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Abstract 

In this analysis, the effects of radiation have been discussed on 
unsteady MHD free convection heat and mass transfer flow on a 
viscous, incompressible, electrically conducting fluid past a vertical 
permeable moving plate with radiation. The non-linear partial 
differential equations governing the flow have been solved 
numerically using finite element method. Graphical results for velocity, 
temperature and concentration profiles have been obtained, to show 
the effects of different parameters entering in the problem. Such flow 
problems are important in many processes, in which there is combined 
heat and mass transfer with radiation. It has been observed that the 
velocity increase with the increase in the radiation parameter and there 
is a increase in temperature with the increase in the value of radiation 
parameter. 

Keywords: Heat and Mass transfer, MHD, Radiation, FEM 

1 Introduction 

The effect of radiation on MHD flow and heat transfer problem have become 

more important industrially. At high operating temperature, radiation effect can be 

quite significant. Many processes in engineering areas occur at high temperature 

and a knowledge of radiation heat transfer becomes very important for the design 

of the pertinent equipment. Nuclear power plants, gas turbines and the various 

propulsion devices for aircraft, missiles, satellites and space vehicles are examples 

of such engineering areas. Bestman [1] examined the natural convection boundary 
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layer with suction and mass transfer in a porous medium. His results confirmed 

the hypothesis that suction stabilises the boundary layer and affords the most 

efficient method in boundary layer control yet known. Abdus Sattar and Hamid 

Kalim [2] investigated the unsteady free convection interaction with thermal 

radiation in a boundary layer flow past a vertical porous plate. Makinde [3] 

examined the transient free convection interaction with thermal radiation of an 

absorbing-emitting fluid along moving vertical permeable plate. Recently, 

Ibrihem et al. [4] have studied nonclassical thermal effects in Stokes’ second 

problem for micropolar fluids by used perturbation method. 

Muthucumaraswamy and Ganesan [5] studied effect of the chemical reaction and 

injection on flow characteristics in an unsteady upward motion of an isothermal 

plate. Deka et al. [6] studied the effect of the first-order homogeneous chemical 

reaction on the process of an unsteady flow past an infinite vertical plate with a 

constant heat and mass transfer. Chamkha [7] studied the MHD flow of a 

numerical of uniformly stretched vertical permeable surface in the presence of 

heat generation/absorption and a chemical reaction. Soundalgekar and Patti [8] 

studied the problem of the flow past an impulsively started isothermal infinite 

vertical plate with mass transfer effects. The effect of foreign mass on the free-

convection flow past a semi-infinite vertical plate was studied [9]. Chamkha [10] 

assumed that the plate is embedded in a uniform porous medium and moves with 

a constant velocity in the flow direction in the presence of a transverse magnetic 

field. Raptis [11] investigate the steady flow of a viscous fluid through a very 

porous medium bounded by a porous plate subjected to a constant suction velocity 

by the presence of thermal radiation. Raptis and Perdikis [12] studied the unsteady 

free convection flow of water near 40C in the laminar boundary layer over a 

vertical moving porous plate. 

 

Chambre et al [13] have analyzed a first order chemical reaction in the 

neighborhood of a stationary horizontal plate. Das et al [14] have studied the 

effect of homogeneous first order chemical reaction on the flow past an 

impulsively started infinite vertical plate with uniform heat flux and mass transfer. 

Again, mass transfer effects on moving isothermal vertical plate in the presence of 

chemical reaction studied by Das et al [15]. The dimensionless governing 

equations were solved by the usual Laplace-trans form technique and the solutions 

are valid only at lower time level. Radiation and chemical reaction effects on 

isothermal vertical oscillating plate with variable mass diffusion has been studied 

by Manivannan et al [16]. 

In spite of all these studies, the heat and mass transfer effects on unsteady 

magnetohydrodynamic free convection flow past a vertical permeable moving 

plate with radiation. The problem is governed by the system of non-linear partial 

differential equations solved numerically by using Galerkin finite element 

method. Which is more economical from computational point of view? 
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2 Mathematical analysis 

Consider unsteady two-dimensional flow of a laminar, viscous, electrically 

conducting and heat-absorbing fluid past a semi-infinite vertical permeable 

moving plate embedded in a uniform porous medium and subjected to a uniform 

transverse magnetic field in the presence of thermal and concentration buoyancy 

effects. It is assumed that there is no applied voltage which implies the absence of 

an electrical field. The fluid properties are assumed to be constant except that the 

influence of density variation with temperature has been considered only in the 

body-force term. The concentration of diffusing species is very small in 

comparison to other chemical species, the concentration of species far from the 

wall, C∞, is infinitesimally small [5] and hence the Soret and Dufour effects are 

neglected. The chemical reactions are taking place in the flow and all 

thermophysical properties are assumed to be constant of the linear momentum 

equation which is approximated according to the Boussinesq approximation. Due 

to the semi-infinite plane surface assumption, the flow variables are functions of 

y* and the time t* only. Under these assumptions, the equations that describe the 

physical situation are given by 
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where 
x , 

