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Abstract 
 

A parametric study involving the effects of some combinations of parameters, in particular, different combinations of 

the Rayleigh number, amplitude, temperature, and inclination angle of a two-dimensional long wavy-walled channel on 

a laminar incompressible fluid flow and natural convection within the channel is performed. The considered channel has 

an undulated wall as one side of the channel, and a parallel flat wall at a differentially different temperature as its 

counterpart. The channel sustains variable inclination angle, variable wavy wall amplitude, and variable temperature-

difference between its two walls. A perturbation technique in terms of the small waviness of the undulated wall is 

performed to obtain a set of non-linear ordinary differential equations for the main flow and its perturbations. Solving 

this set of equations determines the streamline and temperature profiles for the imposed varying parameters. The results 

reveal that the fluid velocity along the channel axis increases with increasing the Rayleigh number, but decreases with 

increasing the channel inclination angle. The results also show that eddies appeared due to the steep undulations 

intensify as the temperature-difference between the two channel walls increases. The veracity of the present work is 

demonstrated through comparing the obtained results with those available in the literature. 

 
Keywords: Natural Convection; Inclined Channel; Wavy Wall; Perturbation Technique. 
 

1. Introduction 

The study of heat transfer from irregular surfaces, in particular, wavy configurations has become extensive, for their 

widespread applications during past years. Preventing thermal boundary layers formation and promoting capability of 

the fluid motion near the surface for corrugated and roughened geometries increase the heat transfer rates, thereby 

resulting in enhancement of heat transfer performance. Among the various applications of such heat transfer surfaces 

are wall undulation, plate heat exchangers, micro-electronic devices, design of solar collectors, transpiration cooling of 

re-entry vehicles and rocket boosters, film vaporization in combustion chambers, and cross-hatching on ablative 

surfaces.  

Among early studies related to the subject of heat transfer from irregular surfaces, is the work of Lekoudis et al. [1] who 

analyzed the boundary-layer of compressible flows along a corrugated wall. Shankar and Sinha [2] solved the Rayleigh 

problem along a wavy surface using the perturbation technique. Lessen and Gangwani [3] investigated the effects of 

low magnitude wall undulations in order to capture the stability of the boundary layer in laminar form. Recently, Rees 

and Pop [4] studied the effects of stationary plane waves on the natural convection induced by a heated undulated 

surface in a porous medium numerically. All of the above studies were performed on a single infinitely long horizontal 

wavy wall configuration without considering the channel-flow argument.  

The problem of buoyancy-driven flow in a long channel having a vertical corrugated wall and a parallel flat wall was 

for the first time solved analytically by Vajravelu and Sastri [5] using the perturbation method. Considering the 

presence of heat sources/sinks, they investigated the effects of the Prandtl numbers, frequency parameter, and wall-
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temperature ratio on the fluid flow and temperature fields. However, the work was conducted for very small Grashof 

numbers and no effects of the inclination angle and the wavy wall amplitude was considered. Later, Vajravelu [6] 

extended the method to analyze the fluid flow and heat transfer in horizontal corrugated channels. Their results for the 

main part of the solution were found to be in good agreements with those of the plane Poiseuille flow. Das and Ahmed 

[7] employed the perturbation technique to analyze the buoyancy-driven magnetohydrodynamic (MHD) flow and heat 

transfer for a viscous incompressible fluid confined between a long vertical undulated plate and a parallel flat plate. 

They considered the effects of relative temperature of the channel walls on the velocity and temperature profiles without 

considering the wavy wall amplitude and inclination angle effects. In a related study, Das and Deka [8] used a 

numerical approach to solve the buoyancy-driven heat transfer in the same domain as that studied in [7]. Patidar and 

Purohit [9] analyzed the buoyancy-driven convection of an incompressible fluid flow in a porous medium confined 

between two parallel vertical corrugated plates using the perturbation technique. The MHD convection flow in a vertical 

corrugated channel with temperature-dependent heat source was studied by Rao et al. [10] employing the perturbation 

technique. In another study, Vajravelu [11] conducted the perturbation method for the combined free and forced 

convection in hydromagnetic flows in vertical wavy channels with traveling thermal waves. He found that the stream 

function values become smaller in the presence of the magnetic field.  

