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Abstract

Dynamical system is a young and vigorously growing area of research

which promises enormous potential and opportunities. This paper aims

to introduce some of the preliminary concepts of dynamical systems.

Many application sides of the subject are noted to encourage the reader

for future developments. Resources are supplied in the references for

further reading.
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1 Introduction

Dynamics is the study of change, and a dynamical system is just a recipe for
saying how a system of variables interacts and changes with time. A dynamical
system may be thought of as an object of any nature, whose state evolves in
time according to some dynamical law. The theory of dynamical system is a
wide and independent field of scientific research.

Dynamical systems theory comprises a broad range of analytical, geomet-
rical, topological, and numerical methods for analyzing differential equations
and iterated mappings. The modern theory of dynamical systems derives from
the work of H.J. Poincare (1854- 1912) on the three-body problem of celes-
tial mechanics. Poincare’s geometric methods were being extended to yield a
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much deeper understanding of classical mechanics, by Birkhoff and later Kol-
mogorov, Arnol’d, and Moser. On the theoretical side, nonlinear differential
equations ( nonlinear oscillators) stimulated the invention of new mathemat-
ical techniques by Van der Pol, Andronov, Littlewood, Cartwright, Levinson,
and Smale. Lorenz’s discovery in 1963 said that the solutions to his equations
never settled down to equilibrium or to a periodic state instead they contin-
ued to oscillate in an irregular, aperiodic fashion. Moreover, if he started his
simulations from two slightly different initial conditions, the resulting behav-
iors would soon become totally different. The implication was that the system
was inherently unpredictable, tiny errors in measuring the current state of the
atmosphere would be amplified rapidly, eventually leading to embarrassing
forecasts. In 1971 Ruelle and Takens proposed a new theory for the onset of
turbulence in fluids, based on abstract considerations about strange attrac-
tors. A few years later, R.M. May [1] found examples of chaos in iterated
mappings arising in population biology, and stressed the pedagogical impor-
tance of studying simple nonlinear systems.

Dynamical Systems

System evolves with time in such a way that the states of the system at
time t depend upon the states of the system at earlier times are called dynam-
ical systems. In other words, a dynamical system consists of a set of possible
states, together with a rule that determines the present states in terms of past
states. According to the character of the state variables dynamical systems
can be classified as a discrete dynamical system or as a continuous dynamical
system.

2 Continuous Dynamical Systems

A continuous dynamical system is represented by a differential equation

dx

dt
= f(x, t) ; x ∈ U ⊆ Rn, t ∈ R (1)

possessing a unique solution x(t, t0) = x(t) satisfying the condition x(t0) = x0.
Example: Volterra Model

dH

dt
= rH − aHP

dP

dt
= bHP − mP
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where, H =density of prey at time t, P =density of predator at time t,
r =intrinsic rate of prey population increase, a =predation rate coefficient,
b =reproduction rate of predator per 1 prey eaten, and m =predator’s mortal-
ity rate.

2.1 Autonomous and Non-autonomous Systems

A continuous dynamical system can be classified as autonomous system if
right hand side of equation (1) does not depend explicitly on time t i.e. if
f(x, t) = f(x).
Example:

ẋ = ax(1 − x)

This is an autonomous system because the right hand side ax(1− x) does not
depend on time t explicitly.
On the other hand if f(x, y, t) explicitly depends on t then the dynamical
system is called non-autonomous system.
Example: A periodically forced pendulum :

ẋ = y

ẏ = −gsinx + Fcosωt

is a non-autonomous dynamical system.

2.2 Phase Space and Phase Portrait

A set of phase variables of a system is a minimal set of variables which fully
describes the state of the system. Phase space is the space generated by
the phase variables i.e. phase space is the space generated by the generalized
coordinates and generalized momenta of a physical system. A state of a system
at any time is represented by a point in the system’s phase space. Change of
a system state over time is represented by a trajectory in the phase space. In
other words, a trajectory is the path of an object in phase space as a function
of time. A phase portrait is the collection of all possible trajectories of the
system.
Example: The dynamical system

dH

dt
= rH − aHP

dP

dt
= bHP − mP

has 2 dimensional phase space.
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Figure 1: Phase portrait of periodically forced pendulam. The self intersection
of the trajectory is observed.

