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Abstract

With the support of some very important and special generators, are given some details about the properties of bi-
pseudo-integrals and above all, for the first bi-pseudo-integral the relations with integral Lebesgue are listed. Further,
will be shown pseudo-linearity of bi-pseudo-integrals and some investigations in reconstructions of pseudo-additive
measures by bi-pseudo-integrals synthesized the reciprocal relationship between pseudo-additive measure and bi-
pseudo-integral.

Keywords: Bi-Pseudo-Integral; Pseudo-Additive Measure; Generator, Pseudo-Operations; Reconstruction.

1. Introduction

In section 2 are presented some of the most important generators g that play an important role in definitions of bi-
pseudo-integrals and their properties. There are shown the connections between the (EB PO) ga’r) — integral and the
Lebesgue integral of non-negative function so, in the case of (GB 91O gl,r) =(Dy,, , ) the Marinova's integral (as
the first bi-pseudo-integral) is the Lebesgue integral [3], [7], [11]. In the case of (= V = max ), the Marinova's

integral (M —f X(V’G) ) leads to the Shilkret’s integral [12]. For (+ V = max) is discovered the connection between

the (M —f X(@g“"e"“'r) ) and the Lebesgue integral, but Kolesarova in [7] has explained the reasons for another

definition of the (©,,.Og,,) — integral of real functions which is more appropriate than the definition that was
given in [11]. The generalization of Bi-Pseudo-Integral and relations with Lebesgue integral are treated in section 3.
Different properties of integrals with respect to @5— measure and V-measure for f - RMF are caused by the essential
difference between @, and V [3], [7], [11], [12]. The notion of modified pseudo-additive measure (@— mg) by
g — transform is followed and completed with the meaning of bi-pseudo-integral of modified function (fz) with
respect to a mg in [10]. More links between different types of the bi-pseudo-integrals are noted in [10]. For the

reconstruction of pseudo-additive measures some statements are treated in section 4. Further, the results are summarized
in section 5.

2. Preliminary notes

Let a generator g: [—oo, +00] — [—o0, +0] be a continuous, monotone strictly increaing unbouded function of the
pseudo-addition @ on the interval [—oo, +0], such that G(0) = Og, g(1) = 15, g(+) = +oo, with the convention
0 (4+o) = 0 and some valued undefined (or an odd extension of a given generator g from [0, + oo] to [—oo, +00],

briefly g(x) = sgnx - g(|x]), x € [-o0,o0]). The concept of pseudo-arithmetical operations {®,O,6,D} first was
introduced on [0,+oo] interval and then to the whole extended real line [—oo, +00] [1], [3], [4], [5], [6]. [7], [14], [16].
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Following Mesiar and Rybarik [4], the binary operations (@®,(®) (pseudo-addition, pseudo-multiplication) are
respectively the binary function that [3], [7], [11] fulfill the system of axioms (©-A.1+A.7) and (O-A.1+ A.7). The
system of the axioms (@,O-A.1+ A.5) was formulated by the system of the Axioms of Sugeno and Murofushi [8],
[15], [16]. Then, the sistem of pseudo-arithmetical operations {,0,8,0} = {B;0;6;D;} generated by this
function g, is said to be a consistent sistem [3], [7], [11].

So, for X,y € [—0,+ 0], let g be a generator on [—oo, +0], perhaps with some valued undefined [4], [8], [11], [13].
There are selected some most important generators g and g — calculus derived from them [2], [4], [5], [11], [13] are
listed in the Table 1.

Table 1: Some of the Most Important Generators G

gx) = Gar(®) {93056} Conditions (a, T, x, y)

xggl'ly:x+y r=1a=1
x9§1,1y=x'y

Ji11(x) =x

g11(x) x@gﬂy:x_y
x@gl,lyzx/y y;tO
x@ga'1y=x+y r=1,a>0

x Qg y=a-(x-y)

xéga_l}’:x_y

x Qg y=at(x/y) y#0

x @,y =@+ y)hr r>la=1

Ja1(x) =a-x

g1r(x) =x 8,y =@ -y /r
XQg,,y=x/y y#0
x@ga'ry=(xr+ y)r r=1,a>0
Gor(x) =a-x" x?“_"” y=al G f)
' X8, ¥y= -y
xQDg,, y=a " (x/y) y#0

Ifa =1, we have the follow form of the generator i.e., the normed generator g(x) = g, ,(x) =x" and g(1) =
g1-(1) = 1. Also, easily can control that g,, *(a) =1, go1 "(a) =1and g, (1) =1, go, " (1) = 1 [3], [4],
[71, [11], [13].

