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Abstract 

This paper investigates the MHD effects on convection heat transfer 
of an electrically conducting, non-Newtonian power-law stretched 
sheet with surface heat flux by considering the viscous dissipation. 
The effects of suction/injection at the surface are considered. The 
resulting governing equations are transformed into non linear ordinary 
differential equations using appropriate transformation. The set of non 
linear ordinary differential equations are first linearized by using 
Quasi-linearization technique and then solved numerically by using 
implicit finite difference scheme. Then the system of algebraic 
equations is solved by using Gauss-Seidal iterative method. The 
solution is found to be dependent on six governing parameters 
including the magnetic field parameter M, the power-law fluid index n, 
the sheet velocity exponent p, the suction/blowing parameter ƒw, 
Eckert number Ec and the generalized Prandtl number Pr. Numerical 
results are tabulated for skin friction co-efficient and the local Nusselt 
number. Velocity and Temperature profiles drawn for different 
controlling parameters reveal the tendency of the solution. 

Keywords: Magnetic field effects, Non-Newtonian power-law fluid, Power-
law stretched sheet, suction/injection, Surface heat flux and Viscous dissipation. 
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1 Introduction 

Most of the fluids such as molten plastics, artificial fibers, drilling of petroleum, 

blood and polymer solutions are considered as non-Newtonian fluids. In modern 

technology and in industrial applications, non-Newtonian fluids play an important 

role. Increasing emergence of non-Newtonian fluids such as molten plastic pulp, 

emulsions, raw materials in a great variety of industries like petroleum and 

chemical processes has stimulated a considerable amount of interest in the study 

of the behavior of such fluids when in motion. Exact solutions of the equations of 

motion of non- Newtonian fluids are difficult to obtain. The difficulty arises not 

only due to the non-linearity but also due to increase in the order of differential 

equations. Many researchers have attempted to find the exact solution of non-

Newtonian fluids. 

The study of flow and heat transfer problems due to stretching boundary has many 

practical applications in technological processes, particularly in polymer 

processing systems involving drawing of fibers and films or thin sheets, etc. 

Sometimes the polymer sheet is stretched while it is extruded from a die. Usually 

the sheet is pulled through the viscous liquid with desired characteristics. The 

moving sheet may introduce a motion in the neighbouring fluid or alternatively, 

the fluid may have an independent forced convection motion which is parallel to 

that of the sheet. Sakiadis [1] was the first to investigate the flow due to sheet 

issuing with constant speed from a slit into a fluid at rest. Schowalter [2] has 

introduced the concept of the boundary layer in the theory of non-Newtonian 

power-law fluids. Acrivos, Shah and Petersen [3] have investigated the steady 

laminar flow on non-Newtonian fluids over a plate. 

The interest in MHD fluid flows stems from the fact that liquid metals which 

occur in nature and industry are electrically conducting. Naturally, studies of these 

systems are mathematically interesting and physically useful but the dynamical 

study of such flow problems is usually complicated. However, these problems are 

usually investigated under various simplifying assumptions. For the non-

Newtonian power-law fluids, the hydrodynamic problem of the MHD boundary 

layer flow over a continuously moving surface has been dealt with by several 

authors (e.g. Andersson et al. [4], Cortell [5] and Mahmoud and Mahmoud [6]). 

B. Singh and C.Thakur [7] studied the unsteady two dimensional, second grade, 

electrically conducting MHD non-Newtonian fluid flows. 

Chiam [8] studied the boundary layer flow of a Newtonian fluid over a stretching 

plate in the presence of a transverse magnetic field. Pop and Na [9] performed an 

analysis for the MHD flow past a stretching permeable surface. Kishan and B.S. 

Reddy [10] studied the MHD effects on boundary layer flow of power-law fluids 

past a semi infinite flat plate with thermal dispersion. The well known Ostwald – 

de- Waele power-law model has been employed on the problem of a stretching 

surface by Andersson et al. [4], Kumari and Nath [11] & [12] and Liao [13].  
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Recently Chien-Hsin Chen [14] has studied the magneto-hydrodynamic flow and 

heat transfer of an electrically conducting, non-Newtonian power-law fluid past a 

stretching sheet in the presence of a transverse magnetic field by considering 

suction/injection. However in the existing convective heat transfer literature on 

the non-Newtonian fluids, the effect of the viscous dissipation has been generally 

disregarded. There are only few studies to be cited. Gebhart [15] has shown that 

the viscous dissipation effect plays an important role in natural convection in 

various devices processes on large scales(or large planets). Also, he pointed out 

that when the temperature is small or when the gravitational field is of high 

intensity, viscous dissipation heat should be taken into account. Therefore, the 

effect of viscous dissipation is more predominant in vigorous natural convection 

processes. Lawal and Mujumdar [16] studied viscous dissipation effect of heat 

transfer power-law fluids in arbitrary cross-sectional ducts.  