2.3 Trajectories of Autonomous and Nonautonomous
Systems

Any two trajectories of an autonomous system cannot intersect each other
and not any single trajectory will intersect itself in the time evolution of the
system. If two trajectories intersect, it indicates that at the point of intersec-
tion, the system can evolve in more than one possible directions. This violates
the existence of unique solution of an autonomous dynamical system. On the
other hand for non-autonomous system trajectories can have self intersection
and two different trajctories can intersect in later time. Self intersection of the
trajectories of the periodically forced pendulam is shown in figure 1.

2.4 The Vector Field

A vector field in the plane in the plane R2 is determined by a vector function

−→
F (−→x ) = (F1(x1, x2), F2(x1, x2)).

At each point −→x ∈ R2 the vector
−→
F (−→x ) is attached. One of the applications of

vector fields is the visualization of solution of ordinary differential equations.
Differential equations define a vector field at every point in the phase space.
The solution of a differential equation with prescribed initial condition follows
the flow of vectors. Vector field for Lotka-Volterra predator prey model

dH

dt
= rH − aHP
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Figure 2: Vector field for Lotka Volterra Predator prey model with r = m = 2
and a = b = 1.

dP

dt
= bHP − mP

is shown in figure 2.

2.5 Non-autonomous to Autonomous Conversion

Every non-autonomous dynamical system can be transformed into an au-
tonomous system by increasing the phase space dimension by one.
Example :

ẋ = y

ẏ = −gsinx + Fcosωt

is non-autonomous with phase space of dimension 2. Assuming t = z one can
obtain the following system

ẋ = y

ẏ = −gsinx + Fcosωz

ż = 1

This is an autonomous dynamical system with phase space dimension 3.

2.6 Equilibrium Point

An equilibrium point x∗ of a continuous dynamical system is the point in the
phase space where phase space velocity is zero. i.e, [dx

dt
]x=x∗ = 0 i.e. f(x∗) = 0.
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Notice that the equilibrium points of a dynamical system are solutions of the
ordinary differential equation. Example: dx

dt
= x(1−x) has equilibrium points

0 and 1.

2.7 Nonlinear Systems

A differential equation that can be written in the form

a0(x)y(n) + a1(x)y(n−1) + ... + an(x)y = F (x) (2)

where a0, a1, ..., an and F are functions of x only is called a linear differential
equation of order n. A differential equation that does not satisfy this definition
is called a nonlinear differential equation. The differential equation (2) is
called an autonomous linear system if a0, a1, ..., an are all constants and F = 0
otherwise it is called an nonautonomous system.
Appropriate definition of linear differential equation is given in the following
paragraph. Let L be a differential operator then any ordinary differential
equation can be written as

L(y) = f(x) (3)

where f(x) is any function of x. This differential equation is called homoge-
neous of f(x) = 0, otherwise it is called nonhomogeneous. Now consider

L = anDn + an−1D
n−1 + .... + a1D + a0

where D(y) = y′, D2(y) = y′′ etc and a0, a1, ..., an are functions of x. One can
easily check that the operator L satisfies the condition for linearlity i.e.

L(ay1 + by2) = aL(y1) + bL(y2).

Therefore an ordinary differential equation is said to be linear if and only if L
is a linear operator otherwise it is called a nonlinear differential equation.

Example: Linear system

y(2) + x2y(1) + sinx y = ex

is a second order linear differential equation. This is a nonautonomous system.
Example: Nonlinear system

my(2) + k1y + k2y
3 = 0

is a second order autonomous nonlinear differential equation.
If φ1 and φ2 are two solutions of a linear autonomous system then c1φ1 + c2φ2

is also a solution of the system i.e. the superposition principle holds for linear
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autonomous systems. But for a nonlinear autonomous system the superpo-
sition principle does not hold. Generally, nonlinear problems are difficult to
solve and are much less understandable than linear problems. Even if not ex-
actly solvable, the outcome of a linear problem is rather predictable, while the
outcome of a nonlinear problem is inherently not. Nonlinear problems are of
interest to physicists and mathematicians because most physical systems are
nonlinear in nature. Physical examples of linear systems are not very common.