Definition 2.1.1: For a simple non-negative measurable function (in short form s - SNNMF) defined on X,
s(x) = XLy o I, where sets A; € A, A; # Aj, AN A;=@,fori #j,i,j=1,n,0<o;< +oo, then

(M _ J(®sarOgar) ) (m,s — SNNMF) = [(®50r000r) s dm =20, 0, m(A) [3], [7], [11].
Definition 2.1.2: For a non-negative measurable function (-NNMF ), f: X — [0, +o], then

(M _ f}S@Qam@ga,r) ) (m’ f_ NNMF) — f)S@ga’r.@ga,r)f @ga’r dm =

= sup {f}geag“"@g”)s Oy,, dm:s < f, s — isa SNNMF },

And say that the function f [3], [7], [11] is integrable if
(M —f X(@W'@W) ) (m, f - NNMF) = f}g%arr‘@g”) f O, dm < +oo.

Generalized definition by Kolesarova in [7] for (Qg—,ﬁg) —integral, in case of f — RMF with respect to a @g- measure
m where go rljo,+00] = Gar» B, l10,0] =Dy, 1S given as bellow.

Definition 2.1.3: [7], [10] For a real measurable function (in short form f - RMF), (=& ,# V),
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f:X - (—o0,+00), if at least one of the functions f*, f~ is integrable, then
(MK = 1,579 (m, £ - RMF) = [B7O9) £+ B 5 am S, (P77 1~ T dm =

_ (M,K _ fX(GBg@y)) (m, )8, (M,K _ fX(eBy'@y)) (m, £°).
A function f is called integrable iff
—o0 < (M,K - fx@g’éy)) (m, f - RMF) = fx@g'ég ' Qg dm < +oo.

The bi-(©,;,0,) — integral in case of the f; - RMF; with respect to a @,— measure my [2], [3], [7], [10], [9],
[11], [13], [14] will be given below.

Definition 2.1.4: [10] For a real measurable function f; (short form f; — RMF;) f;: G *(X) = (—o0,+0),
(in case of the pseudo — operation @+ V), if at least one of the functions f;*, ;™ is integrable, then

;.0 ©5.07) ¢ + = = ((®30g) ;- =
(Bp(g—TR) - g(—f?x)g)) (mg, fz - RMFy) = (fﬁ%ﬁ*")ff Og dmg) SF (f;?iﬁx?g)fg Og dmg) =

_ (®g.07) S (®3.07) -
—<BP G- = J 5100 )(mg' i) S5 <BP @-r00 = J 5100 )(mg, i)
A function f7 is called integrable iff
®5.035 ®5.07) , =
—o < (Bp(g—TR) - g(—f?x)g)) (mg, fz - RMFz) = fg(—l?x)g)fg Og dmg < +oo.

3. The generalization of Bi-Pseudo-Integral and relations with Lebesgue
integral

Proposition 3.1: Let s be a simple non-negative measurable function (short form s - SNNMF) defined on X , let m be a
@ —measure on (X, A), (@# V) and let g = g, - be a normed generator of the operation @y, Then the bi-pseudo-
integral is in the form

-1 .
(M - f}£®ga,r'®ga,r) ) (m,s —SNNMF) = Yar -1 (%) an,r Yar ( f;+ )(ga,r ° S) ' d(ga,r ° m))'

where the right-hand side is the Lebesgue integral (L - f)((+")) (gar °om, gar o s — SNNMF) [3], [7], [10], [11].
Proof. Let s = ¥y ;- I, , ;> 0, A; € A. Then, by definiton 3.1.1 can get:

(M — X(ega'r@«"a'r)) (m,s — SNNMF) =@, ;- m(A)).

