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Abstract

In this paper, we generalize the two types of Yao’s lower and upper approximations, using finite number of reflexive
relations. Moreover, we give a comparison between these types and study some properties.
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1 Introduction

The rough set theory has been introduced by Z. Pawlak as a mathematical approach to deal with vagueness
and uncertainty in data analysis [23, 27]. The rough set theory [25, 27, 57] is based on the assumption that
some information about elements of the universe is available. Two objects can be indiscernible concerning available
information as with some objects the same information can be associated. Thus, information associated with objects
of the universe induced an indiscernibility relation in this universe. This indiscernibility relation can be employed
in order to define approximations of sets or relations and therefore, the concept of the rough set is introduced. This
set is characterized by a pair of precise concepts called the lower and upper approximations. The lower and upper
approximation operators are related to the necessity (box) and possibility (diamond) operators of modal logic [5],
and the interior and closure operators in topological space [9, 12, 16, 17, 19, 38, 39, 44]. Zakowski [47] studied
a set of axioms on approximation operators, and Comer [10] investigated axioms on approximation operators in
relation to cylindric algebras within the context of Pawlak information systems [28]. Mordeson [20] investigated the
axiomatic characterization of approximation operators defined by Covers, and Thiele [38] explored the axiomatic
characterization within modal logic. The most important axiomatic studies for crisp rough sets were done by Yao
et al. [43, 44, 45, 46], In the theory of generalized rough sets, the properties and applications of various models
have been extensively discussed. In fact, a systematic study of definable concepts in various generalized rough set
models would provide better understanding to these models, and reasonable suggestions to construct new models
for generalized rough sets, and could be beneficial to both theoretical and practical studies of rough set theory. It is
meaningful to note that Cattaneo [7] extended Pawlak’s model to a class of abstract models based on bounded posets
(poset based model for short). In his work, Cattaneo emphasized the role of definable elements (here, elements are
used to represent concepts) in constructing rough set models. Also, Cattaneo [8] used a special class of relations to
obtain two kinds of approximations. Wei and Wen [39] defined a measure of roughness based on generalized rough
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sets with the new approximations and proved some properties of the measure. Pawlak and Skowron [22] presented
approximation spaces based on the neighborhood of objects and on inclusion measures of the neighborhood into
concepts and defined the inductive extensions of approximation spaces. Pawlak [25] defined the rough probability
using equivalence relations; that is, he associated each event with an interval whose end points are lower and upper
probabilities. E. A. Rady et. al. [32] introduced a general approach for computing lower and upper probabilities
using a general relation instead of the equivalence relation in Pawlak’s approach. The classical rough set theory is
based on equivalence relations, but it has been extended to relation based rough sets [34, 41, 42, 43, 56], covering
based rough sets [18, 49, 51, 52, 53, 54, 55] and fuzzy rough sets [13, 30, 41, 42]. In [5, 38, 39, 40], an extensive
research on the binary relation based rough sets was done. These authors started from the properties of binary
relations, for example, reflexivity, symmetry, and transitivity, to investigate the essential properties of the lower
and upper approximation operations generated by such relations. Many researchers have generalized the notion of
approximation operators by using non-equivalence relations, see, e.g., [21, 29, 35, 42, 44, 46, 48, 50]. It is possible
to obtain the upper and lower bounds by eliminating the transitivity, reflexivity, and symmetry axioms. In [47], for
example, Yao studied the general properties of rough sets which resulted from these axioms. Many authors discussed
approximations with more than one lower-upper approximation pair [14, 31, 33]. In [4] Abu-Donia discussed three
types of lower and upper approximations of any set with respect to any relation based on right neighborhood and
generalized these three types of approximations into two ways by using a finite number of any binary relations, also
some types of approximation of rough sets are discussed, see, e. g. [1, 2, 3]. The notion of approximation operators
can also be generalized by using a covering of the universe [21, 29]. Yao [45] introduced and investigated the notion
of generalized approximation space for any binary reflexive relation R by using the right neighborhood concepts
and compared between the generalized approximations and Pawlak’s approximations for reflexive relation. In this
paper, we use a finite number of binary relations to introduce two types of lower and upper approximations which
are generalizations for approximation defined by Yao [42]. Finally, we illustrate an example to show the importance
of our approximations.

2 Preliminary notes

Let U be a non-empty set called universe, and E be an equivalence relation on U . The pair (U,E) is called an
approximation space. Let [x]

E
denote the equivalence class for an element x ∈ U . Let A be subset of U . A rough

set corresponding to A is the ordered pair (E(A), E(A)), where E(A) and E(A) are defined as follows:

E(A) = {x ∈ U : [x]
E

⊆ A} (called lower approximation of A).

E(A) = {x ∈ U : [x]
E
∩A 6= ∅} (called upper approximation of A).

Obviously, we have E(A) ⊆ A ⊆ E(A). The lower approximation of A contains the elements x so that all the
elements that are indistinguishable from x are in A. The upper approximation of A contains the elements x so that
at least one element which is indistinguishable from x belongs to A.
The lower and upper approximations are used to divide the universe into three regions with respect to any subset
A ⊆ U :
BND(A) = E(A)− E(A).
POS(A) = E(A).
NEG(A) = U − E(A).

An element of the negative region NEG(A) definitely doesn’t belong to A, an element of the positive region
POS(A) definitely belongs to A, and an element of the boundary region BND(A) only possibly belongs to A.