The present work deals with the flow and heat transfer of electrically conducting, 

non-Newtonian power-law fluids past a continuously stretching sheet under the 

action of a transverse magnetic field with suction/injection by taking into account 

the effect of viscous dissipation. 

 

2 Mathematical Formulation 

Let us consider a steady two-dimensional flow of an incompressible, electrically 

conducting fluid obeying the power-law model past a permeable stretching sheet. 

The origin is located at the slit through which the sheet is drawn through the fluid 

medium, the x-axis is chosen along the sheet and y-axis is taken normal to it. This 

continuous sheet is assumed to move with a velocity according to a power-law 

form, i.e. = C.x
p
, and be subject to a surface heat flux. Also, a magnetic field of 

strength B is applied in the positive y-direction, which produces magnetic effect 

in the x-direction. The magnetic Reynolds number is assumed to be small so that 

the induced magnetic field is negligible in comparison to the applied electric field 

and the Hall Effect is neglected. 

Under the foregoing assumptions and invoking the usual boundary layer 

approximations, the problem is governed by the following equations: 

0









y

v

x

u
      (1) 







uB

y

u

y

u

y

K

y

U
v

x

u
u

n 21







































     (2) 

1

2

2 



















n

p y

u

C

K

y

T

y

T
v

x

T
u


       (3) 



 

 

 

684 N.Kishan, B.Shashidar Reddy 

 

Where u and ν are the velocity components, T is the temperature, B is the 

magnetic field strength, K is the consistency coefficient, n is the flow behavior 

index, ρ is the density, σ is the electrical conductivity and α is the thermal 

diffusivity. The appropriate boundary conditions are given by 

uw(x) = C.xp,  ν = νw,  
k

q

y

T w



 at y = 0, x > 0  (4) 

u → 0,     T → T∞ as y → ∞  (5) 

where νw is the surface mass flux and qw is the surface heat flux. It should be 

noted that positive p indicates that the surface is accelerated while negative p 

implies that the surface is decelerated from the slit. Also note that positive νw  is 

for fluid injection and negative for fluid suction at the sheet surface. 

 

3 Method of Solution  

We shall further transform equations (2) & (3) into a set of partial differential 

equations amenable to a numerical solution. For this purpose we introduce the 

variables  
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Where the dimensionless stream function f satisfies the continuity equation with  
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With the boundary conditions  
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Where M is the magnetic field parameter, fw is the suction/injection parameter, Pr 

is the generalized Prandtl number for the power law fluid, Ec is the Eckert number 

and primes indicate the differentiation with respective to η. The parameters M, fw, Pr 

and Ec are defined as 
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is the local Reynolds number. Note here that the magnetic 

field strength B should be proportional to x to  the power (p-1)/2 to eliminate the 

dependence of M on x, i.e. B(x)=B0x
(p-1)/2

 where B0 is a constant. Quantities of 

main interest include the velocity components u and ν, the skin friction coefficient, 

viscous dissipation and the local Nusselt number. In terms of the new variables, 

the velocity components can be expressed as 

 

fuu w
           



















  f

n

np
f

n

np
uv n

xw 
1

1)2(

1

1)12(
Re )1(1      

 

The wall shear stress is given by 
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To solve the system of transformed governing equations (9) and (10) with the 

boundary conditions (11), first equation (9) is linearized using the Quasi 

linearization technique
17

. Then equation (9) is changed to  
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Where F is assumed to be a known function and the above equation can be 
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Using implicit finite difference formulae, the equations (13) and (10) are 

transformed to   
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here ‘h’ represents the mesh size in   direction. The system of equations (14) & 

(15) are solved under the boundary conditions (11) by Gauss-Seidel iteration 

method and computations were carried out by using C programming. The 

numerical solutions of    are considered as (n+1)
th

 order iterative solutions and F 

are the n
th

 order iterative solutions. After each cycle of iteration the convergence 

check is performed, and the process is terminated when 410 fF .   
  