y , and 
t  are the dimensional distances along and perpendicular to 

the plate and dimensional time, respectively. u* and v* are the components of 

dimensional velocities along 
x  and 

y  directions, respectively, T* is the 

dimensional temperature, C* is the dimensional concentration, Cw and Tw are the 

concentration and temperature at the wall, respectively. C∞ and T∞ are the free 

stream dimensional concentration and temperature, respectively.  is the fluid 

density, v is the kinematic viscosity, cp is the specific heat at constant pressure,  

is the fluid electrical conductivity, Bo is the magnetic induction, K* is the 
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permeability of the porous medium,  is the coefficient of proportionality for the 

absorption of radiation, D is the mass diffusivity, g is the gravitational 

acceleration, and T  and c  are the thermal and concentration expansion 

coefficients, respectively and Kl is the chemical reaction parameter. The magnetic 

and viscous dissipations are neglected in this study. The third and fourth terms on 

the RHS of the momentum equation (2) denote the thermal and concentration 

buoyancy effects, respectively. Also, the second and third terms on the RHS of the 

energy equation (3) represents the heat and radiation absorption effects, 

respectively. It is assumed that the permeable plate moves with a variable velocity 

in the direction of fluid flow. In addition, it is assumed that the temperature and 

the concentration at the wall as well as the suction velocity are exponentially 

varying with time. 

Under these assumptions, the appropriate boundary conditions for the velocity, 

temperature and concentration fields are 
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where  is the wall dimensional velocity, n* is constant. It is clear from 

Eq. (1) that the suction velocity at the plate surface is a function of time only. 

Assuming that it takes the following exponential form: 

v* = -V0 (1+εAen*t*)                                                                                        (6) 

where A is a real positive constant, ε and εA are small less than unity, and Vo is a 

scale of suction velocity which has non-zero positive constant. Introducing the 

dimensionless quantities:  
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In view of the above non-dimensional variables, the basic field Eqs. (2)–(4) can 

be expressed in non dimensional form as 
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The corresponding boundary conditions are 
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where  
RKMGmGr o Pr,,,,,

 and  Sc are the thermal Grashof number, solutal 

Grashof number, magnetic field parameter,  permeability parameter,  Prandtl 

number, radiation parameter and Schmidt  number respectively. 

 

The mathematical statement of the problem is now complete and embodies the 

solution of Eqs.(8)-(10) subject to boundary condition(11). 

3 Method of Solution 

By applying Galerkin finite element method for equation (8) over the 

element )(e ,  
kj yyy   is: 
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Integrating the first term in equation (12) by parts one obtains 
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Neglecting the first term in equation (13),then 
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Let 
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Simplifying we get 

  

  























































































1

1

221

12

621

12

6

1

11

11

211

111 11

)(2

R

u

uM

u

u

u

u

l

P

u

u

l k

j

k

j

k

j

e
k

j

e

 

 

where prime and dot denotes differentiation w.r.t y  and time t  respectively. 

Assembling the element equations for two consecutive elements ii yyy 1 and 
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Now put row corresponding to the node i  to zero, from equation (14) the 

difference schemes with hl e )(
is:     
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Applying Crank-Nicholson method to the above equation then we gets 
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Applying similar procedure to equation (9) and (10) then we gets 
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Where RkhrPrB PrPr36Pr21  , ,Pr412Pr82 RkrB 
 

,PrPr36Pr23 RkhrPrB           RkhrPrB PrPr36Pr24  ,  

,Pr412Pr85 RkrB    

 ,PrPr36Pr26 RkhrPrB 
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Here 
2h

k
r   and kh, are the mesh sizes along y direction and time 

t direction respectively.  Index i  refers to the space and j refers to the time. In 
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equations   (16) - (18), taking ni )1(1  and using initial and boundary conditions 

(11), the following system of equations are obtained: 

iii BXA    3)1(1i                                                                                  (19) 

Where iA ’s are matrices of order n  and ii BX , ’s column matrices having 

n components. The solutions of above system of equations are obtained by 

using Thomas algorithm for velocity, temperature and concentration. Also, 

numerical solutions for these equations are obtained by C-programme. In order to 

prove the convergence and stability of Galerkin finite element method, the same 

C-programme was run with slightly changed values of h and k  and no significant 

change was observed in the values of ,u  and C . Hence, the Galerkin finite 

element method is stable and convergent. 

4 Results and Discussion 

Numerical evaluation of the analytical results reported in the previous section was 

performed and a representative set of results is reported graphically in figs.1-12. 

These results are obtained to illustrate the influence of the thermal Grashof 

number Gr , Solutal Grashof number 
Gm

, magnetic parameter M , Permeability 

parameter K ,  thermal radiation R , Prandtl number Pr , Schmidt number Sc  and 

chemical reaction parameter rK
on the velocity, temperature and the concentration 

profiles, while the values of the physical parameters are fixed at real constants 

 

With

,5.0,5.0,5.0,6.0,0.1,71.0Pr,5.0,2.0,0.2  pr uAKScRKMGmGr

0.1,1.0,2.0  tn  All graphs therefore correspond to these values unless 

specifically indicated on the appropriate graph. 

