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Mittag-Leffler-Padé approximations for the
numerical solution of space and time

fractional diffusion equations
Abdollah Borhanifar∗, Sohrab Valizadeh

Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
*Corresponding author E-mail: borhani@uma.ac.ir

Copyright c©2015 Abdollah Borhanifar and Sohrab Valizadeh. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Abstract

Anomalous diffusion and non-exponential relaxation patterns can be described by a space - time fractional diffu-
sion equation. This paper aims to present a Padé approximation for Mittag-Leffler function mixed finite difference
method to develop a numerical method to obtain an approximate solution for the space and time fractional diffusion
equation. The truncation error of the method is theoretically analyzed. It is proved that the numerical proposed
method is unconditionally stable from the matrix analysis point of view. Finally, some numerical results are given,
which demonstrate the efficiency of the approximate scheme.
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1. Introduction

In recent years, many research studies have been focused on partial differential equations of fractional order because
of their various applications in fluid mechanics, viscoelasticity, biology, physics, and engineering. Fractional calculus
in mathematics is a natural extension of integer-order calculus. It has been used in modeling many physical processes
arisen from real-life problems, for instance, the modeling of the transport of passive tracers carried by fluid flows
in a porous medium underground water hydrology. Studies of the complicated phenomena of the interstitial fluid
flows are still under intensive researches and are particularly challenging for quantitative analysis and modeling.
In recent years, considerable works have been done in this area, both in theory and applications. Citing all papers
and books in this area will be far too many. We cite only some few key references as instance [1, 2, 3, 4, 5].

Recently, some researchers found out that the fractional model is more suitable than the integer order. Suitable
mathematical models are the diffusion equations with time and/or space fractional derivatives, where the classical
first order derivative in time is replaced by the Caputo fractional derivative of order γ ∈ (0, 1), and the second order
derivative in space is essentially replaced by the Riemann-Liouville fractional derivative of order α ∈ (1, 2].

Generally, it is not easy to derive analytical solutions for most of fractional partial differential equations. There-
fore, it is vital to develop some reliable and efficient techniques to solve fractional partial differential equations.
The numerical solution of fractional partial differential equations has attached considerable attention from many
researchers. During the past decades, a plenty full of numerical schemes have been developed. These methods
include finite difference approximation methods [6, 7, 8, 9, 10, 11, 12], finite volume methods [13, 14], variational
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iteration method [15, 16], spline functions [17, 18], Tau method [19], generalized differential transform methods
[20, 21], the Adomian decomposition methods [22, 23, 24] and Chebyshev spectral method [25].

We consider following space and time fractional diffusion equation in a finite domain associated with initial value
and zero Dirichlet boundary conditions

∂γu(x, t)

∂tγ
= D

∂αu(x, t)

∂xα
, (1)

u(x, 0) = f(x), (2)

u(0, t) = u(L, t) = 0. (3)

The variable u(x, t) represents, for example, a concentration; D > 0 is the anomalous diffusion coeficient. The

time fractional derivative ∂γu(x,t)
∂tγ is the Caputo fractional derivative of order γ (0 < γ ≤ 1), while the space

fractional derivative ∂αu(x,t)
∂xα is the Riemann-Liouville fractional derivative of order α (1 < α ≤ 2).

The main objective of the present article is introduce a Padé approximation method to estimate of Mittag-Leffler
function, and apply this method for fractional differential equation that obtained from fractional partial differential
equation via shifted Grünwald estimate.

The layout of the paper is as follows: In Section 2, a brief review of the theory of fractional calculus will be given
to fix notation and provide a convenient reference. In Section 3, we construct and develop algorithms to solve space
and time fractional diffusion equations by using finite difference and Padé approximation methods. In Section 4,
we discuss on the stability of the proposed method. In Section 5, we give some numerical examples which confirm
the obtained theoretical results. This paper ends with a conclusion in Section 6.

2. Preliminaries and Basic Definitions

In this section, we give some basic definitions and properties of fractional calculus theory which shall be used in
this paper:

Definition 2.1 A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R if there exists a real number p > µ,
such that f(x) = xpg(x) where g(x) ∈ C(0,∞) and it is said to be in the space Cnµ if and only if f (n) ∈ Cµ, n ∈ N.

