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Abstract 
 

The goal of present experiments is to investigate the use of multiple kernel learning as a tool for pricing options in the 

context of Indian stock market for Nifty index options. In this paper, fair price of an option is predicted by Multiple 

Kernel Support Vector Regression (MKLSVR) using linear combinations of kernels and Single Kernel Support Vector 

Regression (SKSVR). Prices of option highly depend on different money market conditions like deep-in-the-money, in-

the-money, at-the-money, out-of-money and deep-out-of-money condition. The experimental study attempts to identify 

the forecasting errors with the help of mean square error; root meant square error, and normalized root meant square 

error between the market option prices and the calculated option prices by model for all market conditions. The results 

reflect that multiple kernel support vector regression performed fairly well in comparison to support vector regression 

with single kernel. 
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1. Introduction 

The behavior of financial market is uncertain, in terms of changes in many financial terms such as interest and exchange 

rates, index and asset prices etc. These changes make the financial market too risky. To minimize these risks, some 

financial instruments have been added in the financial market, called financial derivatives, whose value derives from the 

value of the underlying asset. An option is a type of the financial derivatives that gives the holder, the right to buy a 

specified quantity of the underlying asset at the fixed price called the strike price on or before the expiration date. The 

seller, however, has the obligation to sell this asset if the buyer of the call option decides to exercise his option to buy. 

There are lots of methods to find option values such as analytical, numerical and machine learning methods. All the 

analytical and numerical methods are highly complex and also need rigorous mathematical computations [1]. Therefore, 

from mid-1990s machine learning techniques such as support vector regression (SVR) become a broad area for 

researchers in the field of finance. The main advantage of this method is that once the model has been trained with all 

optimal parameters, then forecasting of testing data are quite simple. Optimal Parameter selection of SVR is crucial as it 

reflects forecasting performance. Many researches have shown that using multiple kernels instead of a single may 

enhance the forecasting performance of regression function by automatically tuned kernel parameter and also improve 

predicting performance.  

2. Related work 

In recent years, machine learning methods have become popular for predicating. The reason being that all these 

methods are capable of predicting risky financial market as they can be used for nonlinear function approximation 

without any assumptions on the option pricing data [2-7]. Support Vector Machine (SVM) was proposed by Vapnik [8] 

based on the statistical learning theory. SVM is widely used in forecasting purposes because SVM is formulated as a 

quadratic programming problem, therefore, it gives good generalization performance and is not trapped in local minima; 

it always provides a global optimum solution [9]. It can be used for learning a variety of representations, such as radial 

basis functions, splines, polynomial estimators, and so on [10]. SVM has also been successfully applied for function 
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approximation, regression estimation, signal processing and time series forecasting [11-15]. In SVM, we need to select 

a proper kernel function and its parameter [9].These parameters are chosen by either trial-and-error or cross validation 

over a range of their parameters. However, it is time-consuming too [9], [16]. to overcome this problem, researchers 

have investigated family of kernels instead of selecting a specific kernel. The approach is known as Multiple Kernel 

Learning. (MKL) [17]. Kernels can be combined in an umber of ways such as linear sum, direct sum, product, etc. [18]. 

MKL can be formulated as semi definite programming [19, 20] or quadratic programming [21], [22]. In this paper, 

MKL as proposed by Rakomatory [17] is used as a forecasting method for option pricing. It is basically a convex 

combination of basis kernels with optimal weights that are iteratively found by reduced gradient descent method. 

Recently, MKL has been successfully applied for stock market forecasting [16] and economic forecasting [23]. 

Nowadays, study fair option price is predicted using MKL. In this paper, forecasting methodology is discussed in 

Section 3, experimental setup in Section 4, results in Section 5 and conclusion in Section 6.  

3. Forecasting methodology 

The relationship between input and output in case of the option price is highly nonlinear. Therefore, forecasting an 

option becomes a highly challenging task. Kernel functions are most sought-after tools for analyzing and forecasting 

option price. Constructing a regression function using support vector regression with single and multiple kernel is the 

active research domain nowadays. Both models are capable of learning nonlinear relationships. 

 

3.1. Support vector regression 
 

Theory of Support Vector Regression (SVR) was proposed by Vapnik [8] in 1995. This regression model initially 

learned from the training data and used to predict the target values of testing input data. Let {xi} 
N

i=1 where xi ∈ RN is 

being the input data and yi ∈ R, be the output data. Consider a function that maps input data to higher-dimensional 

feature space using kernel function to make it a linear. It requires the calculation of the inner product of vectors in the 

input-space, and therefore, it needs only values of xi of the training data[8, 10]. The regression model performs linear 

regression in the high-dimension feature space.  

Regression function f(x, w) defined as 
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Above regression function uses ε-insensitive loss function [8, 10] given by equation (3) 
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For regression function (2), the model complexity is usually controlled by ε  and c using training data. Whereas 

parameter ε controls the distinction between ‘‘small’’ and ‘‘large’’ discrepancies and non-negative slack variables ξi, ξi
*
 

measure the deviation of all training data outside the tube. Regularization parameter c > 0 controls trade-off between the 

margin size and the amount up to which deviations larger than loss function (3) can be toleratedto avoid over-fitting. 

