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Abstract

In 2010, Victoria Martin Marquez studied a nonexpansive mapping in Hadamard manifolds using Viscosity
approximation method. Our goal in this paper is to study the strong convergence of the Viscosity approximation method
in Hadamard manifolds. Our results improve and extend the recent research in the framework of Hadamard manifolds.
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1. Introduction

Recent developments in fixed point theory reflect that the iterative constructions of fixed points is vigorously proposed
and analyzed for various classes of maps in different spaces. Viscosity approximation methods are very important
because they are applied to convex optimization, linear programming, monotone inclusions and elliptic differential
equations.

In 2000, the viscosity approximation method for selecting a particular fixed point of a given non-expansive mapping
was introduced by Moudafi [9]. He established strong convergence of both implicit and explicit schemes in a Hilbert
space. Further, in 2004, Xu[14] extended Moudafi’s results[9] to the framework of uniformly smooth Banach spaces
and proved the strong convergence of continuous scheme and iterative scheme. In Hilbert space, many authors studied
the fixed point problems for the non-expansive mappings by the viscosity approximation methods and obtained a series
of good results [1], [2], [7]. [9]. [22], [14].

In 2008, Qin et al. [17] introduced a modified Ishikawa iterative process for a pair of nonexpansive mappings and
obtain a strong convergence theorem in the framework of uniformly smooth Banach spaces. They introduced the
composite iteration process as follows:

Xn+1 = an f (Xn)+(l_an)yn
yn :ﬂnxn +(1_ﬂn)len (11)
2, =7% + (1_7/n)T2 X

Where the sequence {«,}in (0, 1) and {3,}.{»,} are sequences in [0, 1]. The sequence {x,} defined by (1.1) converges
to a common fixed point of T; and T,, which solves the variational inequality

(1 =F)Q().3(Q(F)-p))<0,

where fis a contractionand p € F (T1) N F (Ty).
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If {y,}=1in (1.1), this can be viewed as a modified Mann iteration process [6]:

Xpa=a,f (X,)+(1-a,)y,

Yo =BXo+(1-5,)TX, (1.2)
{r,}=1and {B,} =0in (1.1), then it reduces to the algorithm considered by Xu [14].

In the recent years, some algorithms for solving variational inequalities and minimization problems have been extended
from the Hilbert space framework to the more general setting of Riemannian manifolds [4], [5] and [10]. Motivated and
inspired by the ongoing research in this direction, we establish the convergence of the viscosity method (1.1) for
nonexpansive mappings in the setting of Hadamard manifolds, i.e., complete simply connected Riemannian manifolds
of nonpositive sectional curvature.

2. Preliminary notes

First of all, we give some definitions and notations, which can be easily found in [3], [11].
Let peM, where M is connected m-dimensional Riemannian manifold. A Riemannian manifold is a Riemannian metric
(., ), with the corresponding norm denoted by .|. We denote the tangent space of M at p by T,M. We define the

length of a piecewise smooth curve, c: [a, b] —M joining p to g (i.e. ¢ (@) = p and ¢ (b) = q), by using the metric as
b
Le) =]

curves joining p to g, which induces the original topology on M. Let ¢ be a smooth curve and V be the Levi- Civita
connection associated to (M, (,) ). A smooth vector field X along c is said to be parallel if v.. X = 0. If ¢’ is parallel,

then ¢ is a geodesic and here is a constant. A geodesic joining p to g in M is said to be minimal geodesic if its

length equals d(p, q).A geodesic triangle A(ps, P2, pP3) Of @ Riemannian manifold is a set consisting of three points py, pa,
pz and three minimal geodesic y; joining p; to pi. , with i = 1, 2, 3(mod 3).

A Riemannian manifold is complete if for any p € M, all geodesics emanating from p are defined for all <0<t <o . By
the Hopf - Rinow theorem we know that if M is complete then any pair of points in M can be joined by a minimizing
geodesic. Thus (M, d) is a complete metric space, and bounded closed subsets are compact.

