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Abstract 
 

In this paper, the conditions of the occurrence of persistence of a mathematical model consists from four-species Syn- 

Ecosymbiosis involves a competition hosts for prey are established. Finally, in order to confirm our obtained analytical 

results, numerical simulations have been done for a hypothetical set of parameter values. 
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1. Introduction 

The dynamic relationship between predators and their prey has long been and will continue to be one of the dominant 

themes in both ecology and mathematical ecology due to the universal existence and importance. An important and 

ubiquitous problem in predator-prey theory and related topics in mathematical ecology, concerns the long term 

coexistence (or persistence) of species, for example, see [1-8]. 

Freedman and Waltman [9] considered three-level food webs-two competing predators feeding on a single prey and a 

single predator feeding on two competing prey species. They obtained criteria for the system to be persist. 

Rami & Raid [10] proposed and analyzed a prey-predator model with four Syniecological system with Holling type-II 

functional response, they obtained a set of sufficient and necessary condition, which guarantee the lacal and global 

stability of this system. 

In this paper, however, we will establish the conditions of the occurrence of persistence of a mathematical model 

proposed by Rami & Raid [10]. 

2. Mathematical model[10] 

An ecological model of four species Syn-Ecosymbiosis, comprising of prey-predator, commensalisms and competition, 

model is proposed in [10]. 
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Where 0 1e   represents the conversion rate. 
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This model consists of a prey (for example, Anemone) whose population density at time T  denoted by 

1N , the predator 

(for example, Butterfly fish) whose population density at time T  denoted by 
2N , the host (for example, Hermit crabs) 

whose population density at time T  denoted by 
3N , and the host's competitor species (for example, other type of 

Hermit crabs) whose population density at time T  denoted by . All the parameters ar Moreover assumed to be positive 

and described as given in [10]. 

Now, for further simplification of the system (2), the following dimensionless variables are used in [10]. 
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Thus, system (2) can be turned into the following dimensionless form: 
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With (0) 0, (0) 0, (0) 0x y z    and It is observed that t ,. e number of parameters have been reduced from fourteen in 

the system (1) to ten in the system (2). Obviously the interactObviously,ions of the system (2) are continuous and have 

continuous partial de been continuous the following positive four dimensional space: 

Therefore these functions are Lipschitzian on 4R  , and hence the solution of the system (2) exists and is unique. 

Further, in the following theorem, the boundedness of the solution of the system (2) in 4R  is established by [10]. 

Theorem 1: All the solutions of system (2) which initiate in 4R  are uniformly bounded 

3. The stability analysis of equilibrium points of system (2) [10] 

The four-species Syn-Ecosymiois model given by the system (2) has at most twelve equilibrium points, which are 

mentioned with their existence conditions in [10] as in the following: 
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However, it is a saddle point otherwise. 
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However, it is a saddle point otherwise. 

3) The first three species equilibrium points where. 
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And x is positive constant, is locally asymptotically stable in the 4R
 if the following conditions are satisfied 
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However, it is a saddle point otherwise. 
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Is locally asymptotically stable in the 4R if the following conditions are satisfied: 
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However, it is a saddle point otherwise. 
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10E  Is locally asymptotically stable in the 4R if the following conditions are satisfied 
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However, it is a saddle point otherwise. 
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4. The persistence of system (2) 

In general, persistence is a global property of a dynamical system; it is not dependence upon interior solution space 

structure but is dependent upon solution behavior near extinction boundaries (boundary planes).From From the 

biological point of view, persistence of a system means the survival of all population of the system in future time. 

However, mathematically it means that strictly positive solutions do not have omega limit set on the boundary of the 

non-negative cone [11].Accordingly, if the dynamic system does not persist, then the solution have omega limit set on 

the boundary of the nonnegative cone, and hence the dynamic system faces extinction. Now, before examine the 

persistence of stage structure model given by system (2) by using the method of average Lyapunov function as given in 

[12], we need to study the global dynamics in the boundary planes xz , xw , and in the 3.Int R
 as shown in the following 

theorems. 
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Note that ( , )x z does not change sign and is not identically zero in the 2.Int R
of the xz -plane. Then according to 

Bendixson –Dualic criterion subsystem (2.3) has no periodic dynamic in the interior of positive quadrant of xz -plane. 

Further, since 
6E  is the only positive equilibrium point of subsystem (2.3) in the interior of positive quadrant of xz -

plane. Hence according to Poincare-Bendixson theorem 
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quadrant. 
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Note that ( , )x w does not change sign and is not identically zero in the 2.Int R
of the xw -plane. Then according to 

Bendixson –Dualic criterion subsystem (2.4) has no periodic dynamic in the interior of positive quadrant of xw -plane. 