The generalized model of rough sets called Variable Precision Rough Set model (VPRS-model). The VPRS-
model, proposed by Ziarko [58] inherits all basic properties of the original rough set model and aims at handling
uncertain information.

The fundamental notion introduced by the VPRS-model is the generalization of the standard inclusion relation
called majority inclusion relation.

The following are definitions according to Ziarko [58]:
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Definition 2.1 Let A and B be non-empty subsets of a finite universe U . Then the measure of the relative degree
of misclassification of set A with respect to set B denoted by C(A,B) is defined as:

C(A,B) =

{
1− |A∩B|

|A| , if | A |> 0

0, if | A |= 0

where ”| . |” denotes the cardinality of the set.

Definition 2.2 The inclusion relationship between A and B without explicitly using a general quantifier:
A ⊆ B if C(A,B) = 0

Notice that: The majority requirement implies that more than 50% of A elements should be in common with B.
According to the majority requirement, the admissible classification error β must be within the range of 0 ≤ β < 0.5.

Definition 2.3 A is included in B with respect to β(A ⊆
β

B) if C(A,B) ≤ β.

One of the important results in the rough set theory is the deviation between the inclusion in the rough set theory
and the ordinary set theory. There is one type of inclusion in the ordinary set theory (A ⊆ B) but in the rough set
theory we have many types of inclusion of sets, as shown in the following definition.

Definition 2.4 [25] Let (U,R) be an approximation space. For any A,B ⊆ U , then we say:

(i) A is roughly bottom included in B (A ⊂
∼

B) if E(A) ⊂ E(B).

(ii) A is roughly top included in B (A ⊂
∼

B) if E(A) ⊂ E(B).

(iii) A is roughly included in B (A ⊂
∼

∼
B) if (A ⊂

∼
B) and (A ⊂

∼

B)

From the above we see that the inclusion of the neighborhood in concepts was applied via many cases such as

(1) The classical inclusion.

(2) The V PRS-inclusion by Ziarko [58]

(3) The rough (resp. top and bottom) inclusion by Pawlak [25]

In our case, the inclusion used in the concept is the classical inclusion.

3 Yao’s rough set approximations

In this section we discuss three kinds of rough set approximations based on the right neighborhood.

Definition 3.1 For the pair (U,R), where U is a finite universe, U 6= ∅ and R being any binary relation, let xR
be the right neighborhood defined as: xR = {y ∈ U : xRy}.

Definition 3.2 Let R be any binary relation on a nonempty set U . For any the set A ⊆ U , the lower and upper
approximations of A according to R are then defined as:

R(A) = {x ∈ U : xR ⊆ A},

R(A) = {x ∈ U : xR ∩A 6= ∅}.

Obviously, if R is an equivalence relation, then xR = [x]
R

and these definitions are equivalent to the original

Pawlak’s definitions.
where [x]

R
is called an equivalence class of x ∈ U .

We list the properties that are of interest in the theory of rough sets, let A,B ⊆ U :

(L
1
) R(A) = (R(A

c

))
c

, where A
c

denotes the complement of A in U .

(L
2
) R(U) = U .
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(L
3
) R(A ∩B) = R(A) ∩R(B).

(L
4
) R(A ∪B) ⊇ R(A) ∪R(B).

(L
5
) A ⊆ B ⇒ R(A) ⊆ R(B).

(L
6
) R(∅) = ∅.

(L
7
) R(A) ⊆ A.

(L
8
) A ⊆ R(R(A)).

(L
9
) R(A) = R(R(A)).

(L
10
) R(A) = R(R(A)).

(U
1
) R(A) = (R(A

c

))
c

.

(U2) R(∅) = ∅.

(U
3
) R(A ∪B) = R(A) ∪R(B).

(U4) R(A ∩B) ⊆ R(A) ∩R(B).

(U
5
) A ⊆ B ⇒ R(A) ⊆ R(B).

(U6) R(U) = U .

(U
7
) A ⊆ R(A).

(U8) A ⊇ R(R(A)).

(U
9
) R(A) = R(R(A)).

(U
10
) R(A) = R(R(A)).

(CO) R(A
c

∪B) ⊆ (R(A))
c

∪R(B).

(LU) R(A) ⊆ R(A).

By using Definition 3.2, we can define the accuracy measure of a set A [41] as

α(A) =
|R(A)|
|R(A)|

.

Definition 3.3 [42] Let R be any binary relation on a nonempty set U and xR be the right neighborhood of x
according to R for any set A ⊆ U . The definition for lower and upper approximations of A according to R is defined
as:

R
′
(A) =

⋃
{xR : xR ⊆ A},

R
′

(A) = (R
′
(A

c

))
c

.

So, the accuracy measure of a set A will be defined as:

α
′
(A) =

|R
′
(A)|

|R
′
(A)|

.
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Table 1: Upper and lower approximations under reflexive relation by using Definition 3.3 and Definition 3.4
Properties Definition 3.3 Definition 3.4

L1 ? ?
L2 ? ?
L3 ?
L4 ? ?
L5 ? ?
L6 ? ?
L7 ? ?
L8

L9 ?
L10

U1 ? ?
U2 ? ?
U3 ?
U4 ? ?
U5 ? ?
U6 ? ?
U7 ? ?
U8

U9 ?
U10

CO ?
LU ? ?

Definition 3.4 [42] Let R be any binary relation on a non-empty set U and xR be the right neighborhood of x
according to R, for any set A ⊂ U . The definition for lower and upper approximations of A according to R is
defined as:

R
′′
(A) = (R

′′

(A
c

))
c

,

R
′′

(A) =
⋃

{xR : xR ∩A 6= ∅}.