Definition 2.2 The Riemann-Liouville fractional integral operator of order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1,
is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0. (4)

Properties of the operator Jα can be found in [4] and we mention only some following:
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0, γ ≥ −1:

J0f(x) = f(x),

Jαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ ,

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x).
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Definition 2.3 For m to the smallest integer that exceeds α, n to the smallest integer that exceeds β, the Caputo
time- fractional derivative operator of order α > 0 is defined as [3]

Dα
t u(x, t) =

∂αu(x, t)

∂tα
=

{
1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,τ)
∂τm dτ, m− 1 < α < m;

∂mu(x,t)
∂tm , α = m ∈ N.

and the Riemann-Liouville space- fractional derivative operator of order β > 0 is defined as [4]

Dβ
xu(x, t) =

∂βu(x, t)

∂xβ
=

{
1

Γ(n−β)
∂n

∂xn

∫ x
0

(x− τ)n−β−1u(τ, t)dτ, n− 1 < β < n;
∂nu(x,t)
∂xn , β = n ∈ N.

Definition 2.4 For α > 0 shifted Grünwald formula defines:

∂αf(x)

∂xα
= lim
M→∞

1

hα

M∑
s=0

ω(α)
s f(x− (k − 1)h),

such that shifted Grünwald estimate for fractional derivative defines [26]:

∂αf(x)

∂xα
=

1

hα

M∑
s=0

ω(α)
s f(x− (k − 1)h) +O(hα),

and M is a positive integers and h = xR−xL
M . Moreover, normalized Grünwald Weights are defined by:

ω(α)
s = (−1)s

Γ(α+ 1)

Γ(s+ 1)Γ(α− s+ 1)
, s = 0, 1, 2, ...

Definition 2.5 The Mittag-Leffler function Eα(z) with α > 0 is defined by the following series representation,
valid in the whole complex plane [27]:

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
, α > 0, z ∈ C.

Interestingly, Mittag-Leffler functions are eigenfunctions of the Caputo fractional derivative of order γ ≤ 1:

Dγ
t Eγ(ωtγ) =

1

Γ(1− γ)

∫ t

0

(t− τ)−γ
dEγ(ωτγ)

dτ
dτ = ωEγ(ωtγ). (5)

3. Mittag-Leffler-Padé approximation for fractional diffusion equations

To present the Padé approximation - finite difference method, we give some notation: k = ∆t and h = ∆x are the
time and spatial step respectively, the coordinates of the mesh points are xi = a + ih, i = 0, 1, 2, ...,m, m = b−a

h
and tn = nk, n = 0, 1, 2, ..., and the values u(x, t) at these grid points are u(xi, tn) ≡ ui,n.

3.1. Spatial approximations

Assume that u(x, t) is twice differentiable with respect to x and replace the space fractional partial derivatives in
(1) with respect to x by the shifted Grünwald estimate:

∂αu(x, t)

∂xα
|(xi,t)=

1

hα

i+1∑
s=0

ω(α)
s u(xi−s+1, t) +O(hα), as h→ 0, (6)

which can be derived by using the fractional Taylor series expansion of u(xi + h, t), u(xi − h, t), ... , u(a, t). This
discretization results in an initial-value fractional problem of the form:

dγU(t)

dtγ
= AU(t), U(0) = U0, (7)

where the matrix A is as follows:



International Journal of Applied Mathematical Research 469

Ai,j = 1
hα


0, when j > i+ 1;

ω
(α)
1 , when j = i;

ω
(α)
i−j+1, otherwise.

By using (5), the exact solution of (7) can be written as

U(t) = U0Eγ(tγA),

and we have

U(k) = U0Eγ(kγA).

By repeat above process for the next time step, we have

U(2k) = U(k)Eγ(kγA).

Therefore, exact solution satisfies the recurrence formula:

U(tn+1) = Eγ(kγA)U(tn). (8)

Recurrence formula (8) is the basis of different time stepping schemes that depond on how we approximate the
matrix Mittag-Leffler function. we shall use positivity preserving Padé approximations of matrix Mittag-Leffler
functions Eγ(kγA), 0 < γ ≤ 1 to construct a family of time stepping schemes. the special case for γ = 1 has been
worked for the numerical solution of Burgers equation in the [28].

3.2. The Padé approximation to Eγ(θ), θ real

Assume that Eγ(θ) is approximated by 1
1+q1θ+q2θ2

, where q1 and q2 are constants. Determination of q1 and q2

requires two equations, which will come from the coefficients of θ and θ2. So, the leading error term will be order
θ3. Hence

Eγ(θ) ≡ 1

1 + q1θ + q2θ2
+ c3θ

3 + c4θ
4 + ... .