If we use the equationx @ y =x Dy, ¥y = Jar * (g” (x) + ga,r(y)) we get:
(v~ 1, @rar©oar)) (m,s — SNNME) = g4 7 (1 r (5 m(40)) =
= gor " (Zsa o (m(4))) = gar ™ (0 By 7 (ma))) =

= Gar 7 (@ T2 Gar (o) -2 gy (m(4D) ) =

= Gar ™ (5 ZaGar () gar (m(4))) = gar ™ (2 D19 (<) - gur (m(40)) =
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= Gar (ga,r (ga,r - (i)) “Gar (ga,r (S Gar (<) Gar (m(Ai))))) =

= 9ar () Oga, (ga,r (S G0y (%) - ar (m(Ai)))> =

= 90 () Oy (00 (1= 1,47) (Gar o1 o5~ s0MP)) ).

. (M — X(a"“'f’@g“’)) (m,s — SNNMF) = (M -/ X(%“"')) (m,s — SNNMF) =

= Gar " (a DAL (m(Al-))T) = Gar (@) Og,, <ga,r -t ((L - fx(+")) (g1rom giyos— SNNMF)))-
. (M _f X(@glrr@g”)) (m,s — SNNMF) = (M —f X(%'r")) (m,s — SNNMF) =

= g1, 7 (€ Dy, Oy, Ty /7 (m(4)) ) =

=91r _1(‘1) ®91,r (gl,r -t ((L - fx(-h.)) (gl,r °Mm,gir°S — SNNMF))) =

=10y, (gl,r = ((L ~ 1,5) (g1 om gipos - SNNMF))) -

=91r - ((L - fx(-h.)) (gl,r °m,gir°S— SNNMF))'

. (M— i X(%a'r@ga'r))(m,s — SNNMF) =

a

l(ga,r -1 (1) o (Qm -1 ((L _ fX<+.-)) (gar oM gayos— SNNMF))) forr>1,a>0

= 4 9ar " (3) Ogq, (ga, -1 ((L — [, (g1 oM, g1r o s — SNNMF) forr 2 1,a = 1))

L gi, ((L — 1,5) (guromgipos - SNNMF)) forr>1a=1

o (M _ fX(GBga,rr@ga,r)) (m,s — SNNMF) =
Gar L (é) Ogasr (Qa,r -1 ((L - fX(+.-)) (garom garos— SNNMF))) forr=21,a>0

1

Gar (—) Ogenr (ga, -1 ((L - fX“")) (gir oM, oy o s — SNNMF) forr > 1,a = 1) )

a

= gt ((L - fX(Jr")) (grrom giros— SNNMF)) forr=1la=1

9ar " (3) Ogay (ga'r -1 <<M _ fx(®91,r")) (m,s — SNNMF)) forr>1a= 1)

(M — fX(EBQLr")) (m,s —SNNMF) forr > 1,a=1

. (M B fx(@ya,rreya,r)> (m,s — SNNMF) =
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a™?" Qg,., (ga,r -t ((L - fX(Jr")) (Garom garos— SNNMF))) forr=1,a>0
—2/r -1 _ [ & _ _

a " Qg,, (ga, ((L Iy ) (gir oM, g1,y ©s —SNNMF) forr > 1,a = 1))

= gir 7t ((L = [,77) (g1r om gup o s - SNNMF)) forr>1la=1

a " Qg,, (gam -t ((M — fX(EBg”")) (m,s — SNNMF)) forr=>1a= 1)

(M —f X(%”")) (m,s —SNNMF) forr>1,a=1

Proposition 3.1.2: [7], [10] Let (X,A, m) be a @- measure space. The integral of a real measurable f- RMF with

respect to a @ —measure m, in case @+ V (when fx@g‘ég) is defined) is given by:

(M,K - X@f"@? )) (m, f- RMF) = (M,K - X@?’a'r'@?’a'r)) (m, f — RMF) =
= g_a,r - (g_a,r - (2) an,r (L - fX(-H)) (g_a.r om, g_a,r ° f - RMF))

and the integral in the right-hand side (L — fX(+")) (ga_r om, Jarof — RMF) is Lebesgue integral, also g, - o m is
the Lebesgue measure.
If g is the normed generator (§ = g, — normed generator) hold [3], [7], [10], [11]:

(M,K - X(éyl-r@?”)) (m, f - RMF) = <M,K — X(@glf’)) (m, f - RMF) =

= fx(@gl,rx )f cdm=g,, " ((L - fX(+.-)) (§1.r om, gy, o f — RMF)).