2.8 Dissipative and Conservative Systems

Two kinds of DS are distinguished, namely, conservative and nonconserva-
tive. For a conservative system, the volume in phase space is conserved during
time evolution. On the other hand for a nonconservative system, the volume
is usually contracted. The contraction of phase volume in mechanical systems
corresponds to loss of energy as result of dissipation. A growth of phase volume
implies a supply of energy form outside to the system.

Let us consider a dynamical system Ẋ = f(X). Pick an arbitrary closed
surface S(t) of volume V (t) in phase space. Taking points of S as initial con-
ditions for trajectories let them evolve for infinitesimal time dt.Then S evolves
into a new surface S(t + dt) and V (t) evolves to V (t + dt). If V (t) = V (t + dt)
for all time t then the dynamical system is called conservative. Therefore for a
conservative system, the volume in phase space is conserved during time evo-
lution. On the other hand if V (t) > V (t + dt) then dynamical system is called
dissipative. In a dissipative system the volume in phase space is contracted.
The contraction of phase volume in mechanical systems corresponds to loss of
energy as result of dissipation. A growth of phase volume implies a supply of
energy to the system which can be named negative dissipation. In general, a
system in which the energy or phase volume varies are called dissipative sys-
tems. A system is conservative if ∇.f = 0 and it is dissipative if ∇.f < 0.
Example : Conservative system

ẋ = y

ẏ = x3 − x

is a conservative system since ∇.f = 0.
Example : Dissipative system

ẋ = σ(y − x)

ẏ = sx − y − xz

ż = xy − bz
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where σ, r, b > 0 are parameters. This is known as Lorenz system. For Lorenz
system ∇.f = −σ−1−b < 0. Therefore Lorenz system is a dissipative system.

2.9 Stability Concepts

Consider the first-order differential equation

dx

dt
= f(x, t) (4)

where f(x, t) is defined and continuous for t ∈ (a,∞) and x from a certain
domain D, possesses a bounded partial derivative ∂f

∂x
. We assume that the

function x = φ(t) is a solution of the equation (4), which satisfies the initial
condition [x]t=t0 = φ(t0), t0 > a. We assume furthermore, that the function
x = x(t) is a solution of the same equation, which satisfies another initial
condition [x]t=t0 = x(t0). It is assumed that the solutions φ(t) and x(t) are
defined for all t ≥ t0.
Lyapunov Stability

The solution x = φ(t) of equation (4) is said to be stable in the sense of
Lyapunov as t → ∞ if , for every ǫ > 0 there is δ = δ(ǫ) > 0 such that
for every solution x = x(t) of that equation the following condition will be
staisfied:

|x(t0) − φ(t0)| < δ ⇒ |x(t) − φ(t)| < ǫ

for all t ≥ t0 (we can always assume that δ ≤ ǫ). We usually called Lyapunov
stable as stable.
Example: The trivial solution x = 0 of the equation dx

dt
= 0 is lyapunov

stable.
Asymptotic Stability

The solution x = φ(t) of equation (4) is said to be asymptotically stable if
(a) the solution x = φ(t) is Lyapunov stable and
(b) there exist δ > 0 such that for any solution x = x(t) of (4), which satisfies
the condition |x(t0) − φ(t0)| < δ, we have limt→∞ |x(t) − φ(t)| = 0.
Example: The trivial solution x = 0 of the equation dx

dt
= 0 is lyapunov

stable but not asymptotically stable. The trivial solution x = 0 of the equation
dx
dt

= −a2x, a =constant is asymptotically stable.
Notice that stability of a nontrivial solution of a differential equation does

not imply that the solution is bounded. Also the boundedness of solution of a
differential equation does not imply that the solutions are stable. The concepts
of boundedness and stability of solutions are mutually independent.
Example: All solutions of dx

dt
= sin2x are bounded but x(t) = 0 solution of

this differential equation is unstable. The solution x(t) = t is a stable solution
of the differential equation dx

dt
= 1 but it is not bounded.
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Stability Analysis of Equilibrium Points

Linear Stability Analysis (Local Stability Analysis)
We consider system

ẋ = f(x, y)