Therefore,

(1 + q1θ + q2θ
2)(1 +

θ

Γ(γ + 1)
+

θ2

Γ(2γ + 1)
+

θ3

Γ(3γ + 1)
+ ...)

= 1 + (1 + q1θ + q2θ
2)(c3θ

3 + c4θ
4 + ...),

Or

(q1 +
1

Γ(γ + 1)
)θ + (q2 +

q1

Γ(γ + 1)
+

1

Γ(2γ + 1)
)θ2 +

(c3 +
q2

Γ(γ + 1)
+

q1

Γ(2γ + 1)
+

1

Γ(3γ + 1)
)θ3 + higher order term ≡ 0.

This is satisfied uniquely to term of order three by

q1 = − 1

Γ(γ + 1)
,

q2 =
1

Γ(γ + 1)2
− 1

Γ(2γ + 1)
,

and

c3 =
1

Γ(3γ + 1)
− 2

Γ(γ + 1)Γ(2γ + 1)
+

1

Γ(γ + 1)3
.

The rational approximation

1

1− 1
Γ(γ+1)θ + ( 1

Γ(γ+1)2 −
1

Γ(2γ+1) )θ2
,
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is called the [2, 0] Padé approximation of order 2 to Eγ(θ) and has a leading error term of order 3.
Generally, it is possible to approximate Eγ(θ) by

Eγ(θ) =
1 + p1θ + p2θ

2 + ...+ pT θ
T

1 + q1θ + q2θ2 + ...+ qSθS
+ cS+T+1θ

S+T+1 +O(θS+T+2),

where cS+T+1 is an independent constant. The rational function

RS,T (θ) =
1 + p1θ + p2θ

2 + ...+ pT θ
T

1 + q1θ + q2θ2 + ...+ qSθS
=
PT (θ)

QS(θ)

is called the [S, T ] Padé approximant of order (S + T ) to Eγ(θ).

3.3. Padé Rational Approximation Algorithm

Here we present an algorithm that gives the Padé approximants to Eγ(.), 0 < γ ≤ 1.
To obtain the rational approximation

r(x) =
p(x)

q(x)
=

∑n
i=0 pix

i∑m
j=0 qjx

j

for a Mittag-Leffler function (Eγ(x), 0 < γ ≤ 1) we use following algorithm [29]:
Algorithm:
Input: Nonnegative integers m and n.
Output: Coefficients q0, q1, ..., qm and p0, p1, ..., pn.
step 1: Set N=m+n.
step 2: For i = 0, 1, ..., N set ai = 1

Γ(iγ+1) .

step 3: Set q0 = p0 = 1.
step 4: For i = 0, 1, ..., N do steps 5-10. (Set up a linear system with matrix B.)
step 5: For j = 0, 1, ..., i− 1 if j ≤ n, then set bi,j = 0.
step 6: For i ≤ n, then set bi,i = 0.
step 7: For j = i+ 1, i+ 2, ..., N if j ≤ N , then set bi,j = 0.
step 8: For j = 1, 2, ..., i if j ≤ m, then set bi,n+j = −ai−j .
step 9: For j = n+ i+ 1, n+ i+ 2, ..., N set bi,j = 0.
step 10: Set bi,N+1 = ai. (Steps 11-22 solve the linear system using partial pivoting.)
step 11: For i = n+ 1, n+ 2, ..., N − 1 do steps 12-18.
step 12: Let k be smallest integer with i ≤ k ≤ N and | bk,i |= maxi≤j≤N | bj,i |. (Find pivot element.)
step 13: If bk,i = 0, then OUTPUT (”The system is singular”); Stop.
step 14: If k 6= i, then (Interchange row i and row k.) for j = i, i + 1, ...N + 1 set bCOPY = bi,j ; bi,j = bk,j ;

bk,j = bCOPY .
step 15: For j = i+ 1, i+ 2, ..., N do steps 16-18. (Perform elimination.)

step 16: Set xm =
bj,i
bi,i

.

step 17: For k = i+ 1, i+ 2, ..., N + 1 set bj,k = bj,k − xm.bi,k.
step 18: Set bj,i = 0.
step 19: If bN,N = 0, then OUTPUT (”The system is singular”); Stop.

step 20: If m > 0, then set qm =
bN,N+1

bN,N
. (Start backward substitution.)

step 21: For i = N − 1, N − 2, ..., n+ 1 set qi−n =
bi,N+1−

∑N
j=i+1 bi,jqj−n

bi,i
.