Recently, a few other analytical studies on the fluid flow and heat transfer in vertical channels having wavy walls have 

appeared in the literature. Choudhury and Das [12] developed an analytical solution based on the perturbation technique 

for the free convection flow in a vertical channel utilizing non-Newtonian fluid. They found that the skin friction at the 

wavy wall is an increasing function of the Prandtl and Grashof numbers. The effects of slip were investigated by Rajeev 

and Jain [13] in an analytical study of the MHD flow of a viscous incompressible fluid with a temperature-dependent 

heat source confined between a long vertical wavy surface and a parallel flat wall. They observed that the skin friction 

and the Nusselt number at the wavy wall are decreased with increasing the intensity of magnetic field. Guria and Jana 

[14] analyzed the two-dimensional mixed convection fluid flow and heat transfer in a vertical corrugated channel with 

travelling thermal waves embedded in a porous medium, and employed the perturbation technique. They investigated 

the effects of a number of non-dimensional parameters on the velocity and temperature profiles. However, no effects of 

amplitude of the wavy walls or variation of the channel walls temperature-dependent on the velocity and temperature 

distributions were reported.  

Very recently, Muthuraj and Srinivas [15] studied the combined free and force convection considering both heat and 

mass transfer within a vertical corrugated porous channel with traveling thermal waves. Using the perturbation 

technique, the effects of different pertinent parameters, namely, the Hartmann number, Schmidt number, and the 

porosity parameter, on the flow fields and heat and mass transfer characteristics were explained. Umavathi and Shekar 

[16] investigated the combined convection fluid flow and heat transfer through a long vertical corrugated channel filled 

with porous material, employing linearization technique. They assumed long wave approximation for perturbation 

solution. Gireesha and Mahanthesh [17] conducted an analytical approach for combined heat and mass transfer of an 

unsteady magnetohydrodynamics viscoelastic fluid flow in an irregular vertical channel with coupled boundary 

condition using perturbation technique. They analyzed the effects of different pertinent parameters such as Sherwood 

number and Biot number on velocity and temperature fields. Kumar and Umavathi [18] conducted the perturbation 

technique to problem of steady two-dimensional natural convective flow in a porous medium between a long vertical 

undulated wall and parallel flat wall in the presence of a heat source utilizing a Walters fluid (model B′). They discussed 

the relevant flow and heat transfer characteristics, namely, skin friction and the rate of heat transfer at both walls, in 

detail. Umavathi and Shekar [19] conducted the same method to laminar mixed convection in a wavy-vertical channel 

filled with two unmixable viscous fluids. They found that the Grashof number, viscosity parameter, geometry ratio and 

conductivity ratio enhance the velocity component parallel to the flow direction.  

A detailed review of the existing literature reveals that combined effects of the channel wavy wall amplitude (surface 

waviness), channel walls temperature-difference, and the channel inclination angle on the fluid flow and heat transfer 

characteristics within the wavy-walled channel have not yet been fully investigated. The present study, therefore, 

considers a buoyancy-driven fully developed fluid flow within an inclined corrugated channel. The effects of different 

combinations of a number of variable parameters including the inclination angle, the walls temperature-difference, the 

Rayleigh number, and the amplitude of the wavy wall on this channel-flow are investigated. 

2. Problem formulation 

Consider an inclined channel shown in Fig. 1. For the channel, the x -axis is taken to be vertically upwards parallel to 

the flat wall, with the y -axis being perpendicular to it. The channel can turn counter-clockwise with respect to point O 

to change the channel inclination angle, φ, as shown in this figure. The wavy and the flat walls are represented by 

cos( )y Lx  and y d , respectively. The left and the right walls of the channel are maintained at differentially 

different temperatures of Tl  andTr , respectively. The channel is erected in an incompressible medium at the ambient 

temperature of T . The present study considers that segment of the channel within which the two facing wall growing 

boundary layers have already merged into a fully developed single buoyant stream rising through the column formed by 

the two walls. 
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Fig. 1: Differentially-Heated Wavy Wall Channel Geometry 

 

Depending on the value of x , Lx represents a location on the wavy wall (Fig. 1). The amplitude of the wavy wall   is 

assumed to be small enough for the perturbation technique to be applicable. The following analysis is conducted for Pr 

= 0.71, and small wave numbers, i.e. small values of L . 