ẏ = g(x, y)

Let (x∗, y∗) be fixed point of the system. Then f(x∗, y∗) = 0, g(x∗, y∗) = 0.
Taylor series expansion in the neighborhood of (x∗, y∗) is

f(x, y) = f(x∗, y∗) + (x − x∗)[
∂f

∂x
](x∗,y∗) + (y − y∗)[

∂f

∂y
](x∗,y∗) + (x − x∗)2[

∂2f

∂x2
](x∗,y∗)

+ (y − y∗)2[
∂2f

∂y2
](x∗,y∗) + 2(x − x∗)(y − y∗)[

∂2f

∂x∂y
](x∗,y∗) + higher order terms.

≃ (x − x∗)[
∂f

∂x
](x∗,y∗) + (y − y∗)[

∂f

∂y
](x∗,y∗), after linearization

Similarly, g(x, y) ≃ (x−x∗)[ ∂g

∂x
](x∗,y∗) +(y−y∗)[∂g

∂y
](x∗,y∗), after linearization.

Therefore, very small disturbances in the neighborhood of fixed points will
follow the linear equation

ẋ = ax + by, where a = [
∂f

∂x
](x∗,y∗), b = [

∂f

∂y
](x∗,y∗)

ẏ = cx + dy, where c = [
∂g

∂x
](x∗,y∗), d = [

∂g

∂y
](x∗,y∗)

i.e,

Ẋ = AX, where A =

(

a b
c d

)

and X =

(

x
y

)

The fixed point (x∗, y∗) is said to be linearly stable if all eigenvalues of A
have negative real parts. The fixed point (x∗, y∗) is unstable if at least one
eigenvalue of A have positive real part. If A has any 0 eigen value then linear
stability analysis fails and nonlinear stability analysis is necessary.

Local and Global Stability Analysis
Global stability analysis of an equilibrium point can be done by Lyapunov

function ( without solving differential equation). A function V (x1, x2, ..., xn)
is called Lyapunov function for the system of differential equations

dxi

dt
= fi(x1, x2, x3, ......., xn); i = 1, 2, 3, ....., n
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if

(a) V (0, 0, ..., 0) = 0

(b) V (x1, x2, ..., xn) is positive definite

(c)
dV

dt
is negative definite

Origin is a globally asymptotically stable equilibrium point if there exist a
Lyapunov function for the system in Rn.
Example:

ẋ = −x

ẏ = −y

Let, L(x, y) = (x2 + y2)/2. Then L is positive definite and Therefore,

dL

dt
= xẋ + yẏ = −x2 − y2

is negative definite. Hence (0, 0) is a global asymptotically stable equilibrium
point for the system.
If

(a) V (0, 0, ..., 0) = 0

(b) V (x1, x2, ..., xn) is positive definite

(c)
dV

dt
is negative semi-definite

Origin is a globally stable equilibrium point if there exist a Lyapunov
function for the system in Rn.

Notice that Lyapunov function in certain sense is a generalised distance
form the origin. The existence of Lyapunov function in a neighbourhood of
an equilibrium point but non existence in the whole space implies the local
stability of the equilibrium point. Note that V (0) = 0 is required. Otherwise
choosing V (x) = 1/(1 + |x|) we can prove that ẋ(t) = x is locally stable. But
actually the system ẋ(t) = x is unstable at 0.

2.10 Periodic Orbit

A solution of ẋ = f(x, t), x ∈ Rn through the point x0 is said to be periodic
of period T if there exists T > 0 such that x(t, t0) = x(t + T, x0) for all t ∈ R.
Any periodic orbit in the phase space is a closed curve. The systems which
can be written in the form ẋ = −∇V for some continuously differentiable,
single valued scalar function V (x) is called a gradient system with potential
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function V . Closed orbit does not exist in gradient systems. If one can find
a Lyapunov function for a system then also existence of closed orbit can be
ruled out. There are many other criteriones for rule out existence of closed
orbit in a DS.