So, the accuracy measure of a set A will be defined as:

α
′′
(A) =

|R
′′
(A)|

|R
′′
(A)|

.

For any reflexive relation R on a non-empty set U , the comparison between the properties of rough sets depend-
ing on Definition 3.3 and Definition 3.4 are shown in Table 1.

? indicates that the property is satisfied This table shows the comparison between the properties of rough sets
depending on Definition 3.3 and Definition 3.4.

Remark 3.5 If a binary relation R on a non-empty set U is not reflexive, not transitive and not symmetric, then
the following properties are not satisfied:

(1) R(φ) = φ

(2) R(U) = U

(3) R(A) ⊆ A

(4) A ⊆ R(A)

The following example shows Remark 3.5.
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Example 3.6 Let U = {a, b, c, d} and consider R = {(a, a), (a, d), (c, c), (d, b)}. Consequently, aR = {a, d}, bR = φ,
cR = {c} and dR = {b}. If A = {b}, then we have:

(1) R(φ) = {x ∈ U : xR ⊆ φ} = {b} 6= φ

(2) R(U) = {x ∈ U : xR ∩ U 6= φ} = {a, b, c} 6= U

(3) R(A) = {x ∈ U : xR ⊆ A} = {b, d} 6⊆ A

(4) R(A) = {x ∈ U : xR ∩A 6= φ} = {d} 6⊇ A

Although this method has opened the way for the use of general relation, the essential properties of the lower and
upper approximation are not satisfied (see Example 3.6). Consequently, Yao pointed out that it required additional
properties on the binary relation to satisfy the basic properties for lower and upper approximation.

4 New Types of Generalization

In this section, we introduce two types of lower and upper approximations by using finite number of binary relations.
These types of approximations are generalizations for Definition 3.3 and Definition 3.4.

Definition 4.1 Let {R
i
: i = 1, 2, ..., n} be a family of binary relations on a non-empty set U , for any set A ⊆ U .

We can introduce a definition for n-lower and n-upper approximations of A according to R
i
as following:

apr
♦
(A) =

n⋃
i=1

R
′

i
(A) and apr

♦
(A) = (apr

♦
(A

c

))
c

,

where R
′

i
(A) is the lower approximation defined in Definition 3.3.

Remark 4.2 Definition 3.1. is a generalized form of Definition of Khan et al. [11].

We can define the accuracy measure of A according to reflexive relations R
i
, as the following:

α♦(A) =
|apr♦(A)|
|apr♦(A)|

.

Proposition 4.3 For a finite family of reflexive relations {R
i
: i = 1, 2, ..., n} on a non-empty set U , the following

properties are hold for every A,B ⊆ U :

(L
2
) apr

♦
(U) = U .

(L4) apr
♦
(A ∪B) ⊇ apr

♦
(A) ∪ apr

♦
(B).

(L
5
) A ⊆ B =⇒ apr

♦
(A) ⊆ apr

♦
(B).

(L6) apr
♦
(∅) = ∅.

(L
7
) apr

♦
(A) ⊆ A.

(L
9
) apr

♦
(apr

♦
(A)) = apr

♦
(A)

(U
2
) apr

♦
(∅) = ∅.

(U
4
) apr

♦
(A ∩B) ⊆ apr

♦
(A) ∩ apr

♦
(B).

(U5) A ⊆ B =⇒ apr
♦
(A) ⊆ apr

♦
(B).

(U
6
) apr

♦
(U) = U .

(U
7
) A ⊆ apr

♦
(A).
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(U9) apr
♦
(apr

♦
(A)) = apr

♦
(A)

(LU) apr
♦
(A) ⊆ apr

♦
(A).

Proof. (L2). As apr
♦
(U) =

⋃n
i=1

R
′

i
(U), but R

′

i
(U) = U ∀i = 1, 2, 3, ..., n. So, apr

♦
(U) = U .

(L
4
). As x ∈ apr

♦
(A) ∪ apr

♦
(B), either there is i such that x ∈ R

′

i
(A), or there is j such that x ∈ R

′

j
(B).

Then x ∈ sRi ⊂ A or x ∈ tRj ⊂ B, where s, t ∈ U . However, as A,B ⊆ A ∪ B, we thus have x ∈ R
′

i
(A ∪ B) or

x ∈ R
′

j
(A ∪B). So either way, x ∈ apr

♦
(A ∪B). Hence the result.

(L5). Let A ⊆ B and x ∈ apr
♦
(A). Then x ∈

⋃n
i=1

R
′

i
(A), for fixed i, we have x ∈ sRi ⊆ A but A ⊆ B. So

x ∈ sRi ⊂ A ⊆ B, hence x ∈ apr
♦
(B). Thus, apr

♦
(A) ⊆ apr

♦
(B).

(L
6
). Since R

i
are reflexive relations on U , then ∀x ∈ U , we have x ∈ xR

i
∀i = 1, 2, 3, ..., n. So xR

i
6⊂ ∅.

Thus, R
′

i
(∅) = ∅ ∀i = 1, 2, 3, ..., n. i.e., apr

♦
(∅) = ∅.

(L7). As apr
♦
(A) =

⋃n
i=1

R
′

i
(A), but R

′
(A) ⊆ A ∀i = 1, 2, ..., n. Then apr

♦
(A) ⊆ A.