 

Fig 1 presents typical velocity profiles in the boundary layer for various values of 

the thermal Grashof number Gr  , while all other parameters are kept at some 

fixed values. The thermal Grashof number Gr  defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity 

increases and the peak value is more distinctive due to increase in the species 

buoyancy force. The velocity distribution attains a distinctive maximum value in 
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the vicinity of the plate and then decreases properly to approach the free stream 

value. 

 

The influence of the Solutal Grashof number Gm  on the velocity is presented in 

Fig 2. The Solutal Grashof number   signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in the boundary layer. As 

expected, it is observed that there is a rise in the velocity due to the enhancement 

of thermal buoyancy force. Here, the positive values of Gm  correspond to 

cooling of the plate. Also, as Gm  increases, the peak values of the velocity 

increases rapidly near the porous plate and then decays smoothly to the free 

stream velocity. 

 

For different values of the magnetic field parameter M, the velocity profile are 

plotted in Fig. 3. It is obvious that the effect of increasing values of the magnetic 

field parameter results in a decreasing velocity distribution across the boundary 

layer.    Fig. 4 illustrate the variation of velocity distribution across the boundary 

layer for various values of the permeability parameter K. The velocity increases 

with a increase in permeability parameter K. 

Figs 5 and 6 illustrate the velocity and temperature profiles for different values of 

the Prandtl number Pr . The Prandtl number defines the ratio of momentum 

diffusivity to thermal diffusivity. The numerical results show that the effect of 

increasing values of Prandtl number results in a decreasing velocity (Fig 5). From 

Fig 6, it is observed that an increase in the Prandtl number results a decrease of 

the thermal boundary layer thickness and in general lower average temperature 

within the boundary layer. The reason is that smaller values of Pr  are equivalent 

to increasing the thermal conductivities, and therefore heat is able to diffuse away 

from the heated plate more rapidly than for higher values of Pr  . Hence in the 

case of smaller Prandtl numbers as the boundary layer is thicker and the rate of 

heat transfer is reduced. 

 

For different values of the radiation parameter R  the velocity and temperature 

profiles are plotted in Figs.7 and 8. It is obvious that an increase in the radiation 

parameter R  results an increasing in the velocity and temperature profiles within 

the boundary  layer, as well as an increasing in the momentum and thermal 

thickness. This is because the large  R values correspond to an increased 

dominance of conduction over  radiation thereby increasing buoyancy force (thus, 

vertical velocity) and thickness of the thermal and momentum boundary layers.  
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Figs.9 and 10 display the effects of the Schmidt number Sc  on the velocity, 

temperature and concentration profiles, respectively. As the Schmidt number 

increases, the concentration decreases. This causes the concentration buoyancy 

effects to decrease yielding a reduction in the fluid velocity. The reduction in the 

velocity, temperature and concentration profiles are accompanied by simultaneous 

reductions in the momentum and concentration boundary layers thickens. These 

behaviors are clearly shown in Figs. 9 and 10. 

 

Figs. 11 and 12,   displays results for the velocity and concentration distributions 

respectively. It is seen, that the velocity and concentration increases with 

decreasing the chemical reaction parameter rK
 .Also, we observe that the 

magnitude of the stream wise velocity increases and the inflection point for the 

velocity distribution moves further away from the surface. 

 

5 Concluding Remarks 

The plate velocity was maintained at a constant value and the flow was subjected 

to a transverse magnetic field. The resulting partial differential equations were 

transformed into a set of ordinary differential equations using finite element 

method. Numerical results were performed and some graphical results were 

obtained to illustrate the details of the flow and heat and mass transfer 

characteristic and their dependence on some of the physical parameters. It was 

found that the velocity profiles increased due to decrease in chemical reaction 

parameter, the Schmidt number, magnetic field and Prandtl number parameters 

while it increased due to increases in thermal Grashof number, Solutal Grashof 

number, radiation parameter and Permeability parameters. However, an increase 

temperature profile is a function of an increase in radiation parameter while it 

decreased due to increases in Prandtl number. Also, it was found that the 

concentration profile increased due to decreases in the chemical reaction 

parameter and the Schmidt number. 
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Fig.1. Velocity profiles against y for different values of Gr
 

 

 

Fig.2. Velocity profiles against y for different values ofGm   
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Fig.3. Velocity profiles against y for different values of M  
 

 

 

Fig.4. Velocity profiles against y for different values of K  
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Fig.5. Velocity profiles against y for different values of Pr
  

 

 

Fig.6.Temperature profiles against y for different values of Pr 
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Fig.7. Velocity profiles against y for different values of R
 

 

 

Fig.8.Temperature profiles against y for different values of R  
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Fig.9. Velocity profiles against y for different values of Sc  
 

 

 

Fig.10. Concentration profiles against y  for different values of Sc  
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Fig.11. Velocity profiles against y  for different values of rK
 

 

 

Fig.12.Concentration profiles against y  for different values of rK  