2.11 Limit Cycle

Limit cycle is an isolated periodic orbit. Existence of limit cycle in a model
implies that system exhibit self-sustained oscillations. For existence of limit
cycle dynamical system must be nonlinear and its phase space should be at
least two dimensional. A linear system can have closed orbits but they are not
isolated. The famous Poincare Bendixson theorem can help us to show the
existence of limit cycles in two dimensional phase space. An improved version
of the Poincare Bendixson theorem states that if a trajectory is trapped in a
compact region(subset of two dimensional phase space) then it must approach
a fixed point, a limit cycle or something exotic called a cycle graph (an invari-
ant set containing a finite number of fixed pints connected by a finite number
of trajectories, all oriented either clockwise or counterclockwise). In the fun-
damental biochemical process called glycolysis, living cells obtain energy by
breaking down sugar. A simple model of these glycolysis has been proposed
by Selkov. The dimensionless form of the Selkov model is the following

ẋ = −x + ay + x2y

ẏ = b − ay − x2y

where x and y are the concentrations of ADP (adenosine diphosphate) and
F6P (fructose-6-phosphate), and a, b > 0 are kinetic parameters. Limit cycle
oscillation of the system for a = 0.08, b = 0.6 is shown in figure 3.

2.12 Hyperbolic and Non-Hyperbolic Equlibruim Points

A hyperbolic equilibrium point of a continuous dynamical system are those
equilibrium points at which the Jacobian matrix has no eigenvalue with zero
real part. On the other hand if an equilibrium point is not hyperbolic then it
is called non-hyperbolic. Hartman Grobman theorem states that the stability
type of the hyperbolic equilibrium point is fully captured by the linearized
system. A phase portrait is structurally stable at hyperbolic equlibrium point
i.e. topology of the phase portrait cannot be changed by an arbitrary small
perturbation to the vector field. However, at non-hyperbolic equilibrium point
phase portrait is structurally unstable and qualitatively different phase portrait
arrive for an arbitrarily small perturbation to the vector field.
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Figure 3: Limit cycle solution of glycolytic oscillator with initial condition (a)
(1,1) with red line (b)((0.01,0.2) with blue line are shown

2.13 Bifurcation Point

The qualitative structure of flow can change as parameters are varied, fixed
points can be created or destroyed, or their stability can change. These quali-
tative changes in the dynamics are called bifurcation and the parameter values
at which they occur are called bifurcation point. More precisely, a point (x0, α)
is called bifurcation point of a dynamical system ( with parameter α) if systems
behavior changes qualitatively at (x0, α). A necessary condition for (x0, α) to
be a bifurcation point is that it must be a nonhyperbolic equilibrium point
at the critical parameter value. Hartman Grobman theorem implies that any
qualitative change or bifurcation must be reflected in the linear dynamics. The
qualitative structure of equilibrium point remain fixed unless the equlibrium
point loses its hyperbolicity. The loss of hyperbolicity of equlibrium point oc-
curs in one of the two following ways.
(a). Occurance of a simple real zero eigenvalue of the jacobian matrix at the
critical parameter value. This type of bifurcation is called steady state bi-
furcation. Most typical steady state bifurcations are saddle-node bifurcation,
transcritical bifurcation and pitchfork bifurcation.
(b). Occurance of a simple pair of purely imaginary eigenvalues of the jacobian
matrix at the critical parameter value. This type of bifurcation is known as
Hopf bifurcation.
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2.14 Lyapunov Exponent

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamical
system is a quantity that characterizes the rate of separation of infinitesimally
close trajectories with time. Quantitatively, two trajectories in phase space
with initial separation δZ0 changes with time in the following rule.

|δZ(t)| ≈ eλt|δZ0|

where λ is the Lyapunov exponent.
The rate of separation can be different for different orientations of initial

separation vector. An n dimensional dynamical system have n Lyapunov ex-
ponents. For a periodic behaviour of a system largest Lyapunov exponent
should be negative, for a quasiperiodic behaviour largest lyapunov exponent
should be 0 and for chaotic behaviour the largest Lyapunov exponent must
be positive. For a hypercahotic system at least two lyapunov exponents are
positive.