(L
9
). Assume that y ∈ apr

♦
(A), then there exists i such that y ∈ R

′

i
(A). So there is s ∈ U such that y ∈ sRi ⊆ A.

Hence y ∈ sRi ⊆
⋃n
i=1

⋃
{sRj : sRj ⊆ A}, i.e. y ∈ sRi ⊆ apr

♦
(A). This implies that y ∈ apr

♦
(apr

♦
(A)). Hence the

result.

We can prove U
2
, U

4
, U

5
, U

6
, U

7
and U

9
in a manner similar to the proofs of L

2
, L

4
, L

5
, L

6
, L

7
and L

9
. We can

prove LU from L
7
and U

7
.

The following example shows that the converse of L4 in proposition 4.3 is not true in general.

Example 4.4 Let R
1
= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (d, e), (b, d), (c, e), (e, b), (e, a)} and R

2

= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, d), (a, c), (d, a), (b, e), (c, e),(e, d), (e, a)} be any two binary reflexive relations
on a non-empty set U = {a, b, c, d, e}. We have aR1 = {a, b, c}, bR1 = {b, d}, cR1 = {c, e}, dR1 = {d, e}, eR1 =
{a, b, e}, aR2 = {a, d, c}, bR2 = {b, e}, cR2 = {c, e}, dR2 = {a, d} and eR2 = {a, d, e}. If A = {a, d, e} and

B = {b, c, d}, hence R
′

1(A) =
⋃
{xR1 : xR1 ⊆ A} = dR1 = {d, e}, R

′

2(A) =
⋃
{xR2 : xR2 ⊆ A} = eR2 =

{a, d, e}, R
′

1(B) =
⋃
{xR1 : xR1 ⊆ B} = bR1 = {b, d}, R

′

2(B) =
⋃
{xR2 : xR2 ⊆ B} = φ R

′

1(A ∪ B) =⋃
{xR1 : xR1 ⊆ A ∪ B} = U and R

′

2(A ∪ B) =
⋃
{xR2 : xR2 ⊆ A ∪ B} = U . Consequently, apr

♦
(A) =

R
′

1(A) ∪R
′

2(A) = {a, d, e}, apr♦
(B) = R

′

1(B) ∪R
′

2(B) = {b, d} and apr
♦
(A ∪B) = R

′

1(A ∪B) ∪R
′

2(A ∪B) = U .

i. e., apr
♦
(A) ∪ apr

♦
(B) 6= apr

♦
(A ∪B).

The following example shows that the converse of U4 in proposition 4.3 is not true in general.

Example 4.5 In Example 4.4, if A = {a, e} and B = {c, d}, hence apr
♦
(A) = {a, c, e}, apr

♦
(B) = {c, d} and

apr
♦
(A ∩B) = ∅. Thus apr

♦
(A) ∩ apr

♦
(B) 6= apr

♦
(A ∩B).

The following example shows that the converse of L
7
, U

7
and LU in proposition 4.3 are not true in general.

Example 4.6 In Example 4.4, if A = {a, e}, hence apr
♦
(A) = ∅ and apr

♦
(A) = {a, c, e}, so apr

♦
(A) 6= A,

apr
♦
(A) 6= A and apr

♦
(A) 6= apr

♦
(A).

Remark 4.7 Let R
i
, i = 1, 2, 3, ..., n be any reflexive relations, The following properties do not hold, for any subsets

A,B ⊆ U .

(L
3
) apr

♦
(A ∩B) = apr

♦
(A) ∩ apr

♦
(B).

(L8) A ⊆ apr
♦
( apr

♦
(A)).

(L
10
) apr

♦
(A) = apr

♦
( apr

♦
(A)).
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(U3) apr
♦
(A ∪B) = apr

♦
(A) ∪ apr

♦
(B).

(U
8
) apr

♦
( apr

♦
(A)) ⊆ A.

(U
10
) apr

♦
( apr

♦
(A)) = apr

♦
(A).

(CO) apr
♦
(A

c ∪B) ⊆ ( apr
♦
(A))

c

∪ apr
♦
(B).

The following examples show Remark 4.7.