Those parameter selection strategies usually depend on the sparseness of training data [10]. The dual of the equation (2) 

with Lagrange multipliers given as follows: 
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Where kernel function defined by equation (5) is a radial basis function (RBF) and γ is the width parameter of the RBF 

kernel. It is also known as kernel complexity parameter, for regression problems model flexibility can be controlled by 

this parameter [10]. 

The solution of equation (4) gives the values of Lagrange’s multipliers λi, λi* then optimal regression function becomes  
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3.2. Multiple kernel support vector regression 
 

In option market data is non-linearly distributed, so multiple kernels may be applied to cope with this type of 

distribution [16] a simple direct weighted sum of kernels can be defined as 
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Where M is the total number of positive definite kernels on the same input space. K̂ is a non-negative linear 

combination of valid kernel which is a positive semi-definite matrix [19]. To avoid over fitting problem we have to 

control the size of the search space by doing sums of weights equal to 1[16]. In case of MKLSVR equation (4) is 

reformulated in equation (8) 
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Again, taking dual of above optimization problems, which are respectively 
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Since L (λ) is convex and differentiable, reduced gradient method is applied for solving this problem. Once the gradient 

of L (λ) is computed, optimum weight d can be obtained using a reduced gradient descent direction [17].  

 

  * *

1 1

( ) 1
( , )

2

N N

i i j j J i ji j

J

L
K x x

d


   

 




   


                                                                                                                         (10) 

 

After solving gradient of L (λ) one can find the descent direction D before updating the weight d of multiple kernels and 

it is given as  

 

d←d+ γ1D                                                                                                                                                                       (11) 

 

Where γ1 is step length for updating the weights. This updating procedure is repeated until the optimal value stops 

reducing with the optimal weight d and dual variables are λi.. The predicted valve of option can be obtained using this 

regression function 
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4. Experimental setup 

All experiments are performed on S&P CNX Nifty index option pricing data collected from NSE website [25]. There 

are 22,840 data points from 23 January 2012 to 8 January 2014 [26]. The daily closing values are considered as the 

option value and to overcome the problems of over fitting data value having a volume less than 100 is discarded [7]. c 

and ε parameters control model complexity in SVR. To overcome the process of cross validation for value of c, 

analytical method is used to select this directly from the training data as proposed by V. cherkassky [24]. The main 

advantage of this selection is reducing time consumption and good generalization performance on large data set. 

Theregularization parameter is given as 

 

 
 

Where  is the mean of the option values of training data, and σy is the deviation of option values of training data. 

Where parameter c can effectively handle outliers in the training data and parameter ε controls the width of the ε -

insensitive zone that helps to control the number of support vectors in optimal regression function [10], [24]. The kernel 

selection and its parameters are usually based on distribution of input xi values of the training data [10], [24]. Radial 

Basis Function (RBF) used in all experiments because the width of kernel parameter should reflect the distribution of 

input values of the option pricing training data. Therefore, in this experiment different width of kernel takes as input for 

obtaining the optimal value. For MKLSVR one group is used at a time, whereas in SKSVR width of kernel parameter is 

taken as the average weighted sum of kernel in a given group. The model selection is done by changing the width 

parameter. The value of c parameter value is selected as suggested by [24].The width parameter of kernel is divided into 

following ranges:  
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[.01, .02, .03 … 0.1] 

 

[.1, .2, .3 … 1] 

 

[1, 2, 3 … 10] 

Option value depends on five variables i.e. spot price, time to maturity, strike price, variance in the value of underlying 

asset (volatility) and risk free interest rate in case of non-dividend paying stock [1]. Hutchinson [2] used successfully 
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neural network in option pricing first time. Also, volatility and risk free interest rate not considered as input variable, 

therefore in this paper spot price, time to maturity, strike price used as input parameters Further moneyness i.e. The 

ratio of the spot price and strike price and time to maturity are taken as input and daily closing value of S&P CNX Nifty 

index option is taken as the output. The whole data set is divided in five different market conditions using k-mean 

clustering based on moneyness (M=S/K) for better estimation of option values. These conditions are defined by deep in-

the-money (1.18≤ M), in-the-money (1.06 ≤ M < 1.18), at-the-money (0.98 ≤ M < 1.06), out-of-money (0.91 ≤ M < 

0.98) and deep out-of-money (M < 0.91) market conditions. Data of every market condition are divided in 70% and 

30% for training and testing purpose. 

 

4.1. Performance metrics 
 

The performance of the model is evaluated by the measures of the deviation between actual and theoretical option 

values. These measures are mean square error, root mean square error and normalized root mean square error. N 

represents the total number of option pricing data, yi
1
 is empirically evaluated option prices and yi

2
 is actual option 

prices from the market. 