3 Discrete Dynamical Systems

In a discrete dynamical system the time variable is discrete i.e, t ∈ Z or N.
Instead of a differential equation the evolution is determined by a difference
equation. For example xt+1 = f(xt, xt−1, .., xt−n); t ∈ Z or N is the form of
a discrete dynamical system. Logistic map, x(t + 1) = ax(t)(1 − x(t)),where
a ∈ [0, 4] and x ∈ [0, 1] is a discrete dynamical system.

3.1 Fixed Point

A fixed point x∗ of a discrete dynamical system is the point where x∗ = f(x∗).
Fixed points of the logistic map are x = 0, (a − 1)/a.

3.2 Orbit of a Point

Let f be a map f : X → X and x0 be a point in X. Then orbit of x0

under f is the set {x0, f(x0), f
2(x0), ....}. Let us consider a map f : N → N

given by f(x) = ax(1 − x), then the orbit of x0 under the map f is given
by,{x0, ax0(1 − x0), a[x0(1 − x0][1 − ax0(1 − x0)], ..}.

3.3 Stability Analysis of Fixed Points

Let f be a map on X and let p be a real number such that f(p) = p. If all
points sufficiently close to p are attracted to p, then p is called a sink or an
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attracting fixed point. If all points sufficiently close to p are repelled from p,
then p is called a source or a repelling fixed point. If |f ′(p)| < 1 then p is a
sink and if |f ′(p)| > 1 then p is a source.
Example:
Stablity analysis of the fixed points of the map xn+1 = axn(1 − xn) defined in
[0, 1] and 0 ≤ a ≤ 4.
Solution: Every fixed point x∗ of the map satisfy the following equation

x∗ = ax∗(1 − x∗)

i.e. x∗ = 0, 1 −
1

a
Now f ′(x∗) = a(1 − 2x∗)

At the fixed point x∗ = 0, f ′(x∗) = a. Therefore if |a| < 1,then |f ′(x∗)| < 1
at x∗ = 0 Hence x∗ = 0 is stable for a < 1. Now consider the fixed point
x∗ = 1 − 1

a
. At this x∗, f ′(x∗) = a[1 − 2 + 2

a
] = 2 − a.Therefore if |2 − a| < 1

then |f ′(x∗)| < 1 i.e if 1 < a < 3 then x∗ is stable.

Let f = (f1, f2, ..., fm) be a map on Rm The Jacobian matrix of f at
the fixed point P , denoted by Df(P ). If the magnitude of each eigenvalue
of Df(P ) is less than 1, then P is a sink or a stable fixed point and if the
magnitude of at least one eigenvalue of Df(P ) is greater than 1, then P is a
unstable fixed point.

3.4 Period-k Orbit and its Stability

Let f : X → X be a map then period-k points of f are those points
of X for which fk(x) = x but f i(x) 6= x for i = 1, 2, 3, ..., (k − 1). Let
{x1, x2, x3, ..., xk−1, xk} are period-k orbit of f such that x2 = f(x1), x3 =
f(x2), ..., f(xk) = x1. Condition for stability of period-k points of the map f
is

|f ′(x1).f
′(x2).f

′(x3)....f
′(xk−1).f

′(xk)| < 1.

Notice that fixed points of a map can be defined as period-1 points of the map.

3.5 Hyperbolic and Non-hyperbolic Fixed Points

Let f be a map on Rm (m ≥ 1). Assume that f(P ) = P .Then the fixed point
P is called hyperbolic if none of the eigenvalues of Df(P )has magnitude 1. If
P is hyperbolic and if at least one eigenvalue of Df(P ) has magnitude greater
than 1 and at least one eigenvalue has magnitude less than 1 but no eigen
value with magnitude equal to one then P is called a saddle. (For a periodic
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Figure 4: (a) Bifurcation diagram of logistic map. (b) Sensitive dependence
on initial conditions is shown. Blue line denotes the time evolution of logistic
map 4x(1 − x) for initial condition x0 = 0.2 and red line indicates the time
evolution of the same map for x0 = 0.200001. It is clear from the figure that
after some time the two trajectories are totally different.

point of period k, replace f by fk .) Saddles are unstable fixed points. If even
one eigenvalue of Df(P ) has magnitude greater than 1, then P is unstable in
the sense previously described. Almost all perturbation of the orbit will be
magnified under iteration. In a small ǫ neighbourhood of P , f behaves very
much like a linear map with an eigenvalue that has magnitude greater than 1,
that is, the orbits of most points near P diverge from P .