step 22: For i = n, n− 1, ..., 1 set pi = bi,N+1 −
∑N
j=n+1 bi,jqj−n.

step 23: OUTPUT (q0, q1, ..., qm, p0, p1, ..., pn); Stop. (The procedure was successful.)
By using the above-mentioned algorithm, we have constructed four L-stable numerical schemes using Rm,0(kγA)

for m = 1, 2, 3 and 4:
(a) A first order scheme (Backward Euler):

U(tn+1) = (I + q1k
γA)−1U(tn), (9)

(b) A second order scheme:

U(tn+1) = (I + q1k
γA+ q2k

2γA2)−1U(tn), (10)
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(c) A third order scheme:

U(tn+1) = (I + q1k
γA+ q2k

2γA2 + q3k
3γA3)−1U(tn), (11)

(d) A fourth order scheme:

U(tn+1) = (I + q1k
γA+ q2k

2γA2 + q3k
3γA3 + q4k

4γA4)−1U(tn), (12)

where

q1 = − 1

Γ(γ + 1)
,

q2 =
1

Γ(γ + 1)2
− 1

Γ(2γ + 1)
,

q3 = − 1

Γ(γ + 1)3
+

2

Γ(γ + 1)Γ(2γ + 1)
− 1

Γ(3γ + 1)
,

and

q4 =
1

Γ(γ + 1)4
− 3

Γ(γ + 1)2Γ(2γ + 1)
+

2

Γ(γ + 1)Γ(3γ + 1)
+

1

Γ(2γ + 1)2
− 1

Γ(4γ + 1)
.

4. Accuracy and stability analysis

In this section we prove the convergence of the numerical methods by showing that they are consistent and stable.
First, we start to study the consistency of the numerical methods and then we present the stability result.

Theorem 4.1 The truncation error of the difference schemes (9), (10), (11) and (12) are O(hα+k2γ), O(hα+k3γ),
O(hα + k4γ) and O(hα + k5γ), respectively.

Proof. It has been shown that the order of shifted Grünwald estimate to approximate the Riemann-Liouville space-
fractional derivative is equal to order of fractional derivative [26]. In addition, for Padé approximation scheme to
approximate Eγ(θ) we have

Eγ(θ) =
1 + p1θ + p2θ

2 + ...+ pT θ
T

1 + q1θ + q2θ2 + ...+ qSθS
+O(θS+T+1).

By substitution θ = kγA, T = 0 and S = 1, 2, 3, 4, we see that the order of Padé approximation schemes [1, 0], [2, 0],
[3, 0] and [4, 0] to approximate Eγ(kγA) are O(k2γ), O(k3γ), O(k4γ) and O(k5γ), respectively.
Therefore, the above explanation demonstrate that the truncation error of the difference schemes (9), (10), (11)
and (12) are O(hα + k2γ), O(hα + k3γ), O(hα + k4γ) and O(hα + k5γ), respectively.

Lemma 4.2 (Gerschgorin)[10, 30] Let the matrix A ≡ (ai,j) has eigenvalues λ and define the absolute row and
column sums by

ri ≡
n∑

j=1,j 6=i

|ai,j |, cj ≡
n∑

i=1,i6=j

|ai,j |,

then,
(a) Each eigenvalues lies in the union of the row circles Ri, i = 1, 2, ..., n where

Ri ≡ {z : |z − ai,i| ≤ ri}.

(b) Each eigenvalues lies in the union of the column circles Cj, j = 1, 2, ..., n where

Cj ≡ {z : |z − aj,j | ≤ cj}.

Theorem 4.3 Numerical algorithms (9), (10), (11) and (12) for the problem (1)-(3) are unconditionally stable.



472 International Journal of Applied Mathematical Research

Proof. Since ω
(α)
1 , 0 < α ≤ 1 and for i 6= 1, we have ω

(α)
i ≥ 0 (the strictly inequality holds for non-integer values of

α). We also have
∑M
k=0,k 6=1 ω

(α)
k ≤ −ω(α)

1 , which follows from the well-known equality
∑∞
k=0 ω

(α)
k = 0. According

to the Gerschgorin theorem the eigenvalues of matrix A lie in the union of the M row circles centered at Ai,i, with

radius: ri =
∑M
k=0,k 6=i | Ai,k |. Now from definition of A we have:

Ai,i = ω
(α)
1 = −α;

and

ri =

M∑
k=0,k 6=i

| Ai,k |=
i+1∑

k=0,k 6=i

| Ai,k |=
i+1∑

k=0,k 6=i

| ω(α)
i−k+1 |=

i+1∑
k=0,k 6=i

ω
(α)
i−k+1 ≤ −ω

(α)
1 = α;

and also in the union of the M column circles centered at Aj,j , with radius: cj =
∑M
k=0,k 6=j | Ak,j |.