Further, since 
7E  is the only positive equilibrium point of subsystem (2.4) in the interior of positive quadrant of xw -

plane. Hence according to Poincare-Bendixson theorem 
7E is a globally asymptotically stable in the interior of positive 

quadrant. 
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Then the equilibrium point 
8E  of the system (2) is globally asymptotically stable in the 3.Int R of the xyz-space.  
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Theorem 6: Assume that, the equilibrium point  10 ,0, ,E x z w    of system (2) is locally asymptotically stable in 

the 3.Int R
 then it is globally asymptotically stable. 
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5 6 7 8

9

dV
x x x x z z u u z z z z w w u u w w

dt

u w w z z

      

 

            

  

 

 

Thus, 

 

       
2 2

3 5 6 5 6
7 8

2 2

dV u u u u
x x z z z z u u w w

dt

   
   

           
      

 

 

Then 3dV

dt
 is negative definite and hence 

3V  is a Lyapunov function. Thus 
10E  is a globally asymptotically stable in 

the 3.Int R of xzw-space and the proof is complete. ■  

 

Theorem 7: Assume that there are no periodic dynamics of system (2)in the boundary of the solution. Further, if the 

following conditions are held: 

 

1 2 3 4( )( )eu x u x u u y                                                                                                                                                    (11a) 

 

1

2

ˆ
ˆ 1

ˆ

u y
x

u x
 


                                                                                                                                                                (11b) 

 

1
3 4

2

ˆ
ˆ

ˆ

eu x
u u y

u x
 


                                                                                                                                                            (11c) 

5 9 1u u                                                                                                                                                                            (11d) 

 

8 9u u                                                                                                                                                                             (11e) 

 

5 6 7 8 9u u u u u                                                                                                                                                                    (11f) 

 

6 7 9u u u                                                                                                                                                                         (11g) 

 

8
1u w                                                                                                                                                                            (11h) 

 

9 7 8(1 )u z u u w                                                                                                                                                              (11i) 
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And 

 

1 2M M                                                                                                                                                                         (11j) 

 

1 3 2
1 2 4 7 7 8 9

2

9 5
2 3

5 6 7 8 9

,

( )

( 1)
,

where

eu x u u x
M P P u u u w u z and

u x

u u
M P

u u u u u

 
 



  
        

 
  

 

 

 

Then system (2) is uniformly persist. 

Proof: Consider the following average Lyapunov function 31 2 4( , , , ) ,PP P Px y z w x y z w  where each , 1,2,3,4ip i  is 

assumed to be positive, obviously ( , , , )x y z w is continuously differentiable positive function defined in, since.  

 

   

1 1

42 2
1 2 3

3 5 6 4 7 8 9

( , , , )
( , , , )

( , , , )

(1 )

(1 ) (1 )

u y eu x

u yu x u x

x y z w
x y z w

x y z w

P x z P u

P u u z w P u u w u z





 


 

        
   

     

 

 

And, also it is assumed that there are no periodic attractors in the boundary plane, boundary space, and the equilibrium 

points 
0E -

5E are unstable points hence these equilibrium poins do not belong to the possible omega limit set of system 

(2), then the only possible omega limits set of system (2) are the equilibrium points. The proof is follows so nd the 

sysfollowed ormly persists if we can propersistedat each of these equilibium points. 

1) For    6

6 6

1 1
6 ,0, ,0 ,0, ,0

u

u u
E x z


  we have 

 

 61 6 3 2 6 1)

6 2 4 7 8 9

2 6 6

(1 ) (
( ) (1 )

1

ueu u u u u
E P P u u w u z

u u u

   
     

    

 

Violate condition (2.3a) imply that 
6( )E >0 for any

2 40 0P and P  . 

2) For    
8

1
7 ,0,0, 1,0,0,

u
E x w  we have  

 

1 3 2 1)

7 2 3

2 8

( 1
( ) .

1

eu u u
E P P

u u

 
   

   

 

Violate condition (4a) imply that 
7( )E >0 for any

2 30 0P and P  . 

3) For  8 , , ,0E x y z we have  

1 3 2 ) 4 2

8 2

2

( ( )
( ) .

eu x u u x u y u x
E P

u x

    
   

   

 

So, ( 8)E >0 for any 2 0,P  provided conditions (11a) hold. 

4) For  9
ˆ ˆ ˆ, ,0,E x y w we have 

 

 1

2

ˆ 1 5 9 1 7 9 8
9 1 2 3 4 3 4ˆ

2 9 9

ˆ ( )
ˆ ˆ( ) 1 ( ) .

ˆ

u y

u x

eu x u u u u u
E P x P u u y P P

u x u u





                           

 

So, 9( )E >0 for any positive numbers
2 31, , 4P PP and P provided conditions (11b)-(11e) are hold with violate conditions 

(6a) and (6b). 
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5) Finally for  10 ,0, ,E x z w   we have  

 

1 3 2 9 5
10 2 3 4 7 8 9

2 5 6 7 8 9

( ) ( 1)
( ) (1 ) .

eu x u u x u u
E P P P u u w u z

u x u u u u u

 
 



    
                

 

So, 
10( )E >0 for any positive numbers

32, 4PP and P provided conditions (13f)-(13i) are holds with violate conditions 

(9b). 