3.6 Bifurcation of Maps

If an eigenvalue reaches the unit circle, then fixed point is no longer hyperbolic
and a bifurcation can occur. The loss of hyperbolicity of a fixed point occurs
in one of the three following ways.
(a) Jacobian matrix have a simple real eigenvalue 1. This type of bifurcation
is known as steady state bifurcation for maps. The saddle-node, transcritical
and pitchfork bifurcations are examples of steady state bifurcation.
(b) A simple conjugate pair of eigenvalues of the Jacobian matrix lying on the
unit circle. We refer this case as Hopf bifurcation for maps.
(c) A simple real eigenvalue of Jacobian matrix is -1. In this case period
doubling bifurcation occures. This bifurcation is also known as flip bifurcation
or subharmonic bifurcation.
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4 Chaos

A dynamical system is said to be chaotic, if it has the following properties:
(a) it must be sensitive to initial conditions.
(b) it must be topologically mixing.
(c) its periodic orbits must be dense.

the necessary requirements for a deterministic continuous dynamical system to
be chaotic are that the system must be nonlinear and be at least three dimen-
sional. At least one Lyapunov exponent must be positive for chaotic systems.
For a hyper-chaotic system at least two Lyapunov exponents are positive.

Sensitivity to initial conditions means that each point in such a system
is arbitrarily closely approximated by other points with significantly different
future trajectories. Thus, an arbitrarily small perturbation of the current
trajectory may lead to significantly different future behaviour.

Sensitivity to initial conditions is popularly known as the butterfly effect,
so called because of the title of a paper given by Edward Lorenz in 1979 to the
American Association for the Advancement of Science in Washington, D.C.
entitled Predictability: Does the Flap of a Butterflys Wings in Brazil set off a
Tornado in Texas? The flapping wing represents a small change in the initial
condition of the system, which causes a chain of events leading to large-scale
phenomena. Had the butterfly not flapped its wings, the trajectory of the
system might have been vastly different.

Topologically mixing means that the system will evolve over time so that
any given region or open set of its phase space will eventually overlap with
any other given region. Here, ’mixing’ is really meant to correspond to the
standard intuition: the mixing of coloured dyes or fluids is an example of a
chaotic system.

Linear systems are never chaotic; for a dynamical system to display chaotic
behaviour it has to be nonlinear. Also, by the Poincare Bendixson theorem,
a continuous dynamical system on the plane cannot be chaotic; among contin-
uous systems only those whose phase space is non-planar (having dimension
at least three) can exhibit chaotic behaviour. However, a discrete dynamical
system (such as the logistic map) can exhibit chaotic behaviour in a one-
dimensional or two-dimensional phase space.
The bifurcation diagram of logistic map is shown in figure 4(a) and sensitiv-
ity to initial condition of chaotic logistic map is shown in figure 4(b). Time
evolution of x and y component of the chaotic Lorenz system are shown in
figure 5(a) and figure 5(b) respectively. The phase diagram of chaotic Lorenz
system in the xz phase plane is presented in figure 5(c) and sensitivity to initial
condition of chaotic Lorenz system is plotted in figure 5(d).
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Figure 5: (a) Time evolution of the x-component of chaotic Lorenz system.
(b) Time evolution of the y-component of chaotic Lorenz system. (c) Phase
diagram of the Lorenz system in xz plane. (d) Sensitive dependence on initial
conditions for Lorenz system is shown. Blue line denotes the time evolution of
x-component of Lorenz system for initial conditions x = 0.01, y = 0.0, z = 0.2
and red line indicates the time evolution of the same system for x = 0.01, y =
0.000001, z = 0.2.

4.1 Distinguishing Random from Chaotic Data

It can be difficult to tell from data whether a physical or other observed
process is random or chaotic, because in practice no time series consists of
pure signal. There will always be some form of corrupting noise, is present
as round-off or truncation error. Thus any real time series, even if mostly
deterministic, will contain some randomness.