     
 

4 Skin Friction 

The skin friction coefficient is defined as  
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5 Heat Transfer 

The local heat transfer coefficient is 
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The local Nusselt number is given by 
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6 Results and Discussions 

The effects of various parameters on the skin friction coefficient )0(f   and the 

Nusselt number )0(1  are displayed in the tables. The values for )0(f   are 
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tabulated for various values of n and M in Table 1. It can be seen from the table 

that the value of )0(f   increases as magnetic field parameter M increases and 

decreases as power law fluid index n increases. Table 2  shows the results of heat 

transfer obtained for a Newtonian fluid in the absence of magnetic field i.e. n = 1 

and M = 0. It is obvious from the table that the Nusselt number )0(1   increases 

with the increase of Prandtl number Pr and velocity exponent p. Also the effect of 

viscous dissipation is to reduce the value of Nusselt number )0(1  . Table 3 lists 

the calculations for the flow and heat transfer characteristics, including the sheet 

surface temperature )0( , the skin-friction co-efficient )1(1Re n

xfC  and the 

Nusselt number )1(1Re  n

xxNu  for various values of n, M and ƒw with Pr = 5 and p 

= 0.5. It is apparent from this table that the sheet surface temperature increases 

with increasing the magnetic field parameter M, but it decreases with increasing 

the suction/injection parameter ƒw . With all other parameters fixed, the magnitude 

of skin-friction coefficient increases with increasing the magnetic field parameter 

due to the fact that the magnetic field retards the fluid motion and thus increases 

this coefficient. To impose suction is to increase the skin-friction coefficient, but 

fluid injection decreases it. Also, the local Nusselt number is decreased as a result 

of the applied magnetic field. The effect of suction ( ƒw >0 ) is found to increase 

the Nusselt number, whereas injection has the opposite effect. More detailed 

discussions about the influence of various governing parameters on the local 

Nusselt number are presented latter by making use of figs. 14-18. 

Velocity profiles presented for various values of M, n, p and ƒw are shown in figs. 

1-6. Figs. 1 and 2 represent the velocity profiles ƒ for different parameters M and 

n. It is observed from the figures that the velocity decreases as magnetic field 

increases for both the cases of pseudo plastic and dilatant fluids. And it also 

decreases as the power-law fluid index n decreases. Velocity profiles f   are 

shown in figs.3–6 for different parameters n, M, ƒw and p. It is observed from fig. 

3 that the power-law fluid index n increases as f   increases near the wall and the 

reverse phenomenon is observed away from the wall. Figs.4 and 5 show that the 

effect of magnetic field M and suction parameter ƒw decelerates the fluid motion 

for both the cases of pseudo plastic and dilatant fluids. It can be noticed from fig. 

6 that the velocity distribution f   decreases as velocity exponent p increases for 

the both the cases of pseudo plastic and dilatant fluids. 

Temperature distributions presented for various values of M, n, p, ƒw, Pr and Ec 

are shown in figures 7- 13. It is clear from the fig. 7 that the effect of magnetic 

field increases the temperature distribution in the boundary layer. And this 

behavior is more noticeable for the pseudo plastic fluid (n = 0.5) when compared 

to dilatant fluid (n = 1.5 ). Figs. 8(a) and 8(b) represent the temperature profiles 

for various values of the power-law index n, respectively for an accelerated 

stretching surface (p = 1) and for a decelerated stretching surface (p = -0.3). It can 

be observed from the figures that for the accelerated stretching case fluid 

temperature decreases as the power-law index n increases, whereas an opposite 
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behavior exist for an decelerated stretching surface. Here, it can be seen that the 

influence of power-law index n on the wall temperature is more significant for an 

accelerated stretching surface.  

The influence of sheet velocity exponent p on the temperature distributions for n = 

0.5 (pseudo plastic fluid) and n = 1.5 (dilatant fluid) are shown in figs. 9(a) and 

9(b) respectively. It is clear from the figures that for a pseudo plastic fluid, a 

considerable increase in the temperature distribution and the surface temperature 

are caused by increasing the value of p, but reverse to that increase in p reduces 

the temperature for a dilatant fluid. 

The effects of the suction/injection parameter ƒw on the temperature profiles are 

illustrated in fig.10 for a pseudo plastic fluid with n = 0.5.  It is clear from the 

figure that the increase in suction/injection parameter decreases the temperature 

distribution. Moreover, surface temperature may be reduced considerably by 

increasing the suction/injection parameter. Fig. 11 reveals the effect of 

generalized Prandtl number Pr on the temperature distribution for shear thinning 

fluid (n = 0.5). It is obvious from the figure that an increase in Prandtl number 

will produce a decrease in the thermal boundary layer thickness, associated with 

the reduction in the temperature profiles. The effects of suction/injection 

parameter and Prandtl number on temperature distribution for dilatant fluids are 

similar to those for the pseudo plastic fluids.  

The effect of viscous dissipation on the temperature distribution is shown for 

different values of n and p in figs. 12 and 13. It shows that an increase in Eckert 

number will lead to increase in temperature profiles for both dilatant fluids and 

pseudo plastic fluids. This effect is same for accelerated stretching surface and as 

well as decelerated stretching surface.  