Now, the exponential map exp,: T,M— M at p €M is such that exp,v =y, (1 p) for each v eT M , where »(.)=y,(.p)

is the geodesic starting at p with velocity v . Then exp,tv =y, (t,p) , for each real number t.

Definition 2.1 [11] A complete simply connected Riemannian manifold of non-positive sectional curvature is called a
Hadamard Manifold.

Now, we present some basic results. We assume that M is a m-dimensional Hadamard manifold.

Proposition 2.1 [11] Let p € M. Then exp,: T,M— M is a diffeomorphism, and for any two points p, ¢ € M there exists
a unique normalized geodesic joining p to g, which is in fact a minimal geodesic. This result shows that M has the
topology and differential structure similar to R, Thus, Hadamard manifolds and Euclidean spaces have some similar
geometrical properties.

Proposition 2.2 [11](comparison theorem for triangles). Let A (p1, P2, Ps3) be a geodesic triangle. For each i = 1, 2,
3(mod3), by , : [0, li] — M the geodesic joining p; t0 pisg, and set 1, =L (3 ), o =Z£( (0)-x/_(1;_)). Then

c'(t)| dt . Then the Riemannian distance d (p, q) is defined to be the minimal length over the set of all such

Cv

ata,+a; <,

2 2
12 +12, =211

liacosay <12, (2.1)

i+l —
In terms of the distance and the exponential map, the inequality (2.1) can be rewritten as

d2(p; Py) +0 (P i) —2(X0," X, by, ) <d (P py) (2.2)

Since (exp,’ p;.exp,’ pi.,)=d (p;,Pr)d (P00 Pr ) COS s -
Proposition 2.3 [11] A subset K © M is to be convex if for any two points p and g in K, the geodesic joining p to g is
contained in K, i.e., if y :[a, b] — M is a geodesic such that p=y(a) and g=y(b), then y ((1 -t) a +th) € K for all

t € [0, 1]. From now K will denote a nonempty, closed and convex set in M.
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A real valued function f defined on M is said to be convex if for any geodesic y of M, the composition function
foy:R—>R isconvex, that is,
(f o)t a+(1- t)b)<t(f op)(a)+(1-t)( o»)b) foranyabeRand 0<t<1.

Proposition 2.4 [11] Let d: M x M— R be a distance function. Then d is a convex function with respect to the product
Riemannian metric, i.e., given any pair of geodesicsy,: [0, 1] » M and y, : [0, 1] — M the following inequality holds
forall te[0,1]:

d(7(t), 7. (1) < @A-1)d (71(0), 7,(0)) +td (. (D), 7, (1))

In particular, for each p € M, the functiond (-, p): M — R is a convex function.

Let Pk denote the projection onto K defined by

Pc(p) = {p,eK:d(p,p,)<d(p,q) forallgeK} forall peM .

Proposition 2.5 [13] For any point p € M, Pk (p) is a singleton and the following inequality holds for all g € K:
<exp;i (o) P XD, (p)q> <0.

Lemma 2.1: [15], [16] Let {a, } be a sequence of nonnegative real numbers satisfying the property
a,,<(l-a,)a, +ab,,n=0,

Where {o,}"  <=(01)and {b,}" such that

n—o n

i) lim__ o =0and Ya,=»
n=0

ii)  Either limsup, b, <0 or 3 |a,b,| <.

n=0
Then the sequence {a,}  converges to zero.
3. Main results
Let C be a closed convex subset of Hadamard manifold M, Ty, T,: C—C be a pair of nonexpansive self-mappings and
w : C— C a contraction. Assume that the fixed point set F (T, T,) = F (T1) N F (T,) is nonempty. We next prove the
convergence of an explicit algorithm to a fixed point of T which solves the variational inequality
<exp;11//(>i),exp;1x>£0,v x eFix (TT,) (3.1)
Let x,eM ,{a,} =(0,1) . Consider the iteration process
Xp =B, (-3, Jexpyl, v, )