By above mentioned similarly process we have:

Aj,j = ω
(α)
1 = −α;

and

cj =

M∑
k=0,k 6=j

| Ak,j |=
j+1∑

k=0,k 6=j

| Ak,j |=
j+1∑

k=0,k 6=j

| ω(α)
k−j+1 |=

i+1∑
k=0,k 6=i

ω
(α)
k−j+1 ≤ −ω

(α)
1 = α.

Hence, we proved that these row and column Gerschgorin disks are within the left half of the complex plane. In
addition, since following fractional transformations map the left half of the complex plane onto inner unit disks that
associated to (9), (10), (11) and (12), respectively

πj(z) =
1

1 +
∑j
i=1 qik

iγzi
, j = 1, 2, 3, 4.

where qi for i = 1, 2, 3, 4 are coefficient that refer to equations (9), (10), (11) and (12), we have if λ be the eigenvalue
of the matrix A, then

| πj(z) |< 1, j = 1, 2, 3, 4.

So, Numerical algorithms (9), (10), (11) and (12) are unconditionally stable.

5. Numerical Results

To demonstrate the efficiency of the proposed methods in the present paper, two test examples are carried out. We
implemented proposed schemes for numerical approximation of the space and time fractional diffusion equations
with MATLAB 7.10 software. We also use our solution method to illustrate the changes in solution behavior that
arise when the exponent is varied from integer order to fractional order.

Example 5.1 Consider the following space and time fractional diffusion equation:

∂γu(x, t)

∂tγ
=
∂αu(x, t)

∂xα
, 0 < γ ≤ 1, 1 < α ≤ 2, (x, t) ∈ [0, 1]× [0, T ], (13)

with initial value and zero Dirichlet boundary conditions:

u(x, 0) = x(1− x), 0 ≤ x ≤ 1, (14)

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T. (15)

Analytic solution of Eqs. (13)-(15) for α = 2 and γ = 1 is given by

u(x, t) =

∞∑
n=1

4

(nπ)3
[(−1)n+1 + 1]sin(nπx)e−(nπ)2t,
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Figure 1: Comparison of the numerical solutions using the proposed methods (9)-(12) with exact solution for the problem
(13)-(15) for α = 2, γ = 1, h = 0.05 and k = 0.05, at T = 2.

Table 1: Absolute error for Mittag - Leffler Padé Approximation and finite difference method in example 1

h = ∆x k = ∆t [1, 0] Padé Appr. [2, 0] Padé Appr. [3, 0] Padé Appr. [4, 0] Padé Appr.
0.1 0.05 6.7679e-008 1.5943e-009 3.9272e-010 2.8240e-010
0.1 0.01 2.9191e-009 3.2452e-010 2.7231e-010 2.7105e-010
0.1 0.001 4.5225e-010 2.7159e-010 2.7103e-010 2.7102e-010
0.05 0.05 8.8069e-008 1.7839e-009 2.4634e-010 1.0671e-010
0.05 0.01 3.4687e-009 1.5859e-010 9.1956e-011 9.0139e-011
0.05 0.001 3.2031e-010 9.1053e-011 9.0336e-011 9.0334e-011

Figs 1, 2 and 3 show graphs of the exact solution and numerical solutions using four schemes for α = 2 and γ = 1.
It is clear that with the same parameter values, numerical solutions approach to the exact solution as we use higher
and higher order schemes.

Error of the numerical solution Un is defined by

E2 = (

M∑
i=1

[ui,n − Ui,n]2)
1
2 ,

where un is exact solution.

From Table 1, It can be seen that the numerical solutions are enough close to the exact solution for higher order
schemes.

The time evolution graphs of the numerical solution of Eqs. (13)-(15) that obtained via [4, 0] Padé approximation
method are shown in Fig 4 for different values of α and γ. From Fig. 4, for fix γ = 1 and γ = 0.5, Convergence to
zero of the fractional diffusion of order α = 1.8 is slower than the standard diffusion (α = 2).
For fix α = 2 and α = 1.8, Convergence to zero of the fractional dispersion of order γ = 0.5 is faster than standard
dispersion (γ = 1).