Example 4.8 In Example 4.4, if A = {b, d} and B = {b, e}. Hence, R
′

1(A) =
⋃
{xR1 : xR1 ⊆ A} = bR1 = {b, d},

R
′

2(A) =
⋃
{xR2 : xR2 ⊆ A} = φ, R

′

1(B) =
⋃
{xR1 : xR1 ⊆ B} = φ, R

′

2(B) =
⋃
{xR2 : xR2 ⊆ B} = bR2 = {b, e},

R
′

1(A
c) =

⋃
{xR1 : xR1 ⊆ Ac} = cR1 = {c, e}, R

′

2(A
c) =

⋃
{xR2 : xR2 ⊆ Ac} = cR2 = {c, e}, R

′

1(B
c) =⋃

{xR1 : xR1 ⊆ Bc} = φ, R
′

2(B
c) =

⋃
{xR2 : xR2 ⊆ Bc} = aR2 = {a, c, d}, R

′

1(A ∩ B) =
⋃
{xR1 : xR1 ⊆

(A ∩ B)} = φ, R
′

2(A ∩ B) =
⋃
{xR2 : xR2 ⊆ (A ∩ B)} = φ, R

′

1((A ∪ B)c) =
⋃
{xR1 : xR1 ⊆ (A ∪ B)c} = φ,

R
′

2((A ∪ B)c) =
⋃
{xR2 : xR2 ⊆ (A ∪ B)c} = φ. Consequently, apr

♦
(A) = R

′

1(A) ∪ R
′

2(A) = {b, d}, apr♦
(B) =

R
′

1(B) ∪ R
′

2(B) = {b, e}, apr
♦
(Ac) = R

′

1(A
c) ∪ R

′

2(A
c) = {c, e}, apr

♦
(Bc) = R

′

1(B
c) ∪ R

′

2(B
c) = {a, c, d},

apr
♦
(A) = (apr

♦
(Ac))c = {a, b, d}, apr

♦
(B) = (apr

♦
(Bc))c = {b, e}, apr♦

(A ∩B) = R
′

1(A ∩B) ∪R
′

2(A ∩B) = φ,

apr
♦
((A∪B)c) = R

′

1((A∪B)c)∪R
′

2((A∪B)c) = φ and apr
♦
(A∪B) = (apr

♦
((A∪B)c))c = U . Thus, apr♦(A∩B) 6=

apr♦(A)∩ apr♦(B) and apr
♦
(A) ∪ apr

♦
(B) 6= apr

♦
(A ∪B). i.e., L

3
and U

3
do not hold.

Example 4.9 In Example 4.4, if A = {a}, hence, apr
♦
(A) = {a} and apr

♦
( apr

♦
(A)) = ∅. Thus, A 6⊂ apr

♦
(

apr
♦
(A)), i.e., L

8
does not hold.

Example 4.10 In Example 4.4, if A = {a, d, e}, hence, apr♦
(A) = {a, d, e} and apr

♦
( apr

♦
(A)) = U . So apr

♦
(

apr
♦
(A)) 6⊂ A. i.e., U

8
does not hold.

Example 4.11 In Example 4.4, if A = {a, e}, hence, apr
♦
(A) = {a, c, e} and apr

♦
( apr

♦
(A)) = {c, e}. So

apr
♦
(A) 6= apr

♦
( apr

♦
(A)). i.e., L

10
does not hold.

Example 4.12 In Example 4.4, if A = {b, c, d}, hence, apr♦
(A) = {b, d} and apr

♦
( apr

♦
(A)) = {a, b, d}, so apr

♦
(

apr
♦
(A)) 6= apr

♦
(A). i.e., U10 does not hold.

Example 4.13 In Example 4.4, if A = {b, c, d, e} and B = {b, c, d}, hence, apr♦
(A

c

∪B) = {a, b, c, d}, (apr♦
(A))

c

=

{a} and apr
♦
(B) = {b, d}. Thus, apr

♦
(A

c

∪B) 6⊂ ( apr
♦
(A))

c

∪ apr
♦
(B) .i.e., CO does not hold.

Definition 4.14 Let {R
i
: i = 1, 2, ..., n} be a family of binary relations on a non-empty set U , for any set A ⊂ U .

We can introduce a definition for n-lower and n-upper approximations of A according to Ri as the following:

apr
./

(A) =

n⋃
i=1

R
′′

i
(A) and apr

./

(A) = [apr
./

(A
c

)]
c

where R
′′

i
(A) is the lower approximation defined in Definition 3.4.

Notice that the n-upper approximation apr
./

(A) defined above is just
⋂n

i=1 R
′′

i
(A).

We can define the accuracy measure of any set A according to reflexive relations Ri , as the following:

α./(A) =
|apr./

(A)|
|apr./

(A)|
.

Proposition 4.15 For a family of binary reflexive relations {R
i
: i = 1, 2, ..., n} on a non-empty set U the following

properties are hold for every A,B ⊆ U :
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(L2) apr
./

(U) = U .

(L
4
) apr

./

(A ∪B) ⊇ apr
./

(A) ∪ apr
./

(B).

(L
5
) A ⊆ B =⇒ apr

./

(A) ⊆ apr
./

(B).

(L6) apr
./

(∅) = ∅.

(L
7
) apr

./

(A) ⊆ A.

(U
2
) apr

./

(∅) = ∅.

(U
4
) apr

./

(A ∩B) ⊆ apr
./

(A) ∩ apr
./

(B).

(U
5
) A ⊆ B =⇒ apr

./

(A) ⊆ apr
./

(B).

(U6) apr
./

(U) = U .

(U7) A ⊆ apr
./

(A).

(LU) apr
./

(A) ⊆ apr
./

(A).

Proof. (U
2
). As ∀i = 1, 2, ..., n xR

i
∩ ∅ = ∅, hence apr

./

(∅) = ∅.

(U4). Let x 6∈ ( apr
./

(A) ∩ apr
./

(B)). Then x 6∈ apr
./

(A) or x 6∈ apr
./

(B). We can say that there will be

some i for which x 6∈ R
′′

i
(A), or there will be some j (not necessarily same as i) for which x 6∈ R

′′

j
(B). Accordingly,

we would have either x 6∈ R
′′

i
(A ∩B) or x 6∈ R

′′

j
(A ∩B). Hence the result.

(U
5
). Let A ⊆ B and x ∈ apr

./

(A). Then for fixed i, we have x ∈ sR
i
such that sR

i
∩ A 6= ∅, where s ∈ U but

A ⊆ B, then sRi ∩B 6= ∅. So x ∈ R
′′

i
(B) and so x ∈ apr

./

(B). Thus, apr
./

(A) ⊆ apr
./

(B).