Equations (1), (2), (3), and (4) represent the continuity, x and y components of momentum, and energy equations for 

the steady, laminar, incompressible, and Newtonian fluid flow, respectively. The natural convection through the 

Boussinesq approximation is incorporated with the appropriate momentum equations, Eqs. (2) and (3). 
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where u and v are the velocity components in the x and y -directions, respectively. T Is the temperature, and β is the 

thermal expansion coefficient of the fluid. The boundary conditions for Eqs. (1) – (4) are 

 

0 , cos( )u v T T on y Lxl                                                                                                                           (5-a) 

 

0 ,u v T T on y dr                                                                                                                                      (5-b) 

 

In order to cast the governing equations and the boundary conditions into a dimensionless form, the following 

dimensionless variables are introduced 
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where m is the temperature scale, governing the variable temperature-difference between the two channel walls.  

Using the above dimensionless variables, the non-dimensional form of Eqs. (1) – (4) are written as 
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where the Grashof number Gr, the Prandtl number Pr, and the Rayleigh number Ra, are defined as 
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The dimensionless forms of the boundary conditions are 
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0 , 1u v m on y                                                                                                                                        (12-b) 

3. Solution procedure 

To solve the governing equations by the perturbation technique, the field variables are written in the forms of 

expansions in powers of small parameter ε [5] 
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where u0, θ0, and p0 are the mean parts, and uk, vk, θk, and pk (k = 1, 2) are the perturbed parts. Substituting the above 

relations into Eqs. (7) – (10), and equating the coefficients of powers of ε to zero yield the equations for the mean flow 
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and the following equations for the perturbed flow 
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Following the similar procedure, the boundary conditions for the zeroth, first, and second-order equations are written as  
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where the prime denotes derivative with respect to y, and 1i   . 

The analytical solutions of the zeroth-order equations are  
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In order to solve the first and the second-order equations (Eqs. (16) – (23)), it is appropriate to write them in a more 

simple form by using the notation of the stream function. The first and the second-order velocity components are 

written in terms of the stream functions 1 and 2  as follows: 
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Subsequently, by eliminating the pressure p1 between Eqs. (17) And (18), and p2 between Eqs. (21) And (22), and also 

writing 1 , θ1, 2 and θ2 as [5] 
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The first and the second-order equations reduce to the following ordinary differential equations:  
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Moreover, the first and the second-order boundary conditions (Eqs. (24) – (26)) are reduced to the following form: 
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into Eqs. (32) Through (35), and arranging the resulting equations up to the order of L
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with the associated boundary conditions given by 
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                                                                                                                   (48) 

 

0 , 0 , 0 , 0
( 1,2)

0 , 0 , 0 , 1,

t at yk k k
k

t at yk k k

 

 

    


    
                                                                                          (49) 
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u at y

at y

         


      
                                                                                                                   (50) 

 

0 , 0 , 0 , 0
( 1,2)

0 , 0 , 0 , 1.

at yk k k
k

at yk k k

      


      
                                                                                          (51) 

 

The system of the differential equations (42) – (47) together with the boundary conditions (48) – (51) are solved 

analytically using the MATHEMATICA code. Based on the obtained results, the solutions of the first and the second 

order equations are given by 

 

 
   

 

Re e sin cos ,1

Re e sin cos ,1

Re e cos sin ,1

iLxu Lx Lxi r

iLxv iL L Lx Lxr i

iLx t t Lx t Lxr i

  

  



     

   

  

                                                                                                                (52) 

 

 
 
 

Re e ,2

Re e ,2

Re e ,2

iLxu

iLxv iL

iLx

  

 

 

                                                                                                                                                          (53) 

