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Abstract

In the present work, we establish some common fixed point results for a pair of weakly isotone increasing set-valued
mappings in a ordered complete partial metric space.
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1. Introduction

The notion of partial metric is one of the most useful and interesting generalizations of the classical concept of
metric. The partial metric spaces were introduced in 1994 by Matthews [10]. Based on this notion, Matthews [10],
Oltra and Valero [13], Ilic et al. [7, 8], Kadelburg et al. [9], Di Bari et al. [3], Hemant Kumar Nashine et al. [11]
obtained some very interesting fixed point theorems for mappings satisfying different contractive conditions.
Very recently Hong in [6] introduced the concepts of approximative values, This definition is a very useful tool
for proving the existence of a fixed point of a multivalued operator in an ordered metric space. In [5] Erduran
extend the concept of approximative values in partial metric space, and he proved some fixed point for multivalued
mappings.
In this paper, we obtain some new common fixed point theorems for a pair of multivalued mappings in ordered
partial metric spaces. Our results are ordered version generalization of the results of Hong [6] and Erduran [5].

Definition 1.1 [10] A partial metric on a nonempty set X is a mapping p : X × X → R+ such that for all
x, y, z ∈ X, the following conditions are satisfied:
(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(ii) p(x, x) ≤ p(x, y),
(iii) p(x, y) = p(y, x),
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. Each partial metric
p on X generates a T0 topology τp on X which has as a base, the family of open p-balls {Bp(x, ε), x ∈ X, ε > 0},where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},

for all x ∈ X and ε > 0.
If p is a partial metric on X, then the mapping dp : X ×X → R+ given by
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dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.

Definition 1.2 [12] Let (X, p) be a partial metric space. Then a sequence {xn} in X called
(i) convergent if there exists a point x ∈ X such that p(x, x) = lim

n→∞
p(xn, x),

(ii) Cauchy sequence if there exists (and is finite) lim
n,m→∞

p(xn, xm).

Definition 1.3 [12] A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm).

Lemma 1.4 [12] Let (X, p) be a partial metric space. Then
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, dp),
(ii) (X, p) is complete if and only if the metric space (X, dp) is complete. Furthermore, lim

n→∞
dp(xn, x) = 0 if and

only if p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Let CBp(X) be a family of all nonempty, closed and bounded subsets of the partial metric space (X, p). Note that
closed-ness is taken from (X, τp) (τp is the topology induced by p) and bounded-ness is given as follows: A, is a
bounded subset in (X, p) if there exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M), that is,
p(x0, a) < p(a, a) +M .
For A,B ∈ CBp(X) and x ∈ X, we defined

p(x,A) = inf{p(x, y) : y ∈ A},

δp(A,B) = sup{p(a,B) : a ∈ A},

δp(B,A) = sup{p(A, b) : b ∈ B},

and
Hp(A,B) = max{δp(A,B), δp(B,A)}.

It is immediate to check that p(x,A) = 0 implies that dp(x,A) = 0, where dp(x,A) = inf{dp(x, a) : a ∈ A}.

Corollary 1.5 [1] Let (X, p) be a partial metric space and A be any nonempty set in (X, p), then a ∈ A if and only
if p(a,A) = p(a, a), where A denotes the closure of A with respect to the partial metric p. Note that A is closed in
(X, p) if and only if A = A.

Proposition 1.6 [2] Let (X, p) be a partial metric space. For all A,B,C ∈ CBp(X), we have

(h1) Hp(A,A) ≤ Hp(A,B),
(h2) Hp(A,B) = Hp(B,A),
(h3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− inf

c∈C
p(c, c),

(h4) Hp(A,B) = 0 ⇒ A = B.

The mapping Hp : CB
p(X)×CBp(X) → [0,+∞), is called the partial Hausdorff metric induced by p. It is easy

to show that any Hausdorff metric is a partial Hausdorff metric. The converse is not true see Example 2.6 in [2].

Definition 1.7 Let X be a nonempty set. Then (X, p) is called an ordered partial metric space if:
(i) (X; p) is a partial metric space,
(ii) (X;≼) is a partially ordered set.

Let (X;≼) be a partially ordered set. Then x, y ∈ X are called comparable if x ≼ y or y ≼ x holds.