Y :expxn ((l_bn)exp;ilen) (32)
z,=exp, ((1-c,)exp, T ,x, )

which is equivalent to the following geodesic form of equation

Xn+1:}/n1 (1_an)
Yn :}/nz (l_bn)
Z, :7n3(1_cn)

where y, :[0,1]] > M is the geodesic joining y(x,)toT,(x,)for n>0andk =1, 2, 3.
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Theorem 3.1: Let C < M be a closed convex set and let T,, T,: C — C be a pair of nonexpansive mappings such that
F(T.Ty) = F (Ty) N F (T,) #4. Let x, EM and y : C— C a p-contraction. Suppose that {a } € (0, 1) and {b,},{c,}

€[0,1] satisfies:

i) Ya =w,a —0
n=0
i) b, »0,c, >0

i)

)

Mg

|2y, —a,| <o, éﬂ\bm —b,| <o and é}\cm —C,| <o

n=0

Then the sequence {x,} generated by the algorithm (3.2) converges strongly tox C , the unique fixed point of the
contraction P ., ,w - Moreover, the convergence point x is a solution of the variational inequality (3.1).

Proof: First we prove that {x,} is bounded.

We only prove the boundedness of {x } , since the boundedness of {(//(Xn )} is a direct consequence.

For this, take x e F(T,)NF(T,). Then by the convexity of the distance function and nonexpansivity of T, and T,, we
have

n

d(z,.x)<d(, (1-c,).x)

<c,d (X% )+ (1=, )d (T )X, X )

<c,d (X% )+(1-c,)d (x,,X )

<d (x,,x) (3.3)
Now (3.3) follows that

d(y,x)<d(z, (1-b,).x)

<b,d (x,,x)+(1=b,)d (T,z,,x)

<b,d (x,x)+(1-b,)d(z,.x)

<b,d (x,,x)+(1=b,)d (x,,X)

<d (x,.x) (3.4)
From (3.4), we have

d (X,.0%x)<d (7, (1-3,).x)

<ad (w(x,).x)+(1-a,)d (y,x)

<a,(pd (x,.x)+d (y/(x),x))+(1fan)d (X,.%)

Smax{d (xn,x),ﬁd (y/(x),x)} (3.5)

Now by mathematical induction, we have that

d(xnﬂ,x)smax{d (xo,x),éd (W(x),x)} (3.6)
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which implies, that {x} is bounded, so {T,x,},{w(x,)}.{y,}.{z,}and {T,z,} is also bounded.
Next, we claim that, d (Xp+1, X,) — 0 as n— oo.

d (X,0%,)<d (7, (1=, )7 (1-2,))

<d (;/n1 (1—an),ynrl(1—ah))+d (j/nl—l(l_an)’}/nl—l(l_a'n—l))

<a,d (v(x,)w (Xo0))+(1=2,)d (Y0¥ o)+l —2,ald (w (X))

<a,od (XX g) + (1=, )d (Yo, Y o)+l =2, ald (w(Xos) Vo) 3.7)
Similarly, we obtain

d (Yo Yea)<d (7, (1-b,).7, 5 (1-b, 4))

<b.d (X,.X,,)+(1-b,)d(z,.2,.,)+p, =b,|d (T,Z, 1. X, ) (3.8)
Further, we can obtain

d(z,.z,)<cd (X, %, )+@—=c,)d (Tx, T,x,,)+[c, —c,|d (Tx,1.X,,)

<d (X, X))+ e, —Cod (TX 1 X 4) (3.9)
Substituting (3.9) into (3.8), we get

d (VoY) <bd (XX, )+ (1=b, )(d (X,.X ) +]C, —Coald (T X, 40X, ) +[b, —b,ifd (T, 2, 1%, )