 

where ir i    , and t t i tr i  . ψr, ψi, tr and ti in the above relations are given by 

 

2 ,0 2 1L iLr i                                                                                                                                         (54) 

 

2 , .0 2 1t t L t t iLtr i                                                                                                                                     (55) 

 

The non-dimensional form of the heat transfer coefficient, h, is written as  

 

( )
( ) Re ( )0

T T iLxlh k y e t y
d

 
           

                                                                                                                      (56) 

 

The Nusselt number, Nu, based on the width of the channel can then be obtained from  

 

( ) Re ( )0
h d iLxNu y e t y

T Tl
      

   
                                                                                                                        (57) 

 

The Nusselt numbers for the wavy wall Nuw, where y = ε cosLx, and for the flat wall Nuf, where y =1, can be obtained 

from the following relations, respectively. 

 



170 International Journal of Applied Mathematical Research 

 

 

 

  (0) Re (0) (0) ,0 0
iLxNu e tw                                                                                                                                  (58) 

 

and 

 

 (1) Re (1) .0
iLxNu e tf                                                                                                                                                (59) 

4. Validity of the solution 

For the present analytical oriented study, the theoretical work by Vajlavelu and Sastri [5] is found to be the only 

existing related work to this study for validation purposes. This, since no other studies have considered all the 

parameters or different combinations of them which are analyzed in this work.  

In Fig. 2, the results of the x- component of the velocity vector along the width of the vertical channel in Vajlavelu and 

Sastri [5] are compared with those of the present work for L = 0.01, Pr = 0.71, and Lx = π/2 for some different 

temperature ratios (m). Since the work by Vajlavelu and Sastri [5] is performed for only vertical channel (φ = 0), and a 

fixed amplitude, the comparison is made by setting the appropriate parameters equal between the two studies. As it can 

be seen in Fig. 2, very good agreements exist for the two results. 
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Fig. 2: Comparison of Present Study and Vajravelu and Sastri [5] Results for x- Component of Velocity Vector Along a Vertical Channel Width for L 
= 0.01, Pr = 0.71, and Lx = π/2, Solidlines: Present Work; Symbols: Vajravelu and Sastri [5] 

5. Results and discussions 

Using the analytical solution, a parametric study is conducted and the effects of the pertinent parameters such as the 

channel angle, the amplitude, the wave length of the wall, the temperature scale (m), and the Rayleigh number on the 

fluid flow and heat transfer in the fully-developed region of the channel are investigated. The results of this work are 

based on Pr = 0.71. However, for fluids with the Prandtl number greater than unity, the criterion of keeping (Rad)
 1/4

 < 

2(H/d)
 1/4

 should hold for the fully-developed region [16] (where Rad is the Rayleigh number based on the wall-to-wall 

spacing d, and H is the channel length), therefore, for large Rayleigh numbers, the channel height H should be long 

enough in order to have a fully-developed region. Hence, there is a practical upper bound on the Ra.  

As far as the order of the considered wavy wall amplitude, ε, based on the analyzed results, it is determined that for the 

expansion of the field variables, up to the first power of ε is quite adequate to obtain accurate solution for the flow and 

temperature distributions. Therefore, the results presented here are based on the linear expansions (Eq. (13)).  

Figure 3 shows the streamlines and the isotherms in the fully-developed region of the channel for L= 0.01, φ = 0° (a 

vertical channel), Ra = 10
3
, m = 2, for different values of ε. As it can be seen from this figure, the streamlines follow the 

pattern of the wavy wall, and become parallel to the vertical direction by approaching the flat wall. The parallel 

isotherms show that the heat transfer in that region is basically through conduction. A closer look of Fig. 3-b indicates 

that the isotherms converge near the crests and diverge close to the troughs of the wavy wall. This phenomenon is more 

pronounced for ε = 0.1 (Fig. 3).  
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Fig. 3: Streamlines and Isotherms for the Fully-Developed Channel Flow for L = 0.01, φ = 0°, m = 2, and Ra = 103 for Different Values of ε: (a) 
Streamlines; (b) Isotherms 
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Fig. 4: The x-Component of Velocity Vector Along Channel Width for L = 0.01, m = 2, Ra = 103, and ε = 0.05 for Different Values of Lx 