Proof. By using the definition 2.1.4, proposition 3.1 and the additivity of the Lebesgue integral can taken:
(v, = 1, ®%) (m, ) S5 (MoK = 1,59) (m, 1) =
:f)geay’@?)f+ 6§ dm éga’r f)g@y'eg ) f— 65 dm =

= oy [g—a,r ((M,K _ fx(§ya,r5ya,r)) (m, f+)) — Gar ((M,K _ fx(@ya,rﬁ-a,r )) (m, f—))] -

=Jar - (ga,‘r (
:f)géga.r'éﬁa,r)f+ Gga'r dm éga’r f}géya,r'éya,r ) f— Gga,r dm =

— g_a,r -1 {g_a,r ((M, K — fx(éﬁa,r'éﬁa.r)) (m’ f+)> _ g_a,r <(M, K — J'X(éga.r'éga.r )) (m, f—))} —
= ga,r - {g_a,r [ga,‘r -1 (ga,‘r - (i) 6@” g_a,r - < fx(+ '.)(g_a,r ° f+) ) d(ga,r ° m)))] -

du, [ Gur ™ (D) Ty, Gur ™ (g‘a,r = <f T Gar o £7) A o m)))” =

f)géya,r'éyaﬂ") f* Ogar dm) ~Jar <f )Svga'r'vg”)f ~ Oga, dm)) -
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= g_a,r - {(ga,r -1 (%) éga,r g_a,r - < fX(+ '.)(g_a,r ° f+) ' d(g_a,r ° m))) -

~Far (ga,r 1 (2) Oy Jar (ga,r - (f N Gar o ) d( Gy o m))))} _
P {[g “(2) O, (( 0 G ) G om)) = (1,5 ur o 77) m)))” _

= Gor [ 1 (2) Oga, (f " Gar o F) - A(Gar o m))] -

= Gar " (Gar 7 (2) Oy (L= 17) (Gar o Gy o f — RMF)) =

=, (Boer0r) S, am = (K — [, (FrarOsr)) (m, £ — RuF) =
= (M,K - fx@y'@?’)) (m, f - RMF).

If g is the normed generator of @, Jlio+00] = 9+ @ ljo,c0] =B, g = g1, — normed generator, hold:

(M, k- [ (% )) (m, f - RMF) = (M, K — fx(é—l,.o—w)) (m, f - RMF) =
(.= 5, G, - ) = 1, )y =

= 375, W Oy, (L= 1,77) (Gar om0 f — RMF)) =

= 97 (10g,, (L= 1,57) (Gur o, gy o f — RMF) ) =

= (1= 1,%7) (Gur om. G o f — RMF)).

So, all the relations are Iisted below:
—f X(@galr'@é’”)) (m,s — SNNMF) forr =1,a >0

anr <gar ((M — fX(eag”")> (m,s — SNNMF))forr >1l,a= 1)

(M - X(%“"Og”)) (m, f- NNMF) forr 21,a >0

|k (M - fX(GBgl"”")) (m,s —SNNMF) forr >1,a=1
(
(M K- [ (%@g)) 4

(M — fX(EBQLr")) (m,f —NNMF) forr=1,a=1

ar - (i) an,r <ga,r - <(M - J‘X(@g1,r")> (m,f — NNMF)) forr=1la= 1)
(M,I( - fx@?’”‘%”)) (m, f —RMF) forr 21,a> 0

g
lgar_ anr <gar <<M - fx(%”")) (m, f — RMF)) forr=1,a= 1)
|

k (M,K _ fx(ét‘h,r")) (m, f- RMF) forr=1l,a=1
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4. The reconstruction of pseudo-additive measure

Lemma 4.1: Let (X, A, m) be a @- measurable space, (B=@;# V). Let f: X — (—o0, ) be an
integrable function (f-IF). Then the set function v;(A) :fx(%‘@g )f Qg dm = (M,K - fX(EBg’Og)) (m, f), for each
A € A, where the bi-pseudo-integral is given by [3], [7], [11] is :