All methods for distinguishing deterministic and stochastic processes rely
on the fact that a deterministic system always evolves in the same way from
a given starting point. Thus, given a time series to test for determinism, one
can (a) pick a test state,(b) search the time series for a similar or nearby state
and (c) compare their respective time evolutions.

Define the error as the difference between the time evolution of the test
state and the time evolution of the nearby state. A deterministic system will
have an error that either remains small (stable, regular solution) or increases
exponentially with time (chaos). A stochastic system will have a randomly
distributed error. Random processes are fundamentally different than deter-
ministic processes. Two successive realizations of a random process will give
different sequences, even if the initial state is the same but for a chaotic system
if initial conditions are same the generated data will be same.
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5 Poincare Section

Poincase section gives us a geometric depiction of the trajectories in a lower
dimensional space. Suppose we have a 3 dimensional (3D) flow. Instead of
directly studying the flow in 3D, consider its intersection with a plane S. Let
successive points of intersection of the trajectory with the S plane (from up
to down direction ) are the points P0, P1, P2, .. respectively. Then the points
P0, P1, P2, P3, ... form the 2D Poincare section. Here Poincare section is a
continuous mapping T of the plane S into itself such that Pk+1 = T (Pk). Since
the flow is deterministic P0 determines P1, P1 determines P2 etc.

The Poincare section reduces a continuous dynamical system to a discrete
dynamical system. The constructed map is known as Poincare map. However
the time interval of the map from point to point is not necessarily constant.
With the help of Poincare map we shall be able to classify different types
of flow. For limit cycle oscillation of a flow we shall get fixed point of the
Poincare map. Poincare section of quasiperiodic flow looks like a continuous
closed curve. For chaotic flow poincare section will be a dispersed set of points.

6 Applications

Applications of dynamical system theory in Physics, Biology, Chemistry and
Engineering was discussed by Strogatz [2]. From the work of Helmholtz and
Frank in the last century through to that of Hodgkin, Huxley, and many oth-
ers in this century, physiologists have repeatedly used mathematical methods
and models to help their understanding of physiological processes [3]. Mod-
ern areas of physiological research demands solid understanding of differential
equations, including phase plane analysis and stability theory. Application of
dynamical system theory in biological, medical, ecological, phychological and
social sciences are going to play an increasingly important role in future major
discoveries. Behavioral ecology is another important area of reaserch. How
bird flocks, school of fish, and so on reach community discisions is another
exciting relatively new area of research [4]. Dynamical system theory is suc-
cessfully applied for marital inetraction and divorce prediction [5]. Numerical
calculations of the dynamics of the Solar System and its constituents, integra-
tions of stellar orbits in a galaxy and extensive simulations of the gravitational
n-body problem (modelling star and galaxy clusters) have become a major
part of mainstream geophysical and astrophysical research. Applications of
the theory of nonlinear Hamiltonian dynamical systems to such problems are
discussed extensively by Oded Regev [6].

Experimental observations have pointed out that, chaotic systems are com-
mon in nature. They can be found, for example, in Chemistry (Belouzov
Zhabotinski reaction), in Nonlinear Optics (lasers), in Electronics (Chua Mat-
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sumoto circuit), in Fluid Dynamics (Rayleigh Benard convection), etc. Many
natural phenomena can also be characterized as being chaotic. They can be
found in meteorology, solar system, heart and brain of living organisms and
so on. Although chaos theory was originally developed in the context of the
physical sciences, Radzicki and Butler amongst others have noted that social,
ecological, and economic systems tend to be characterized nonlinear relation-
ships and complex interactions evolve dynamically over time [7]. This recogni-
tion has led to a surge of interest in applying chaos theory to number of fields
incluidng ecology,medicine, international relations and economics. Although
there is an enormous amount of research interest in the subject, there is only
a small number of practical suggestions based on chaos theory which can be
applied to everyday life in an attempt to retard ageing and optimise health.
However, further research may confirm that by following these suggestions and
recommendations it may be possible to stimulate the body and mind to work
optimally and to postpone age-related disease and disability [8].

7 Summary

In this article, we introduce some of the preliminary concepts of dynamical sys-
tem. Application areas of the dynamical system theory are discussed briefly.
References are supplied for further reading. Many open areas for future re-
search are discussed.
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