(U
6
). As R

i
are a reflexive relations, then ∀x ∈ U , we have x ∈ xR

i
∀i = 1, 2, ..., n. So xR

i
∩ U 6= ∅, this

implies that apr
./

(U) = U .

(U7). As Ri are reflexive relations, then x ∈ xRi ∀i = 1, 2, 3, ..., n. So for fixed i, we can say that ∀x ∈ A,

we have x ∈ sR
i
such that sR

i
∩A 6= ∅, this implies that x ∈ R

′′

i
(A). Thus, x ∈ apr

./

(A). i.e., A ⊂ apr
./

(A).
We can prove L

2
, L

4
, L

5
, L

6
and L

7
as the same as U

2
, U

4
, U

5
, U

6
and U

7
. We can prove LU from L

7
and U

7
.

The following example shows that the converse of L
4
in Proposition 4.15 is not true in general.

Example 4.16 In Example 4.4, if A = {b} and B = {e}, hence apr./

(A) = ∅, apr./

(B) = ∅ and apr
./

(A∪B) = {b}.
i,.e., apr

./

(A) ∪apr./

(B) 6= apr
./

(A ∪B).

The following example shows that the converse of U
4
in Proposition 4.15 is not true in general.

Example 4.17 In Example 4.4, if A = {a} and B = {b}, hence apr
./

(A) = {a, c, e}, apr
./

(B) = {b, e} and
apr

./

(A ∩B) = ∅. Thus apr
./

(A) ∩ apr
./

(B) 6⊂ apr
./

(A ∩B).

The following example shows that the converse of L
7
, U

7
and LU in Proposition 4.15 are not true in general.

Example 4.18 In Example 4.4, if A = {a, c}, hence apr
./

(A) = ∅ and apr
./

(A) = {a, c, e}, so apr
./

(A) 6⊃ A,

apr
./

(A) 6⊂ A and apr
./

(A) 6⊃ apr
./

(A).

Remark 4.19 Let Ri , i = 1, 2, ..., n be any reflexive relations. The following properties do not hold for all subsets
A,B of U .

(L3) apr
./

(A ∩B) = apr
./

(A) ∩apr./

(B).

(L8) A ⊆ apr
./

( apr
./

(A)).

(L
9
) apr

./

( apr
./

(A)) = apr
./

(A).
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(L10) apr
./

(A) = apr
./

( apr
./

(A)).

(U3) apr
./

(A ∪B) = apr
./

(A) ∪ apr
./

(B).

(U
8
) apr

./

( apr
./

(A)) ⊆ A.

(U
9
) apr

./

( apr
./

(A)) = apr
./

(A).

(U
10
) apr

./

( apr
./

(A)) = apr
./

(A).

(CO) apr
./

(A
c ∪B) ⊆ ( apr

./

(A))
c

∪ apr
./

(B).

The following examples show Remark 4.19.

Example 4.20 In Example 4.4, if A = {a, c, d, e} and B = {b, c, d, e}, hence apr
./

(A) = {a, c, d}, apr./

(B) = {b, d}
and apr

./

(A∩B) = ∅. Thus apr./

(A∩B) 6⊃ apr
./

(A) ∩ apr
./

(B). Consequently, apr
./

(A∩B) 6= apr
./

(A) ∩ apr
./

(B),
i.e., L3 does not hold.

Example 4.21 In Example 4.4, if A = {a} and B = {b}, then apr
./

(A) = {a, c, e}, apr
./

(B) = {b, e} and
apr

./

(A∪B) = U . Thus, apr
./

(A) ∪ apr
./

(B) 6⊃ apr
./

(A∪B). Consequently, apr
./

(A) ∪ apr
./

(B) 6= apr
./

(A∪B),
i.e., U

3
does not hold.

Example 4.22 In Example 4.4, if A = {a}, hence apr
./

(A) = {a, c, e} and apr
./

( apr
./

(A)) = ∅. Thus A 6⊂ apr
./

(

apr
./

(A)), i.e., L
8
does not hold.

Example 4.23 In Example 4.4, if A = {b, c, d, e}, hence apr
./

(A) = {b, d} and apr
./

(apr
./

(A)) = U . So apr
./

(

apr
./

(A)) 6⊂ A. Consequently, apr
./

( apr
./

(A)) 6⊆ A, i.e., U
8
does not hold.

Example 4.24 In Example 4.4, if A = {a, b, c, e}, hence apr
./

(A) = {a, b, c} and apr
./

( apr
./

(A)) = ∅, so

apr
./

(A) 6⊂ apr
./

( apr
./

(A)).

Consequently, apr
./

(A) 6= apr
./

( apr
./

(A)), i.e., L
9
does not hold.

Example 4.25 In Example 4.4, if A = {d}, hence apr
./

(A) = {d, e} and apr
./

(apr
./

(A)) = U . So apr
./

(A) 6⊃
apr

./

(apr
./

(A)).
Consequently, apr

./

(A) 6= apr
./

(apr
./

(A)), i.e., U9 does not hold.

Example 4.26 In Example 4.4, if A = {a}, hence apr
./

(A) = {a, c, e} and apr
./

( apr
./

(A)) = ∅. So apr
./

(A) 6⊂
apr

./

( apr
./

(A)).

Consequently, apr
./

(A) 6= apr
./

( apr
./

(A)), i.e., L10 does not hold.