To demonstrate the impact of proposed method to the solution behavior, another example of the space and time
fractional diffusion equation with a different initial condition is now considered.
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(13)-(15) for α = 2, γ = 1, h = 0.05 and k = 0.01, at T = 2.
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Figure 3: Comparison of the numerical solutions using the proposed methods (9)-(12) with exact solution for the problem
(13)-(15) for α = 2, γ = 1, h = 0.05 and k = 0.001, at T = 2.
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Figure 4: Numerical estimate of u(x, t) via [4, 0] Padé approximation method for the problem (13)-(15) when t = 0.25.

Example 5.2 Consider the following space and time fractional diffusion equation:

∂γu(x, t)

∂tγ
=
∂αu(x, t)

∂xα
, 0 < γ ≤ 1, 1 < α ≤ 2, (x, t) ∈ [0, 1]× [0, T ], (16)

with initial value and zero Dirichlet boundary conditions:

u(x, 0) = sin(πx), 0 ≤ x ≤ 1, (17)

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T. (18)

Analytic solution of Eqs. (16)-(18) for α = 2 and γ = 1 is given by

u(x, t) = sin(πx)e−π
2t.

Figs 5, 6 and 7 show graphs of the exact solution and numerical solutions using four schemes for α = 2 and γ = 1.
It is clear that with the same parameter values, numerical solutions approach to the exact solution as we use higher
and higher order schemes.

From Table 2, it can be seen that [1, 0], [2, 0], [3, 0] and [4, 0] Padé approximation methods are stable and
convergence for solving the problem (16)-(18) with α = 2 and γ = 1.

The time evolution graphs of the numerical solution of Eqs. (16)-(18) that obtained via [3, 0] Padé approximation
method are shown in Fig. 8 for different values of α and γ. From Fig. 8, for fix γ = 1 and γ = 0.5, Convergence to
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Figure 5: Comparison of the numerical solutions using the proposed methods (9)-(12) with exact solution for the problem
(16)-(18) for α = 2, γ = 1, h = 0.05 and k = 0.05, at T = 2.
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Figure 6: Comparison of the numerical solutions using the proposed methods (9)-(12) with exact solution for the problem
(16)-(18) for α = 2, γ = 1, h = 0.05 and k = 0.01, at T = 2.



International Journal of Applied Mathematical Research 477

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−9

u

x

 T=2; h=0.05 ;k=0.001; Max Error=1.2415e−009; α=2; γ=1

exact solution

[1,0] Pade Approximation solution

[2,0] Pade Approximation solution

[3,0] Pade Approximation solution

[4,0] Pade Approximation solution

Figure 7: Comparison of the numerical solutions using the proposed methods (9)-(12) with exact solution for the problem
(16)-(18) for α = 2, γ = 1, h = 0.05 and k = 0.001, at T = 2.

Table 2: Absolute error for Mittag - Leffler Padé Approximation and finite difference method in example 2

h = ∆x k = ∆t [1, 0] Padé Appr. [2, 0] Padé Appr. [3, 0] Padé Appr. [4, 0] Padé Appr.
0.1 0.05 2.6232e-007 6.1797e-009 1.5224e-009 1.0949e-009
0.1 0.01 1.1314e-008 1.2581e-009 1.0557e-009 1.0508e-009
0.1 0.001 1.7531e-009 1.0529e-009 1.0507e-009 1.0507e-009
0.05 0.05 3.4134e-007 6.9143e-009 9.5244e-010 4.0549e-010
0.05 0.01 1.3444e-008 6.1468e-010 3.5636e-010 3.4994e-010
0.05 0.001 1.2415e-009 3.5292e-010 3.5014e-010 3.5014e-010
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zero of the fractional diffusion of order α = 1.8 is slower than convergence to zero of the standard diffusion (α = 2).
For fix α = 2 and α = 1.8, Convergence to zero of the fractional dispersion of order γ = 0.5 is faster than the
standard dispersion (γ = 1).
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Figure 8: The numerical estimate of u(x, t) via [3, 0] Padé approximation method for the problem (16)-(18) when t = 0.25.

6. Conclusions

In this paper, several numerical schemes with 2γ, 3γ, 4γ and 5γ order temporal accuracy, 0 < γ ≤ 1, and α
order spatial accuracy, 1 < α ≤ 2, to solve a space and time fractional diffusion equation with initial value and
zero Dirichlet boundary conditions has been planned. The truncation error and stability of proposed methods are
described by the matrix analysis method. The numerical experiment extremely consistent with our theoretical
results.
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