<d (X, X,)+(1=b,)le, —c,|d (TX 4. X, ) +[b, b, 4|d (T, Z,.%, ) (3.10)
Putting the value from (3.10) into (3.7), we get

d(Xn+l’ Xn) < anpd (Xn’xn—l)+ (1_ an)(d (Xn’xn—l)+ (1_ bn)‘cn _Cnfl‘ d (szn—ll Xn—l) + ‘bn _bn—l‘d (Tl Zn—ll anl))
+ ‘an - an—l‘ d (V/(anl)1 yn—l)

<(1=(=p)a, )d (%, %, 1) + (1= a, ) (1=b,)[c, = Cooa]d (ToX, 1 %, 1) + (12, o, =By d(Tizy 1%, o) +[ay = o[ d ( (%,0) Vo)
<(1=(1-p)a, )d (X, Xy ) +]C = Coald (T,X,p X,y )+ +[0, =B, A (Tiz, X )+, =3, ]d (W (%) Vas)

<(1-(1-p)a, )d (X, X, )+ L(Je, =Coy] + oy =0y +]a, =2, 4)) (3.12)
where L >max{d (T x,_;,X,).d (T, ;.X,).d (w(X,_).Y,,)} for all n.

Now, by assumptions (i)-(iii), we have then
lima, =0, 3 (1-p)a, = and i(\cn ~Cyy| +[py =B,y +[a, —a,4|) <0
n=1 n=1

n—w

Hence by lemma 2.1, we obtain limd (x,,,,x,)=0
Also d (TT,x,, %,) <d(X,,X,.1)+d (Xy,0 Y, )+d (¥, Tz, )+d (Tz, -TTx,)

<d(X,,X,.,)+a,d (W(xn), yn)+bnd (X3 Tz, ) +¢,d(z, —T,)
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<d(X %)+ 3,0 (w(%,), Y0 ) +0,d (%, T2, )+, d (X, —To%,)
Now by assumptions (i) and (ii),
d(T,T,x,,X,) =0 (3.12)

holds.
PutT =TT, . Since T, and T, are nonexpansive, we have T is also nonexpansive.

Using the fact that if x eC is the unique fixed point of P, .. v , then by Proposition (2.5), we obtain

<exp;}y/()?)’eXp;}X n> = <exp;i(mmmz)'l’(f) l//(i)'exp;’i anr¥ (X) X > <0
Next we prove that
limsup, _,., <exp;1://(>?),exp;1xn> <0, (3.13)

where x is the unique fixed point of the contraction P ;) .cr v .

Since we have proved that {x,}and {y(x,)} are bounded, {<exp;1y/(x*),exp;1xn>} is bounded; hence its upper limit
exists. Thus we can find a subsequence {n, } of {n} such that

limsup, _,., <exp;1y/(>(),exp;1xn> = lim <exp;fy/(>?),exp;1xnk > (3.14)

Without loss of generality, we may assume that x, —x* for somex”eM , since {x,} is bounded. Using the convexity
of distance function, we have

d (xwl,T (x,1k )) <ad (n//(xnk ),T (xnk )) .
Since {d (w(xnk )T (%, ))} is bounded as {x,} and{y(x,)} are bounded. By assumption (i) it follows that

Iimd(xnkﬂ,T (xnk )):0 as a, —0

kK —o0

Now, using d (xnk T (xnk ))sd (xnkﬂ,xnk )+d (ng,T (xnk )) :
We obtain
limd (x,, .7 (x,, ))=0.

n—ow

Therefore

d (x*,T (x*))sd (x*,xnk )+d (xnk T (xnk ))+d (T (xnk ),T (x"))—>0

Which shows that x * e Fix (T ) . Then, since (exp;'y(X),exp;"x ) <0 for any x e Fix (T ), we obtain that
kliirgo<exp;1w(>?),exp;1xnk > = <exp;1y/(>?),exp;1x > <0 (3.15)

Now combining (3.14) and (3.15), we obtain (3.13).