Definition 1.8 [6]. Let A and B be two nonempty subsets of a ordered set (X;≼). The relation ≼2 between two
nonempty subsets A and B of X is defined as follows:
A ≼2 B; if a ≼ b for every a ∈ A and every b ∈ B:
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Definition 1.9 Let (X;≼) be a partially ordered set. Two maps S;T : X → 2X are said to be weakly isotone
increasing if for any x ∈ X we have Sx ≼2 Ty for all y ∈ Sx and Tx ≼2 Sy for all y ∈ Tx.

Note that, in particular, single-valued mappings T ;S : X → X are weakly isotone increasing [4] if Sx ≼ TSx and
Tx ≼ STx hold for each x ∈ X.

Definition 1.10 An ordered partial metric space is said to have a sequential limit comparison property if for every
nondecreasing sequence (nonincreasing sequence) {xn} in X such that xn → x implies that xn ≤ x (x ≤ xn),
respectively.

Definition 1.11 Let X be a ordered partial metric space. A subset D ⊆ X is said to be approximative if the
multivalued mapping

PD(x) = {y ∈ D : p(x, y) = p(D,x)}, ∀x ∈ X

has nonempty values.

A set-valued operator T is said to have approximate values in X if Tx is an approximation for each x ∈ X.

Definition 1.12 Let N ∈ (0,∞]. Denote by Ψ the set of functions ψ : [0;N) → R satisfying:
(i) ψ(0) = 0 and ψ(t) > 0 for each t ∈ (0, N)
(ii) ψ is nondecreasing on [0, N)
(iii) ψ is continuous.
(iv) lim sups→0

s
ψ(s) <∞.

Definition 1.13 Let N ∈ (0;∞]. Denote by Φ the set of functions φ : [0;N) → [0;∞) satisfying:
(i): φ lower semi-continuous.
(ii): φ(t) = 0 if and only if t = 0.
(iii): For any sequence {rn} with limn→∞ rn = 0, there exist a ∈ (0, 1) and n0 ∈ N such that φ(rn) ≥ arn for each
n ≥ n0.

In what follows, we will denote Θ the set of all functions θ : [0,+∞)4 → [0,+∞) with the following property
1) θ is continuous,
2) θ is nondecreasing in third and forth components,
3) θ(t1, t2, t3, t4) = 0 ⇔ t1t2t3t4 = 0.

Example 1.14 The following functions belong to Θ :
(1) θ(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4}, L > 0
(2) θ(t1, t2, t3, t4) = t1t2t3t4,
(3) θ(t1, t2, t3, t4) = ln(1 + t1t2t3t4),
(4) θ(t1, t2, t3, t4) = exp(t1t2t3t4)− 1.

Let T, S : X → 2X are two mappings, we denote ,

M(x, y) =Max{p(x, y), p(x, Tx), p(y, Sy), 1
2
[p(y, Tx) + p(x, Sy)]}.

Now, we introduce the following definition.

Definition 1.15 Let X be an ordered partial metric space and let ρ = sup{p(x, y) : x, y ∈ X}. Set N = ρ if ρ = ∞
and N > ρ if ρ <∞. We say that two mappings T, S : X → 2X are generalized (ψ,φ, θ)- contraction if,

ψ(Hp(Tx, Sy)) ≤ ψ(M(x, y))− φ(ψ(M(x, y))) + θ(p(x, Tx), p(y, Sy), p(y, Tx)− p(y, y), p(x, Sy)− p(x, x)),

for all x, y ∈ X, with x and y comparable and, ψ ∈ Ψ, φ ∈ Φ and θ ∈ Θ.
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2. Main results

In this section we prove common fixed point theorems for a pair of multivalued mappings in a ordered complete
partial metric space.

Theorem 2.1 Let X be a complete ordered partial metric space with the limit comparison property. Suppose that
T, S : X → 2X are generalized (ψ,φ, θ)-contractive mappings with approximative property. Let S and T are weakly
isotone increasing and there exists an x0 ∈ X such that {x0} ≼2 Tx0. Then T, S have a common fixed point x ∈ X,
such that p(x, x) = 0 .