 

Figure 4 shows the x-component of the velocity vector along the channel width, for L = 0.01, φ = 0°, m = 2, Ra = 10
3
, 

and ε = 0.05 for different locations on the wavy wall, Lx. The results are presented for four different positions along a 

period of the wavy wall. As the figure shows, the magnitude of the maximum velocity as well as its position along the 

channel width changes by moving along the channel axis. Considering a period of the wavy wall, the highest and the 

lowest magnitudes of the maximum velocity occur at Lx = 0, 2π and Lx = π, respectively. As the figure shows, when Lx 

is varied from 0 to π (crest to valley), the maximum x-component velocity decreases and gets closer to the wavy wall (to 

the left of the channel width mid-point). A totally reverse trend, however, takes place for the maximum velocity when 

Lx varies from π to 2π (valley to crest).  

The variations of the x-component of the velocity vector along the channel width for different channel inclination angles 

for L = 0.01, m = 2, Ra = 10
3
, ε = 0.05, and Lx = π/2 are depicted in Fig. 5. The buoyancy term in the momentum 

equation, which is the driving force for the natural convection, decreases with increasing the inclination angle φ. This 

results in the reduction of the x-component velocity vector as it can be observed from Fig. 5.  
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Fig. 5: Effects of Inclination Angle on x-Component of Velocity Vector Along Channel Width for L = 0.01, m = 2, Ra = 103, and ε = 0.05 

 

Figure 6 shows the variation of the x- component of the velocity vector along the channel width for different Rayleigh 

numbers for L = 0.01, φ = 0°, m = 2, ε = 0.05, and Lx = π/2. As the figure shows, a substantial increase in the x-

component of the velocity vector occurs with increasing the Rayleigh number from 10
3
 to 10

4
. 
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Fig. 6: Effects of The Rayleigh Number on x-Component of Velocity Vector Along Channel Width for L = 0.01, φ = 0°, m = 2, and Lx = π/2 

 

The streamlines and isotherms for L = 0.01, φ = 0°, Ra = 10
3
, ε =0.05, and different values of m are depicted in Fig. 7. 

When the temperatures of both of the walls are higher than the ambient temperature,T  i.e. m > 0, there is a buoyancy-

driven flow in the positive x- direction. However, for m < 0, the temperature of one of the walls is higher, and the 

temperature of the other wall is lower than the ambient temperature. Under such circumstances, two distinct regions are 

distinguished for the fluid flow in the channel. In the area close to the wall with the higher temperature, the fluid moves 

upwards; while, the reverse trend is observed in the vicinity of the wall with the lower temperature (Fig. 7). This reverse 

trend for the flow for m < 0 can also be observed in Fig. 8 which shows the variation of the x- component of the velocity 

vector along the channel width for different m. Moreover, as Fig. 8 shows, the x- component velocity increases with 

increasing the parameter m showing that the natural convection is intensifying for higher values of m.  

Figure 9 shows the variation of the y-component velocity vector along the channel width for different temperature scale 

parameter, m. The y-component of the velocity vector is, in general, much smaller than the x-component of the velocity 

for the vertical channel. As the figure shows, this velocity component is negative throughout the channel indicating that 

the fluid flows towards the wavy wall. Moreover, comparing Fig. 8 with Fig. 9 shows that the parameter m has similar 

effects on the x- and y-components of the velocity vector, i.e., both of the absolute values of the velocity components 

increase with increasing m. Furthermore, it is seen from Fig. 9 that the maximum absolute value of the y-component of 

the velocity vector occurs somewhere between the midsection of the channel width and the wavy wall for all values of 

m. 
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Fig. 7: Streamlines and Isotherms for Fully Developed Channel Flow for L = 0.01, φ = 0°, Ra = 103, and ε = 0.05, for Different Values of m; (a) 

Streamlines (b) Isotherms 
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Fig. 8: Variations of x- Component of Velocity Vector Along Channel 