Hence system (2) is uniformly persists. 

5. Numerical simulation 

In this section, the dynamical behavior of system (2) is studied numerically for different sets of parameters and different 

sets of initial points. The objectives of this study are: first investigate the effect of varying the value of each parameter 

on the dynamical behavior of system (2) and second confirm our obtained analytical results. It is observed that, for the 

following set of hypothetical parameters that satisfies stability conditions of the positive equilibrium point, system (2) 

has a globally asymptotically stable positive equilibrium point as shown in Fig. (2).  

Note that, from now onward the blue, green, red and sky blue colors are used to describing the trajectories of the 

prey x , the predator y , the host z  and the Host competitor w  respectively.  

 

1 2 3 4 5 6

7 8 9

0.6, 0.25, 0.1, 0.05, 2, 0.5

2, 0.75, 0.8, 0.5

u u u u u u

u u u e

     

   
                                                                                                           (14) 

 

 
Fig. 1: Time Series of the Solution of System (2.2) That Started From Two Different Initial Points (0.8,0.7,0.6,0.9)  and (1.0,0.5,0.3,1.25)  for 

the Data Given by Eq. (14). (A) Trajectories of x  as A Function of Time, (B) Trajectories of y  as A Function of Time, (C) Trajectories of z  as A 

Function of Time,(D) Trajectories of w  as A Function of Time. 

Clearly, Fig. (1) Shows that system (2) has a globally asymptotically stable as the solution of system (2) approaches 

asymptotically to the positive equilibrium point 11 (1.2,2.96,1.42,0.57)E   starting from two different initial points, and 

this is confirming our obtained analytical results.  
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Fig. 2: Time Series of the Solution of System (2.2) for the Data Given by Eq. (14) with

1 0.15u  , Which Approaches to (2.42,0.0,1.42,0.57)  in 

xzw  Space. 

 

 
Fig. 3: Time Series of the Solution of System (2.2) for the Data Given by Eq. (14) with

1 0.7u  , which Approaches to Periodic Dynamics 

in
4.Int R

. 

 

 
Fig. 4: Time Series of the Solution of System (2) for the Data Given by Eq. (14) with 6 0.3u  , which Approaches Asymptotically to 

(3.79,3.62,3.33,0)  in the Interior of Positive Octant of xyz  Space. 

 

Fig. (5): Time series of the solution of system (2) for the data given by Eq. (14) with 0.1e  , which approaches 

asymptotically to (2.42,0,1.42,0.57)  in the interior of a positive octant of xzw  space. 

According to the above, the effect of the other parameters on the dynamics of system (2) is also studied in case of 

varying the parameters and obtained results are summarized in the following tables. 
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Table 1: Numerical Behaviors and Persistence of System (3) as Varying in Some Parameters Keeping the Rest of Parameters Fixed as in Eq. (14). 

Persistence of system (2) Numerical behavior of system (2) Parameters varied in system(2) 

Not Persist 

persist 

Approaches to stable point in Int. 3R
 

Approaches to the positive stable point
11E  

1

1

0.1 0.23

0.23 0.61

u

u

 

 

 

persist 

persist 

Approaches to periodic dynamics in Int. 4R
  

Approaches to the positive stable point
11E  

2

2

0.24

0.24

u

u





 

Persist 

Not persist 

Approaches to periodic dynamics in Int. 4R
  

Approaches to the positive stable point
10E  

3

3

0.09

0.09 0.27

u

u



 

 

Persist 

Persist 

Approaches to periodic dynamics in Int. 4R
  

Approaches to the stable point
10E  

4

4

0.04

0.04 1

u

u



 
 

Persist 

persist 

Approaches to periodic dynamics in Int. 4R
  

Approaches to the positive stable point
11E  

5

5

1.33 1.86

1.86

u

u

 



 

Not Persist 

Persist 

Approaches to stable point in
8E   

Approaches to the positive stable point
11E  

6

6

0.4

0.4

u

u





 

Not Persist 

Persist 

Persist 

Approaches to the stable point
8E  

Approaches to the positive stable point
11E  

Approaches to periodic dynamics in Int. 4R
 

7

7

7

1.6

1.6 2.1

2.1

u

u

u



 



 

Not Persist 

Persist 

Approaches to periodic dynamics in Int. 3R
 

Approaches to the positive stable point
11E  

8

8

0.5

0.5

u

u





 

Persist 

Persist 

Not Persist 

Approaches to periodic dynamics in Int. 4R  

Approaches to the positive stable point
11E  

Approaches to the stable point
8E  

9

9

9

0.75

0.75 0.99

0.99

u

u

u



 



 

Not Persist 

Persist 

Persist 

Approaches to the stable point
10E  

Approaches to the positive stable point
11E  

Approaches to periodic dynamics in Int. 4R
 

0.17

0.17 0.51

0.51

e

e

e



 


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