Example 4.27 In Example 4.4, if A = {a, b, c, e}, hence apr
./

(A) = {a, b, c} and apr
./

( apr
./

(A)) = U , so apr
./

(

apr
./

(A)) 6⊂ apr
./

(A). Consequently, apr
./

( apr
./

(A)) 6= apr
./

(A), i.e., U
10

does not hold.

Example 4.28 In Example 4.4, if A = {a, c, d, e} and B = {a, c, e}, hence (apr
./

(A))
c

= {b, e}, apr./

(B) = ∅ and

apr
./

(A
c ∪B) = {a, b, c}. Thus (apr

./

(A))
c ∪ apr

./

(B) 6⊃ apr
./

(A
c ∪B). i.e., CO does not hold.

For a family of reflexive relations R
i
, i = 1, 2, ..., n on a non-empty set U , the comparison between the properties of

rough sets depends on Definition 4.1 and Definition 4.14 as shown in the following table.

5 Comparison between all these lower and upper approximations

In this section, we will show the available relations between some of these approximations.
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Table 2: Upper and lower approximations under reflexive relation by using Definition 4.1 and Definition 4.14
Properties Definition 4.1 Definition 4.14

L1 ? ?
L2 ? ?
L3

L4 ? ?
L5 ? ?
L6 ? ?
L7 ? ?
L8

L9

L10

U1 ? ?
U2 ? ?
U3

U4 ? ?
U5 ? ?
U6 ? ?
U7 ? ?
U8

U9

U10

CO
LU ? ?

5.1 For one user

Let R be any reflexive relation on a non-empty set U and A ⊂ U , we have

R
′′
(A) ⊂ R(A) ⊂ R

′
(A) ⊂ A ⊂ R

′

(A) ⊂ R(A) ⊂ R
′′

(A).

J
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J
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J
J

JJ

































J
J

J
J

J
J

JJ

J
J











J
J

A
A
A
A

A
AA
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A

AA

�
�

��
�

�

R
′′
(A)

R
′′

(A)

� A-R(A)

-R(A)

-R
′
(A)

-R
′

(A)

Figure 1

From Figure 1, we can note that the definitions of lower and upper approximations divide the boundary region
into 6-regions. By using Definition 3.3 for lower and upper approximations, we get the best lower and upper ap-
proximations A with respect to one reflexive relation. We have:

0 ≤ α
′′
(A) ≤ α(A) ≤ α

′
(A) ≤ 1.
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This means that, by using Definition 3.3, as a lower and upper approximations for any set A ⊂ U according
to one reflexive relation R, set A will be more accurate than the other two definitions, as shown in the following
example.

Example 5.1 In Example 4.4, if A = {a, c, e}, hence R
′′

1
(A) = ∅, R

1
(A) = {c}, R

′

1
(A) = {c, e}, R

′′

1
(A) = U ,

R
1
(A) = {a, c, d, e} and R

′

1
(A) = {a, c, e}. Then we have

R
′′

1
(A) ⊂ R

1
(A) ⊂ R

′

1
(A) ⊂ A ⊂ R

′

1
(A) ⊂ R1(A) ⊂ R

′′

1
(A).

J
J

J
J

J
J

JJ
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J

J
J

J
J
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J
J











J
J
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A

AA

�
�
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�

�

R
′′
(A)

R
′′

(A)

� A-R(A)

-R(A)

-R
′
(A)

-R
′

(A)

e

c

ad

b

Figure 2

We can also determine the values of the accuracy measure of A by using these definitions, as the following
results: α

′′

1
(A) = 0, α

1
(A) = 1/4 and α

′

1
(A) = 2/3. i.e., the degree of the exactness of A by using Definition 3.4

equals (0%), which means that A is a completely rough set. By using Definition 3.2, the degree of the exactness of
A equals (25%), which means that A is a rough set by a ratio of (75 %). And by using Definition 3.3, the degree
of exactness of A equals nearly (66.7%), which means that A is a rough set by ratio of nearly (33.3%).

It has to be noted that Definition 3.3, has the best approximations for any set A according to one reflexive
relation.

5.2 For n-users: by using the new kind of generalization

Let {R
i
: i = 1, 2, ..., n} be a finite family of reflexive relations on a non-empty set U , for any set A ⊂ U , we

generalized the approximations defined in Definition 3.3 and Definition 3.4, by Definition 4.1 and Definition 4.14
respectively, by using the intersection and the union of upper and lower approximations defined in Definitions 3.2,

3.3 and 3.4. As ∀i = 1, 2, ..., n R
′

i
(A) ⊂ apr

♦
(A), R

′′

i
(A) ⊂ apr

./

(A), apr
♦
(A) ⊂ R

′

i
(A) and apr

./

(A) ⊂ R
′′

i
(A).

But we have

R
′′
(A) ⊂ R(A) ⊂ R

′
(A) ⊂ A ⊂ R

′

(A) ⊂ R(A) ⊂ R
′′

(A).

This implies that

apr
./

(A) ⊂ apr
♦
(A) ⊂ A ⊂ apr

♦
(A) ⊂ apr

./

(A).

We can note that:

R
′′
(A) ⊂ R(A) ⊂ R

′
(A) ⊂ apr

♦
(A) ⊂ A ⊂ apr

♦
(A) ⊂ R

′

(A) ⊂ R(A) ⊂ R
′′

(A).
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Figure 3

From Figure 3, we can note that these definitions of lower and upper approximations divide the boundary region
into 8-regions. By using Definition 4.1, for n-lower and n-upper approximations, we get the best approximation for
any set A ⊂ U according to a finite number of reflexive relations because we divided the boundary region (indicated
by using Definition 3.3, which is the best of the last approximations) into three regions by using the generalized
approximations defined in Definition 4.1, i.e., we decreased the boundary region more and more. So Definition 4.1,
has the best approximations. This leads to:

0 ≤ α
′′
(A) ≤ α(A) ≤ α

′
(A) ≤ α

♦
(A) ≤ 1.