( a finite @4— measure on Aif f - SNNMF
a finite @,— measure on Aif f - NNMF
vr(4) = a finite @g— measure on A if f - RMF
ao —@g— measure on Aif f - RMF
l@gz () — homogeneous set function on A if f - RMF

Proof

1 & 2. Following Marinovd, by Theorem 2 in [11], if f — NNMF (or if f — SNNMF), v, is @ ,— additive and
continuous from bellow, where the proof of the continuity is realized in three steps (it is enough by continuity of g and
the property of Lebesgue integral)

3. We will consider here the the normed generator (§ = g, , — normed generator), for r = 1,a = 1. In case of
(@=@g=®glﬁt V) , the operation @ is generated by the normed generator g, and for A,B € A with AN B = ¢ are
taken:

v (A) B v (B)= v (B) By, v (B) =B, (v (4), v, (B)) =
— (M,K _ fA(@m,r'@?Lr)) (m’ f— RMF) @_Lr <M, K — J‘B(ém,r'@?h,r)) (m, f_ RMF) —

sur A By, [, Oy S am = 1, C0 ) am @, 1,0 ) am =

ol i e i )

— fA (égl,r’éyl,r )f 6

= 517 (G (me ) + g1, (my () = 1y [ (1507 g am) + g (18 ) )| =

=Gy " {gl,r [(g‘l,r (15N Gay o £)d(Gar o m)))] + G [(gl,r (15 Gar o £)d(gar o m)))]} =

= 1 {1 Gor 0 )A(Grr om) + [N g1 o )G o M)} = G ™[I0 (G0 0 £)d Gy om)] =
=0 (1= 57 @romgur o f ~ RME)) = (. = 157 )) om. g - mae) = ({80077) am =

= [(®:,-91,) fdm = (M,K —J (é?’l'r'@“'r)) (m, f- RMF) =v;(AUB).

— Jaus AUB
4. To prove that the set function v, is a finite o-@- additive function on A, it is enought to prove its continuity from

bellow. Let A, € A,n=12,...,and let A, c A, c --- € A,..., A, 7 A. By the continuity of the generator g = g, , and
properties of the Lebesgue integral are getting:

limy, e vf(An) =yllT;lo {(M’K — flq(??l,r'éﬁl,r)) (m’ f— RMF)} = Tlll_?; Ll(??iLrv@ZiLr)fdm =

:#_t?og_l,r -t (Lf_:)(glr ° f)d(g_lr ° m)) = Gir - <1lll_t£lo (fj:)(glr ° f)d(g_lr ° m))) =
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=Gir (fA(Jr’.)(g_Lr ° f)d(g_u ° m)) =Gir " <7lll_ff}o (fA(:)(g_l,r ° f)d(g_l,r ° m))) =
=01r ! (Ll(+,-)(g1’r ° f)d(gu ° m)) =Jir ! (g_u (Ll(gg”'.)fdm» =
= guy ! (g‘l,r (w1~ 1 L5 )) (o, f)) = guy ! (g‘l,r (w1 = 1 (@775 )) (i, 1 - RMF)) -

= fA(éé_?Lr")fdm = fA(éﬁLr'@?l,r)fdm = <M,K _ fA(éé_h,r'éﬁLr)) (m’ f _ RMF) — Vf(A).

By the integrability of f, follow finitness of the set function v,.
5. The bi-pseudo-integral (M,K — fA(GBg,-)) is a ©z= () — homogeneous functional if f — RMF (in case of ®=
@;+ V), s0

vcéyl,rf(A) = (M,K — fA(éﬁl,r’Gé_]l,r) ) (m'C6§1,rf — RMF) = Vc_f(A) =

(K - fA(é?N")) (myc-f = RMF) = [®r) e fam = 571 [ )G oc- pa(gom)] =

=c- {?—1 [Ll(#)(g—of)d(g_o m)]} =c- A(@m,r.-)f dm=c - (M,K _ fA(ég‘h.r.-)) (m' f— RMF) —

ey = Oy, (MK~ [, O1)) m, £ — RMF) = c B, v, (0.