Proof: First of all we show that, if x be a fixed point of T such that p(x, x) = 0 it is a common fixed point of T
and S. Indeed,

ψ(p(Sx, x)) ≤ ψ(Hp(Sx, Tx))

≤ ψ(M(x, x))− φ(ψ(M(x, x)))

+ θ(p(x, Tx), p(x, Sx), p(x, Tx)− p(x, x), p(x, Sx)− p(x, x))

= ψ(M(x, x))− φ(ψ(M(x, x))) + θ(p(x, Tx), p(x, Sx), 0, (x, Sx)− p(x, x))

= ψ(M(x, x))− φ(ψ(M(x, x)))

(1)

where

M(x, x) =Max{p(x, x), p(x, Tx), p(x, Sx), p(x, Sx) + p(x, Tx)

2
}

≤Max{p(x, x), p(x, x), p(x, Sx), p(x, Sx) + p(x, x)

2
}

= d(x, Sx).

thus by (1), we have

ψ(p(Sx, x)) ≤ ψ(p(x, Sx))− φ(ψ(p(Sx, x)))

+ θ(p(x, Sx), p(x, x), p(x, Sx), p(x, x))

= ψ(p(x, Sx))− φ(ψ(p(Sx, x)))

This implies that, φ(ψ(p(Sx, x))) = 0 and hence p(Sx, x) = 0. Since Sx is approximative property , therefore there
exist y ∈ PSx(x) such that p(y, x) = 0 i.e, y = x. Thus x ∈ Sx.

Let x0 ∈ X, if x0 ∈ Tx0 our proof is complete. Otherwise, from the fact that Tx0 has approximation property it
follows there exists x1 ∈ Tx0, with x1 ̸= x0 such that

p(x0, x1) = inf
x∈Tx0

p(x, x0) = p(Tx0, x0).

Again if x1 ∈ Sx1 our proof is complete. Otherwise, since Sx1 has approximation property it follows there exist
x2 ∈ Sx1 with x2 ̸= x1 such that

p(x1, x2) = inf
x∈Sx1

p(x, x1) = p(Sx1, x1).

By induction and using approximative property, we can find in this way a sequence {xn} in X, such that x2n+1 ∈
Tx2n and

p(x2n+1, x2n) = p(Tx2n, x2n),

and x2n+2 ∈ Sx2n+1, with

p(x2n+2, x2n+1) = p(Sx2n+1, x2n+1).

On the other hand

p(Tx2n, x2n) ≤ sup
x∈Sx2n−1

p(Tx2n, x)

≤ Hp(Tx2n, Sx2n−1).
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Therefore

p(x2n+1, x2n) ≤ Hp(Tx2n, Sx2n−1). (2)

Similarly we can show that

p(x2n+2, x2n+1) ≤ Hp(Sx2n+1, Tx2n). (3)

On the other hand since x0 ≼2 Tx0, and x1 ∈ Tx0, we have x0 ≼ x1. Now since T and S are isotone increasing we
have Tx0 ≼2 Sy for all y ∈ Tx0, thus Tx0 ≼2 Sx1. In particular, x1 ≼ x2. By continuing this process we can show
that

x1 ≼ x2 ≼ ... ≼ xn ≼ xn+1 ≼ ...

Now we show that limn→∞ p(xn+1, xn) = 0.
Since ψ is nondecreasing, from (2) and the fact that T and S are generalized (ψ,φ, θ)-contraction we have,

ψ(p(x2n+1, x2n)) ≤ ψ(Hp(Tx2n, Sx2n−1))

≤ ψ(M(x2n, x2n−1))− φ(ψ(M(x2n, x2n−1)))

+ θ(p(x2n, Tx2n), p(x2n−1, Sx2n−1), p(x2n, Sx2n−1)− p(x2n, x2n)

, p(x2n+1, Tx2n)− p(x2n−1, x2n−1)

≤ ψ(M(x2n, x2n−1))− φ(ψ(M(x2n, x2n−1)))

+ θ(p(x2n+1, x2n), p(x2n−1, x2n), p(x2n, x2n)− p(x2n, x2n)

, p(x2n+1, x2n+1)− p(x2n−1, x2n−1)

≤ ψ(M(x2n, x2n−1))− φ(ψ(M(x2n, x2n−1)))

(4)

where

M(x2n, x2n−1) =Max{p(x2n, x2n−1), p(x2n, Tx2n), p(x2n−1, Sx2n−1),

p(x2n−1, Tx2n) + p(x2n, Sx2n−1)

2
}

≤Max{p(x2n, x2n−1), p(x2n, x2n+1), p(x2n−1, x2n),
p(x2n−1, x2n+1) + p(x2n, x2n)

2
}

≤Max{p(x2n, x2n−1), p(x2n, x2n+1), p(x2n−1, x2n),
p(x2n−1, x2n) + p(x2n, x2n+1)

2
}

=Max{p(x2n−1, x2n), p(x2n, x2n+1)}.