This means that, by using approximations defined in Definition 4.1, any non-empty set A ⊂ U will be more exact
than any other approximations.

The following examples show that.

Example 5.2 In Example 4.4, if A = {a, b, d}, hence R
′′

1
(A) = ∅, R

1
(A) = {b}, R

′

1
(A) = {b, d}, R

′′

1
(A) = U ,

R
1
(A) = {a, b, d, e}, R

′

1
(A) = {a, b, d}, apr./

(A) = ∅, apr∗
(A) = {b, d}, apr♦

(A) = {a, b, d}, apr
./

(A) = U , and

apr
♦
(A) = {a, b, d}. So, we have:

apr
./

(A) ⊂ apr
♦
(A) ⊂ A ⊂ apr

♦
(A) ⊂ apr

./

(A).

We also get:

R
′′

1
(A) ⊂ R

1
(A) ⊂ R

′

1
(A) ⊂ apr

♦
(A) ⊂ A ⊂ apr

♦
(A) ⊂ R

′

1
(A) ⊂ R

1
(A) ⊂ R

′′

1
(A).

Example 5.3 In Example 5.2, we have α
′′

1 (A) = 0, α1(A) = 1/4, α
′

1(A) = 2/3 and α
♦
(A) = 1. This implies that:

0 ≤ α
′′
(A) ≤ α(A) ≤ α

′
(A) ≤ α

♦
(A) ≤ 1.

This means that, by using the approximations defined in Definition 3.4, the degree of exactness of A equals 0%,
so A is completely rough set. The degree of exactness of A by using the approximations defined in Definition 3.2,
equals 25%, so A is rough with a ratio of 75%, by using the approximations defined in Definition 3.3, the degree
of exactness of A equals nearly 67%, so A is rough with a ratio of nearly 33%. the degree of exactness of A by
using the approximations defined in Definition 4.1 equals to 100%, so A is completely exact set. So the n-lower and
n-upper approximations defined in Definition 4.1, is the best one among all these definitions.

We illustrate the following real life example to show the importance of our approximations.



International Journal of Applied Mathematical Research 389

Table 3:
a1 a2 a3 a4 a5 a6 a7

1 0.23 0.31 -0.55 254.2 2.126 - 0.02 82.2
2 -0.48 -0.60 0.51 303.6 2.994 - 1.24 112.3
3 -0.61 -0.77 1.20 287.9 2.994 - 1.08 103.7
4 0.45 1.54 -1.40 282.9 2.933 - 0.11 99.1
5 -0.11 -0.22 0.29 335.0 3.458 - 0.19 127.5
6 -0.51 -0.64 0.76 311.6 3.243 -1.43 120.5
7 0.00 0.00 0.00 224.9 1.662 0.03 65.0
8 0.15 0.13 -0.25 337.2 3.856 -1.06 140.6
9 1.20 1.80 -2.10 322.6 3.350 0.04 131.7
10 1.28 1.70 -2.00 324.0 3.518 0.12 131.5

Table 4:

i R
′

i
(A) R

′

i
(A) apr♦(A) apr♦(A)

1 φ {1, 2, 3, 5, 6, 7, 8}
2 φ {1, 2, 3, 4, 5, 6, 7, 8}
3 {3, 6} U
4 φ U {3, 6, 8} {2, 3, 5, 6, 8}
5 {8} U
6 φ {2, 3, 5, 6, 8}
7 φ U

Example 5.4 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be ten amino acids (AAs). The (AAs) are described in terms
of seven attributes: a1 = PIE and a2 = PIF (two measures of the side chain lipophilicity), a3 = DGR = 4G
of transfer from the protein interior to water, a4 = SAC = surface area, a5 = MR =molecular refractivity,
a6 = LAM =the side chain polarity, and a7 = V ol = molecular volume ([11]).

Table 3 shows all quantitative attributes of ten AAs. Consider seven reflexive relations on U defined as follows:

Ri = {(x, y) : x(a
i
)− y(a

i
) <

σi

2
} ∀x, y ∈ U,

where σi represents the standard deviation of the quantitative attributes a
i
, i = 1, 2, ..., 7. If we take A = {3, 5, 6, 8}

be a set containing four AAs which have a property P .

Table 4 shows the comparison between the lower (resp. upper) approximation R
′

i
(A) (resp. R

′

i
(A)) according

to Yao and our lower (resp. upper) approximation which is defined in Definition 4.1. Notice in this example that

apr./(A) = R
′′

i
(A) = φ and apr./(A) = R

′′

i
(A) = U ∀i = 1, 2, 3, ..., 7.

6 Conclusion

In this paper we studied two definitions for lower and upper approximations of any set with respect to one reflexive
relation. We also studied the relationship between these types of lower and upper approximations. We introduced
a generalization for these definitions by using a finite number of reflexive relations based on the intersection and
union of upper and lower approximations of the same set with respect to every relation of them. Also, we compared
between these generalized definitions and the last two definitions rather than determining there the best generalized
definition as the boundary region is decreased by this definition more than by any other definition. All these results
are shown in tables and diagrams.
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