Using reIatithiE that are presented between the bi-pseudo-integrals [10] of different types and classes can be written
(in case of ®=@ % V):

BgarOFar BgarOFar
(Bp(g_m) -/ g(_lfx') ga )>(mg. f; - RMF;) = <M,K - f g(_lfx') ga )> (mg, f; - RMFy),

é7(17"'670.7’
(BP(g‘—TR) -/ g_(_f’(’x') ga )> (mg, f; - RMF;) =

_ _ +) _ _
= Yar ! (a 2/t Gga,r (L - fg‘l(x)) (ga,r ° Mg, Gar ° fg - RMFg )

In the same way as the above Lemma 4.1, can be formulated the statements for Ve, ON g A):

a finite @,— measure on gt if fg— SNNMFE,
a finite @,— measure on gt if fg- NNMF,
vfg(g__l(A)) = l a finite @;— measure on g~*(A) if f; - RMF;
| ao —@;— measure on §g-*(A) if f; - RMF;
k@g—= (*) — homogeneous set function on g~ (A) if f; - RMF;

Proposition 4.2 (The pseudo-linearity of Bi-pseudo-integral):
The extended bi-pseudo-integral for real measurable function [3], [7], [11], (in case of ®=@;# V)

(M,K - fx@g'@_’) ) (m, f - RMF) = f)@?'@?)f Qg dmis:
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— functional on X if f - SNNMF
— functional on X if f - NNMF
@g— additive functional on X if f - RMF
6§= () — homogeneous functional on X if f - RMF

(M,K _ fx(é@@g )) (m, f) =

1& 2. For these cases can be used the same way as [3], [7], and [11].
3. In the conditions that the binary operation @ ( pseudo-addition) has been extended (@z@g) on the interval
[—o0, +00], for functions f;, f, : X = [—oo, 00] can get:

(i ®5 f2)(0) =B5 (i), () = § ' [(G o f)(X) + (G o L))

Here, are considered again the the normed generator (§ = g, , — normed generator), for r =1, a = 1 as a general
and important generator. In case of =@ ;= Gagl # V , the operation @ is generated by the normed generator g, for
all real integrable functions [3], [7], [11] (for which the expressions on both sides make sence) the bi-pseudo-

integral (M,K - f(%’og)) is @ ;— additive functional by:

(M.~ 1, @005 Y o, £, RMF) B, (MK — 1, Er®0)) (m, 1, — RMF) =
= giy ! [g ((M,K - 1, m, fl)) + i, ((M,K = 1, i, fz))] =
-8, ( @) 1 am, (B g, dm)= [©00) £, am,, (@) g, dm =
=g g (58 o am) + gy, (1150 ) )| =

[( M K- [y ea““*’))(m. fl))] + iy [((M.K— fx(égl'”'))(m, fz))]} =
|

R I AR &
- {ff")(g‘u ° f)d (g om) + ff")(gl‘r o f)d(gr ° m)} =

zg_l,r -t {g_l T

:g_l,r -t {g_l r

=g, [ff") (§1,r o (i By, , fz)) d(Gur o m)] - (L _ fX(+.-)) (Girom fy @g,, f» — RMF) =
f)gé)(fl ®§1.r fZ) dm = (M'K - fx(_yl'r‘_yl'r)) (m’ fi égl,r fa- RMF)'

4.The bi-pseudo-integral (M K- J, ®. Gg)) is a Oz= (") — homogeneous functional (in case of ®=Bz=
@51 # V), if f — RMF, for ¢ € (—o0, +0) by theorem 1 in [7]:

(M,K - fx@yﬁy))( ¢ Oy f —RMF) = <M K- fx(%if'@”)) (m, c-f — RMF) =
_ (M,K _ fx(ém,w@gu)) (m’ (c- f)+) ég_a’r (M, K — fx(ém,r'@?n,r )) (m’ (c- f)—) =
— ( f)géyl,rﬁyl,r)( ¢Ga. 1) Bap, dm) = ( f)g@gl,rﬁgl,r)(c O f) Ose, dm) -

= (f)géﬂ_y )(C )* 651,1‘ dm) éga,r (f)ﬁ@@@?] )(C )" Ggu dm) —
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-