The numerical computations carried out for the discussions about the influence of 

all governing parameters on the local Nusselt number are shown in figs.14–18. 

The variation of Nusselt number in terms of )0(1   is presented as a function of 

magnetic field parameter M in fig. 14 for different values of n with Pr = 10, p = 

0.5, ƒw = 0 and Ec = 0. It is observed that the heat transfer parameter decreases as 

M increases monotonically, whereas the Nusselt number parameter increases as n 

increases. It is observed from fig.15 that the value of  )0(1   increases with the 

increase in p for higher values of fluid index n (dilatant fluid) but decreases with 

increase in p for a lower value of fluid index n (pseudo plastic fluid). This shows 

that the wall temperature )0(  will increase as p increases for a pseudo plastic 

fluid (n < 1) but the reverse trend is observed for a dilatants fluid (n >1). From 

fig.16 it is noticed that the heat transfer parameter )0(1  decreases with the 

decrease of n and increases with the increase in ƒw. Fig. 17 shows that the effect of 

generalized Prandtl number Pr on heat transfer for various values of n and p. It 

can be seen that the heat transfer rate increases as n increases for an accelerated 

stretching surface (p = 1), whereas the opposite trend exists for a  decelerated 

stretching surface (p=-0.5 ). 
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The heat transfer parameter )0(1   is plotted as a function of Ec in fig.18 for 

varying values of the parameters n and p. From the figure it is observed that the 

effect of viscous dissipation is to decrease the heat transfer parameter. 
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( a ) 

 

 

 
( b ) 

Fig.1. Velocity profiles ƒfor different values of M with p = 0.5 and  ƒw = 0. 

(a)n = 0.5;  (b) n = 1.5 f   
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Fig.2. Velocity profiles ƒ for different values of n with ƒw = 0, p = -0.3 and  M = 2 

 

 

 
 

Fig.3. Velocity profiles f   for different values of n with ƒw = 0, p = 1 and  M = 2. 
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( a ) 

 

 

 
( b ) 

Fig.4. Velocity profiles f   for different values of M with p = 0.5 and  ƒw = 0. 

(a) n = 0.5; (b) n = 1.5 
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( a ) 

 

 

 
( b ) 

Fig.5. Velocity profiles f   for different values of ƒw  with p = 0 and  M = 2. 

(a) n = 0.5; (b) n = 1.5 
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( a ) 

 

 

 
( b ) 

Fig.6. Velocity profiles f   for different values of p  with ƒw = 0 and  M = 2. 

(a) n = 0.5; (b) n = 1.5 
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( b ) 

Fig.7. Temperature profiles for different values of M with p = 0, M = 2, ƒw = 0 

and Ec=0.          (a) n = 0.5; (b) n = 1.5 
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( b ) 

Fig.8. Temperature profiles for different values of n with M = 2, Pr = 10, ƒw = 0 

and Ec=0. (a) p = 1.0; (b) p = -0.3 
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( b ) 

Fig.9. Temperature profiles for different values of p with M = 2, Pr = 10, ƒw=0 

and Ec=0. (a) n = 0.5; (b) n = 1.5 
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Fig.10. Temperature profiles for different values of ƒw with n = 0.5, M = 2,  

Pr = 10, p = 0 and Ec = 0. 

 

 

 
Fig.11. Temperature profiles for different values of Pr with n = 0.5, M = 2, p = 0.5, 

ƒw =0 and Ec = 0. 
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( a ) 

 

 

 
( b ) 

Fig.12. Temperature profiles for different values of Ec with M = 2, p = 0.5, ƒw = 0 

and Pr=10. ( a ) n = 0.5 : ( b ) n = 1.5. 
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( b ) 

Fig.13. Temperature profiles for different values of Ec with M = 2, p = 1, ƒw = 0 

and Pr=10. ( a ) n = 0.5 : ( b ) n = 1.5. 



 

 

 

 703 

 

 

 

 
 

Fig.14. Variation of 1/Φ(0) as a function of M at selected values of n with p = 0.5, 

ƒw = 0, Pr= 10 and Ec = 0. 

 

 

 
Fig.15. Variation of 1/Φ(0) as a function of p at selected values of n with M = 1, 

ƒw = 0, Pr=10 and Ec = 0. 
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Fig.16. Variation of 1/Φ(0) as a function of ƒw for various values of n with M = 1, 

p = 1, Pr=1 and Ec = 0. 

 

 

 
Fig.17. Variation of 1/Φ(0) as a function of Pr for various values of n and p with 

M = 1, ƒw = 0 and Ec = 0. 
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Fig.18. Variation of 1/Φ(0) as a function of Ec for various values of n with M = 1, 

ƒw = 0, Pr = 10 and p = 0.5 

 

 

 

 

 