Mean Square Error (MSE) 

 

 
 

Root Mean Square Error (RMSE) 

 

 
 

Normalized Root Mean Square Error (NRMSE) 

 

 

5. Main results and discussion 

Pricing of option results is experimentally evaluatedusing multiple and single kernel SVR for different market 

conditions. Experiments are performed on MATLAB Intel(R) Xeon(R) CPU X5650@ 2.67 GHz 12 GB RAM along 

with simplemkl toolbox. Performance of all approach is measured usingMean Square Error (MSE), Root Mean Square 

Error (RMSE) and Normalized Root Mean Square Error (NRMSE). All experiments are performed using MKLSVR 

and SKSVR for option pricing with fixed regularization parameter c, ε and different width parameters. ε is taken as. 01. 

c is taken as 1086.5 for in-the-money market condition,1783.3 for deep in-the-money market condition,532.2 for at-the-

money market condition,173.19 for out-of-money market condition and 34.4 for deep out-of-money market condition. 

 

 
Graph 1: Performance of All Market Conditions in [. 001, .002, .003 …..0.01]. 
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Graph 2: Performance of All Market Conditions in [. 01, .02, .03 … 0.1]. 

 

 
Graph 3: Performance of All Market Conditions in [. 1, .2, .3 … 1]. 

 

 
Graph 4: Performance of All Market Conditions in [1, 2, 3 … 10]. 
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[.001, .002,0.01], [.01, .02, .03 ,… 0.1], [.1, .2, .3,… 1] and [1, 2, 3,… 10].The performance on five different market 

conditions for different width of kernel parameter is shown in Table 1, 2, 3, 4 and 5. 

 
Table 1: Performance of Both Models in “Deep Out-of-Money Market Condition” 

Width of kernel parameter 
Data 

points 

MSE RMSE NRMSE 

SK MKL SK MKL SK MKL 

[.001, .002, .003 …0.01] 4724 154.31 147.40 12.42 12.14 1.0661 1.0416 

[.01, .02, .03 ,…0.1] 4724 124.67 125.57 11.17 11.21 .9578 .9610 

[.1, .2, .3 ,… 1] 4724 166.11 127.70 12.89 11.30 1.1070 .9694 

[1, 2, 3,… 10] 4724 172.55 170.44 13.14 13.06 1.1286 1.1216 

 
Table 2: Performance of Both Models in “Out-of-Money Market Condition” 

Width of kernel parameter Data points 
MSE RMSE NRMSE 

SK MKL SK MKL SK MKL 

[.001, .002, .003 …0.01] 7025 2208.4 2046.1 46.99 45.23 .9972 .9592 

[.01, .02, .03 ,… 0.1] 7025 1867.6 1641.8 43.22 40.52 .9174 .8585 

[.1, .2, .3 ,… 1] 7025 2560.7 1964.9 50.60 44.33 1.0756 .9420 

[1, 2, 3,… 10] 7025 2650.1 2619.7 51.48 51.18 1.0944 1.0881 

 
Table 3: Performance of Both Models in “at-the-Money Market Condition” 

Width of kernel parameter Data points 
MSE RMSE NRMSE 

SK MKL SK MKL SK MKL 

[.001, .002, .003 ….0.01] 6110 5235.6 4538.5 72.36 67.37 .7278 .6780 

[.01, .02, .03 ,… 0.1] 6110 5123.1 3664.7 71.58 60.54 .7189 .6091 

[.1, .2, .3 ,… 1] 6110 9800.5 7487.7 98.99 86.53 .9948 .8697 

[1, 2, 3,… 10] 6110 9911.9 9879.1 99.56 99.39 1.0004 .9988 

 
Table 4: Performance of Both Models in “in-the-Money Market Condition” 

Width of kernel parameter 
Data 

points 

MSE RMSE NRMSE 

SK MKL SK MKL SK MKL 

[.001, .002, .003 .0.01] 3589 7733.1 5899 87.94 76.81 .6257 .5463 

[.01, .02, .03 ,…0.1] 3589 4886.6 4901.6 69.90 70.01 .4944 .4952 

[.1, .2, .3 ,… 1] 3589 21888 8689.0 147.94 93.22 1.05 .6637 

[1, 2, 3,… 10] 3589 22720 22588 150.73 150.29 1.066 1.069 

 
Table 5: Performance of Both Models in “Deep in-the-Money Market Condition” 

Width of kernel parameter Data points 
MSE RMSE NRMSE 

SK MKL SK MKL SK MKL 

[.001, .002, .003 .0.01] 1392 20419 17625 142 132.75 .7352 .6804 

[.01, .02, .03 ,… 0.1] 1392 14513 14824 120.47 121.75 .6076 .6155 

[.1, .2, .3 ,… 1] 1392 36733 13661 191 116.88 .9858 .5867 

[1, 2, 3,… 10] 1392 41358 41234 203.37 203.06 1.0457 1.0441 

6. Conclusion 

In this study MKLSVR approach performed fairly well than SKSVR in pricing S&P CNX Nifty index call option. 

Fitness of both the approaches is good in case of deep-out-of-money market where as in case of out-of-money market it 

was more or less average. For in-the-money and at-the-money market condition model is workable. Both the models did 

not perform well in deep-in-the-money market condition. 
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