Finally, for the strong convergence, we show that limd (x,,x)=0

n—oo
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For this, consider the geodesic triangle A(k,lI,m)and its comparison triangle A(k’,lI'm’)=R?. Fix n>0 and set

k=w(x,), I =y, ,m=x.S0we can write x,., =exp, ((1-a,)exp,'1) . The comparison point of x,_, in R?is

n+1
Xia=ak +(1-a)l".
Then

d(w(x,).x)=d(k,m)=[k"—m’

Andd (y,.<)=d (I,m)=

I'—=m’|.

Let ¢ and ¢ denote the angles at m and m’, respectively. Therefore 9<¢ by Lemma 3.5(1) [8, p.547] and then
cosé@ <cos@ . Thus by Lemma 3.5(2) [8, p.547], we have

A% (X0 ) <[ -m

n+l

2

=[an (k" =m")+(1-a,)(1"-m")

=arfk'=m[+ (1=, ) 1" -m + 2, (1-a, )k ~m[i" - m’|coser

<ald’(w(x,).X)+(1-a,)"d*(y,.x)+2a,(1-a,)d (w(x,).X)d (y,.X)cosd

<8y (X, ) )+ (-, 0 ) 2, (13, (0, ). ), 6)cos6

<a* (1 (x,)F) + (1=, )+ 28, (13, (o 0 () () + (9 (). ) (kT )cos0
<ad?(y (x,) )+ (-3, 7 (x, )+ 28, (1=, ) (e () exprx, ) - 7 (x, )
=ald?(w(x,).X)+] (1-a,) +2a, (1-a,) p |d* (x,,. %) + 22, (1-a, ) ({exp;w (X ).exp'x, )

=(1-2a, +a7 +2a,(1-a,) p)d*(x,,X) +ad * (w(x,).X )+ 2, (1-a, ) ({exps (X ) exp’x, ))
=(1-2,)d?*(x,.X)+ 4,0,

Where o, :%(anzd *(w(x,).X)+2a,(1-a, )<exp;1¢y(>?),exp;1xn >)

n

And 2, =2a, -a’-2a,(1-a,)p.
Now using given hypothesis (i) and (3.15), lim, o, <0 andlim,_ A, =0.

n—oo n

d(x,,x)=0.

n—oo

Also, by hypothesis (ii), we obtain 3 A, = . Thus applying Lemma 2.1, we get lim
n=0

This completes the proof.

Corollary 3.2 Let C = M be a closed convex set and let T;: C — C be a nonexpansive mapping such that F (T,) #¢. Let
Xo € C is chosen arbitrarily and v : C— C a p-contraction. Suppose that {a,} € (0, 1) and {b,} € [0, 1] satisfies:

i) Y a,=»a, -0
n=0

ii) b, <t,forsome te[0,1);and
i)  Yla,.-a<w and 3|
n=0 n=0

n+1—bn‘<oo.
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Then the sequence {x,} generated by the algorithm
Xna= EXDW(XH) ((1_ a, )expu’}(xn) Ya )

Y= expxn ((l_bn )EXp;i Tlx n )
Converges strongly to x C , the unique fixed point of the contraction P, . Moreover, the convergence point x is a
solution of the variational inequality

(expty(X).expix ) <0, ¥ x eFix (T,) .
Proof. we can obtain the desired result by taking {c,} =1 in theorem 3.1.

Corollary 3.3 Let M be a Hadamard manifold, C be a closed convex subset of M. Let T: C — C be a nonexpansive
mapping with F (T) #¢. Let X, € M is chosen arbitrarily and  : C— C a p-contraction. Suppose that {a,} € (0, 1)

satisfies:

i) lim,_.a,=0

i) Xroa, =

i) Ya.-a|<w.
n=0

Then the sequence {x,} generated by the algorithm

Xou = expw(xn) ((1—81“ )exp;/l(xn)T (Xn ))

Converges strongly to x <C , the unique fixed point of the contraction P .» . Moreover, the convergence point x is a
solution of the variational inequality.

(expty(X).expix ) <0, ¥ x eFix (T) .
Proof . We can obtain the desired result by taking {b,} =0 and{c,} =1 in theorem 3.1.
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