If Max{p(x2n−1, x2n), p(x2n, x2n+1)} = p(x2n, x2n+1), then by (4) we have

ψ(p(x2n+1, x2n)) < ψ(M(x2n, x2n−1))

< ψ(p(x2n+1, x2n)),

which gives a contradiction. Therefore we have p(x2n, x2n−1) ≤M(x2n, x2n−1) ≤ p(x2n, x2n−1), and soM(x2n, x2n−1) =
p(x2n, x2n−1). Now by using (4) we have

ψ(p(x2n+1, x2n)) ≤ ψ(p(x2n, x2n−1))− φ(ψ(p(x2n, x2n−1))) ≤ ψ(p(x2n, x2n−1)). (5)

Take the same proceeding we have,

ψ(p(x2n+1, x2n+2)) ≤ ψ(p(x2n, x2n+1))− φ(ψ(p(x2n, x2n+1))) ≤ ψ(p(x2n, x2n+1)). (6)

By (5),(6), we conclude that

p(xn+1, xn) ≤ p(xn, xn−1)

for all n ∈ N .
Therefore, the sequence {p(xn, xn+1)} is a nonnegative non-increasing and hence there exists r ≥ 0 such that

lim
n→∞

p(xn+1, xn) = r.
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Since φ is l.s.c,
φ(ψ(r)) ≤ lim inf

n→∞
φ(ψ(p(xn, xn−1)))

≤ lim inf
n→∞

φ(ψ(p(x2n−1, x2n)))

Hence by (5),we have
ψ(r) ≤ ψ(r)− φ(ψ(r))

and so φ(ψ(r)) = 0. Hence r = 0.
In what follows we will show that {xn} is a cauchy sequence. Since limn→∞ p(xn, xn+1) = 0, from assumption (iii)
of φ there exists 0 < α < 1 and n0 ∈ N such that

φ(ψ(p(xn, xn−1))) ≥ αψ(p(xn, xn−1)) for all n ≥ n0.

On the hand for all n ≥ n0, from (2) or (3)) we have,

ψ(p(xn+1, xn)) ≤ ψ(Hp(Txn, Sxn−1)
(
orψ(Hp(Txn−1, Sxn)

)
≤ ψ(M(xn, xn−1))− φ(ψ(M(xn, xn−1)))

≤ (1− α)ψ(M(xn, xn−1)) = (1− α)ψ(p(xn, xn−1)).

Thus for any k > n0 we have

ψ(p(xk, xk−1)) ≤ (1− a)ψ(p(xk−1, xk−2)) ≤ ... ≤ (1− a)k−nψ(p(xn0 , xn0−1)).

Therefore
∞∑
1

ψ(p(xn, xn+1)) ≤
n0∑
1

ψ(p(xn, xn+1)) +
∞∑
n0

(1− α)k−n0ψ(p(xn0 , xn0+1)) <∞.

Since,

lim sup
n→∞

p(xn, xn+1)

ψ(p(xn, xn+1))
≤ lim sup

n→∞

s

ψ(s)
<∞,

then
∑∞

1 p(xn, xn+1) <∞. Now by definition of dp, we have

dp(xn, xn+1) ≤ 2p(xn, xn+1) → 0

as n → ∞, which implies that {xn} is a cauchy sequence in (X, dp). Since (X, p) is complete, hence (X, dp) is
complete, so we have limn→∞ dp(xn, x) = 0, for some x ∈ X. Now by lemma 1.4, we get

p(x, x) = lim
n→∞

p(xn, x) = lim
m,n→∞

p(xn, xm) = 0.

