31

2 2 2 31 2

2 3 1 1 2 1 1

2

12 1

3 2 * * * *

1

( , )( , )

2 2 ( 1)

( ) ( )( )

( 2 )

t D F E L V V d d d

rr r
v

K L M

b cz z c b x xa e

R b bx bcz cx z

   

      

 



   



   


     



   
  

     

 

 

Straightforward computation shows that 2

2
( , )( , ) 0t D F E L V V  . 

Hence system (1) has saddle-node bifurcation at 
1

E  with the bifur-

cation point given by L . 

Now before we go further to study the dynamical behavior of 

system (1) numerically, we have to explain that the above bifurca-

tion parameters are functions of different other parameters of sys-

tem (1) and hence the bifurcation may occurs in case of varying 

more than one of those parameters.  

5. Numerical simulation 

In this section, the numerical simulation is used to study the global 

dynamics of system (1) and specify the control parameters of the 

system, those parameters which affect the dynamics of the system 

as varying them. Therefore system (1) is solved numerically for 

different sets of initial points and different sets of parameters. It’s 

observed that for the following set of hypothetical data system (1) 

approaches asymptotically to the global stable positive equilibri-

um point as shown in Fig. (1). 

 

1

2 3

1.5, 200, 0.5, 0.9, 0.5, 10, 0.1

0.75, 100, 0.75, 0.1, 0.25, 20.

r K a b c

r L e d r M

       

     
                      (36) 

 

Clearly the solution of system (1) approaches asymptotically to 

the positive equilibrium point, represented by 

3
(4.71,105.1,20.43)E  , for the data given in (36) starting from 

different sets of initial points and this is confirm our obtain analyt-

ical results regarding to existence and global stability of this point.  

Now, as the natural death rate parameter of the predator increases 

in the range 0.62d  , the positive equilibrium point loses its sta-

bility and the solution of system (1) approaches asymptotically to 

the predator free equilibrium point 
1

E  as shown in the typical 

figure given by Fig. (2). However decreasing the value of this 

parameter doesn’t affect the solution of system (1) and its still 

approaches to the positive equilibrium point. Further it is observed 

that varying the other parameters, one at a time, in (36) doesn’t 

affect the dynamical behavior of system (1).  

According to the Fig. (3), the solution of system (1) approaches 

asymptotically to the prey free equilibrium point as the parameters 

of system (1) satisfy the obtained stability conditions. Finally, 

decreasing the value of natural moving rate in the range 0.4   

keeping other parameters fixed as given in (36) with 
1

0.25r   and  

causes survival of the prey species and the solution of system (1) 

return to approaches asymptotically to the positive equilibrium 

point as shown in Fig. (4). 

Keeping the above in view, it is clear that the solution of system (1) 

is affected by varying the parameters: predator natural death rate 

( d ), the prey natural moving rate from reserved zone to unre-

served zone (𝛽) and intrinsic growth rates 𝑟1 and 𝑟2 or equivalent-

ly the prey carrying capacity in reserved zone (𝐿) that depends on 

them as in theorem (8) 

 

 

 
Fig. 1: The Solution of System (1) Approaches Asymptotically to the Positive Equilibrium Point Starting from Different Initial Points. 
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Fig. 2: The Solution of System (1) for the Data Given in (36) With 0.65d  . (A) 3D Predator Free Equilibrium Point Attractor

1
(197.27,105.11,0)E  . (B) 

Time Series of the Attractor in (A).  

 

Moreover, for the data given in (36) with 
1

0.25r   and system (1) approaches asymptotically to the prey free equilibrium point, repre-

sented by
2

(0,0,12)E  , as shown in Fig. (3) Below. 

 

 
Fig. 3: The Solution of System (1) for the Data Given in (36) with 

1
0.25r   and. (A) 3D Prey Free Equilibrium Point Attractor. (B) Time Series of the 

Attractor in (A).  

 

 
Fig. 4: The Solution of System (1) for the Data Given in (36) with

1
0.25r  , and 0.25  . (A) 3D Positive Equilibrium Point Attractor

3
(0.76,45.22,13.89)E  . (B) Time Series of the Attractor in (A).  

 

 

 

 



10 International Journal of Applied Mathematical Research 

 
 

6. Discussion 

In this paper, a mathematical model has been proposed and ana-

lyzed to study the prey-predator system consisting of a predator 

that depends partially on the prey in an unreserved zone. It is as-

sumed that the habitat consisting of an unreserved zone and a 

reserved zone. The predator is consumed the prey according to the 

Beddington-DeAngelis type of functional response. The dynam-

ical behavior of the proposed model represented by system (1) has 

been investigated locally as well as globally. Local bifurcation 

near the equilibrium points has been investigated. It is observed 

that the system has at most four nonnegative equilibrium points, 

the vanishing equilibrium point that always exists and an unstable 

saddle point; the predator free equilibrium point; the prey free 

equilibrium point and the coexistence (positive) equilibrium point. 

The local and global stability of all these points are investigated 

analytically. The local bifurcations near them are also studied. 

Finally the global dynamics of system (1) is investigated numeri-

cally for the biologically feasible hypothetical data that given in 

(36) and the obtained results can be summarized as below: 

1) System (1) doesn’t approach to periodic dynamics, instead 

of that it approaches asymptotically to one of its nonnega-

tive equilibrium points. 

2) The solution of system (1) approaches asymptotically to the 

positive equilibrium point starting from different sets of ini-

tial points, which indicate to globally asymptotically stable 

of the positive equilibrium point and coexistence of all spe-

cies. 

3) Increasing the natural death rate of the predator causes ex-

tinction in predator species and the solution of system (1) 

approaches asymptotically to the predator free equilibrium 

point. Thus this parameter represents a bifurcation parame-

ter of the system.  

4) Decreasing the intrinsic growth rates of prey species in both 

the zones (reserved and unreserved zone) causes extinction 

in prey species from both the zones while the predator still 

survive depending on other sources of food and hence the 

solution of system (1) approaches asymptotically to the prey 

free equilibrium point. Consequently these parameters play 

the role of bifurcation parameter. 

5) In addition to the hypothesis adopted in point (4), decreas-

ing the natural moving rate of the prey from a reserved zone 

to an unreserved has a coexistence effects on the system and 

the solution again approaches asymptotically to the positive 

equilibrium point. So, this parameter represents a bifurca-

tion parameter too of the system.  

Keeping the above in view, by comparing the obtained results 

with those obtained in our previous paper [8], it is observed that 

adding other food resources to the predator in a habitat having a 

reserved zone has a stabilizing effect on the system dynamics due 

to expanding the ranges of stability of the positive equilibrium 

point. 
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