=c- (f)g_gl,r'égl,r)f+ 651] dm éga'r f)géyl'rléyl'r)f_ 651] dm) _

f)gé%,r'@%,r )(C ) 6‘@1] dm) éga,r <f)£§§1,r'6§1,r )(C ) 651] dm) =

c 6_ (f)gégl,r'@gLr) f+ 6571,,« dm éga'r J‘)gégl,r'égl,r ) f— 6§1_r dm> —

Oy, ((M K — fx(_é_ll,r’_é_ll.r )) (m, £*) By, ( MK — fx(égl,r‘é_l.r )) (m, f—)) _

c _gl,r ((M’K — fx(_é_il,r’_é_ll,r)> (m, f- RMF)) =c 65 ((M,K — fX(Qyﬁy)) (m‘ f—- RMF))
Using the definition of bi-pseudo-integrals presented in [10], are summarized (in case of @=®g¢ V):

@4~ functional on g~*(X) if f, - SNNMF,
@, functional on g~*(X) if f, - NNMF,
@;— additive functional on g~*(X) if f; - RMFy
kégz () — homogeneous functional on g-*(X) if f; - RMF;

(®g.03)
(BP @-m0 ~ 510 )(mg' f3) =

5. Conclusion
5.1. The first bi-pseudo-integral (M, K — fx@g‘@) (m, f) in case of the function f —

SNNMF; NNMF; RMF and relations with Lebesgue integral (depending on the generator g)
is summarized as follows

. (M,K = fx(@?”@?)) (m, f — SNNMF; NNMF; RMF ) =

9ar " (3) Oga, (ga,r -1 ((L = 1,57) (Gar o Gar o f - NNMF))) forr=1a>0
a U Q,,, (ga,r -1 ((L — 1,57) (91r oM g1y o5 — SNNMF)  forr>1,a= 1))
_) g - ((L -~ fx“")) (g1rom gryos— SNNMF)) forr>1a=1
Jar (¢ Oy (L= 1,%7) (dar om0 Gur o f — RMF)) forr=1a>0
{Gar " (a‘z/’ Ogar (L - X(+")) (Gorom, Giy o f — RMF) forr=>1a= 1)
g (= 157) @ om g o £ - RME)) forr=1a=1

5.2. The first Bi-Pseudo-Integral (M, K — fx(éy‘éy) (m,f) in case of the function
f—SNNMF; NNMF; RMF and the generalizations dépending on the generator g, is summarized
as follows

. (M,K - fx(%'@y)) (m, f — SNNMF; NNMF; RMF ) =
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(M —f X(@gaf'@g”)) (m,s — SNNMF) forr >1,a > 0
a" Qg,., (ga,r -1 ((M —J X(%lf")) (m,s — SNNMF)) forr>1,a= 1)
(M —f X(@gl'r")) (m,s —SNNMF) forr > 1,a=1
(M — X(@f’”'OW)) (m, f - NNMF) forr =1,a> 0

=112 Oy, (ga,r—l ((M -/ X(%“")) (m,f — NNMF)) forr=1,a= 1)

(M —f X(Q‘“-r")) (m,f — NNMF) forr >1,a=1

I( (M,K - J X(éya'r@?a'r)) (m, f —RMF) forr >1,a>0

{ a?*" Og,, (g_a,r - ((M - fx(ﬁgl'r'.)) (m,f — RMF)) forr=1a= 1)
|

L (M,K _ fx(@@uf)> (m, f - RMF) forr>1,a=1

5.3. The first bi-pseudo-integral (with properties of pseudo-linearity) on the reconstruction of
pseudo-additive measures when f - RMF:

N { o —@;— measure on Aif f - RMF
[ ] Vv = 4q__
f @®5= () — homogeneous set function on Aif f - RMF

= @ -— additive functional on X
. (M,K - fx(@g'eg)) (m, f —RMF) = {_ Dy !

Og= () — homogeneous functional on X

5.4. The bi-pseudo-integral (with properties of the pseudo-linearity) on the reconstruction of
pseudo-additive measures when f5 - RMFy:

o —@®-— measure on g-L(A) if f; - RMF-
° vf_(g——l(A))z{_ g ) ( ) f{ .!]
g @z= (") — homogeneous set function on g—*(A) if f; - RMF;

@ ;- additive functional on §~*(X)

65= (-) — homogeneous functional on g~1(X).

®5.05
o (P 15057 gy - ruary) = {
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