Since X has limit comparison property, therefore for n ∈ N , xn is comparable to x, so for n ∈ N , we have,

p(x2n+2, Tx) ≤ sup
x∈Sx2n+1

p(x, Tx) ≤ Hp(Sx2n+1, Tx)

Thus,

ψ(p(x2n+2, Tx)) ≤ ψ(Hp(Sx2n+1, Tx))

≤ ψ(M(x2n+1, x))− φ(ψ(M(x2n+1, x)))

+ θ(p(x2n+1, Sx2n+1), p(x, Tx), p(x2n+1, Tx)− p(x2n+1, x2n+1)

, p(x, Sx2n+1)− p(x, x))

≤ ψ(M(x2n+1, x))− φ(ψ(M(x2n+1, x)))

+ θ(p(x2n+1, x2n+2), p(x, Tx), p(x2n+1, Tx)− p(x2n+1, x2n+1)

, p(x, x2n+2)− p(x, x))

(7)

where
p(x, Tx) ≤M(x2n+1, x)
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=Max{p(x2n+1, x), p(x2n+1, Sx2n+1), p(x, Tx),
p(x2n+1, Tx) + p(x, Sx2n+1)

2
}

≤Max{p(x2n+1, x), p(x2n+1, x2n+2), p(x, Tx),
p(x2n+1, Tx) + d(x, x2n+2)

2
}.

Letting n→ ∞, then we get limn→∞M(x2n+1, x) = d(x, Tx). Since φ is l.s.c, letting n→ ∞ in (7) we get

ψ(p(x, Tx)) ≤ ψ(p(x, Tx))− φ(ψ(p(x, Tx))),

which implies φ(ψ(p(x, Tx))) = 0, and hence p(x, Tx) = 0. Since Tx has approximative property, there exist
y ∈ PTx such that p(y, x) = 0 i.e, y = x, therefore x ∈ Tx. Thus x is a fixed point of T , i.e, x ∈ Tx . This completes
the proof.

Define ψ(t) = t and φ(t) = (1− k)t, where k ∈ [0, 1), Then we have the following corollary.

Corollary 2.2 Let X be a complete ordered partial metric space with the limit comparison property. Suppose that
T, S : X → 2X are two mappings with approximative property and there exist k ∈ [0, 1) such that

Hp(Tx, Sy)) ≤ kM(x, y)) + θ(p(x, Tx), p(y, Sy), p(y, Tx)− p(y, y), p(x, Sy)− p(x, x)),

for all x, y ∈ X with x and y comparable and ψ ∈ Ψ, φ ∈ Φ and θ ∈ Θ. Suppose that S and T are weakly isotone
increasing and there exists an x0 ∈ X such that {x0} ≼2 Tx0. Then T , S have a common fixed point x ∈ X, such
that p(x, x) = 0.

Putting S = T in Theorem 2.1, we obtain the following

Theorem 2.3 Let X be a complete ordered partial metric space with the limit comparison property. Suppose that
T : X → 2X are generalized (ψ,φ, θ) contractive mappings and have approximative property. Let Tx ≼2 T (Tx)
for all x ∈ X and there exists an x0 ∈ X such that {x0} ≼2 Tx0. Then T have a fixed point x ∈ X, such that
p(x, x) = 0.

Example 2.4 Let X = {0, 12 ,
1
3} endowed with partial metric p defined by p(x, y) = max{x, y}, for all x, y ∈ X.

we give the partial order on X by

x ≼ y ⇔ p(x, x) = p(x, y) ⇔ x = max{x, y} ⇔ y ≤ x.

It is clear that (X,≼) is totally ordered set, and (X, p) is complete partial metric space. we define

Tx =

{
{0} if x ∈ {0, 13},
{0, 13} if x = 2

3 ,
and Sx =

{
{0} if x ∈ {0, 13},
{ 1
3} if x = 2

3 .

We show that T and S are weakly isotone increasing. Let y ∈ Sx and z ∈ Sx. Then u ∈ Ty implies that u = 0.
Thus u ≤ z and so z ≼ u. This shows that for any x ∈ X we have Sx ≼2 Ty for all y ∈ Sx. Similarly, one can
show that for each x ∈ X we have Tx ≼2 Sy for all y ∈ Tx.
Let ψ(t) = t and φ(t) = t

2 . It is easy to show that for each θ ∈ Θ,the mappings T , S are generalized (ψ,φ, θ)
contraction. Now, we can easy to check that all hypotheses of theorem 2.1 are fulfilled. Hence T , S have a common
fixed point, which is x = 0.
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