Width for Different m For L = 0.01, φ = 0°, Ra = 103, ε = 0.05, and Lx = 
π/2 

Fig. 9: Variations of y- Component of Velocity Vector Along Channel 

Width for Different m For L = 0.01, φ = 0°, Ra = 103, ε = 0.05, and Lx = 
π/2 

 

Figure 10 magnifies the streamlines for L = 0.01, Ra = 10
3
, m = 2, ε = 0.1, for different values of the inclination angle, 

φ. From this figure, it is observed that eddies are formed within the valley of the wavy wall. This is due to the blockage 

of the fluid flow which corresponds to the opposite pressure gradient from the wall. It can also be observed that the 

absolute values of the eddies streamfunctions decrease by increasing the channel inclination angle. This is because, as 

the φ increases, the strength of the buoyancy forces decrease.  
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Fig. 10: Inclination Angle Effects on Channel Streamlines for L = 0.01, ε = 0.1, Ra = 103, and m = 2 

 

The effect of the scale temperature parameter, m, on the formation of eddies for L = 0.01, Ra = 10
3
, φ = 0°, and ε = 0.1 

is presented in Fig. 11. It can be seen in this figure that as m increases, the strength of the eddies intensifies which 

shows a better transfer of heat taking place there.  

The effect of the amplitude of the wavy wall, ε, on the flow pattern for L = 0.01, Ra = 10
3
, m = 2, and φ = 0° is depicted 

in Fig. 12. It can be seen that by decreasing the values of ε, eddies are diminished, and eventually disappear as ε tends to 

zero. 
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Fig. 11: Effects of Temperature Scale Variation on Channel Streamlines for L = 0.01, φ = 0°, Ra = 103, and ε = 0.1 

 
ε = 0.025 ε = 0.05 ε = 0.1 

0
.6

2

6
.8

2

1
3
.0

2

1
9
.2

2 2
5
.4

2

3
1
.6

2
4
0
.9

2

4
4
.0

2

0.1 0.0 0.1 0.2 0.3

0

1

2

3

4

5

6

y

L
x

 

0
0
.6

2

6
.8

2

1
3
.0

2

1
9
.2

2
2
5
.4

2

3
1
.6

2
3
7
.8

2
4
4
.0

2

0.1 0.0 0.1 0.2 0.3

0

1

2

3

4

5

6

y

L
x

 

0
.6

7

0

0
.6

7

7
.3

7

1
4
.0

7

2
0
.7

7

2
7
.4

7

3
4
.1

7

4
7
.5

7

0.1 0.0 0.1 0.2 0.3

0

1

2

3

4

5

6

y

L
x

 
Fig. 12: Effects of Wavy Wall Amplitude on Channel Streamlines for L = 0.01, φ = 0°, Ra = 103, and m = 2 

 

Figure 13 shows the variations of the local Nusselt numbers along a period of the wavy wall for L = 0.01, Ra = 10
3
, m = 

2, ε = 0.05, for different values of the inclination angle, φ. As the figure shows, the local maxima and the local minima 

of the Nusselt numbers occur at the crests and the troughs of the wavy wall, respectively. This is due to the fact that 

based on the earlier discussions; the isotherms converge near the crests and diverge close to the troughs. The figure also 

shows that as the inclination angle increases, the natural convection weakens and the difference between the local 

maximum and the local minimum of the Nusselt number decreases (Fig. 13). 
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Fig. 13: Effects of Inclination Angle of Channel on the Local Nusselt Number of Wavy Wall, L = 0.01, m = 2, Ra = 103, and ε = 0.05 For Different 

Inclination Angles 

 

The variations of the local Nusselt number along a period of the wavy wall for different Rayleigh numbers for L = 0.01, 

φ = 0°, m = 2, and ε = 0.05 is depicted in Fig. 14. As the figure shows, with increasing the Rayleigh number, the natural 

convection intensifies. Therefore, the local maximum of the Nusselt number profile increases at the wavy wall crests. 

The Rayleigh number increase, however, decreases the local Nusselt number minimum of the profile at the troughs. 

This, again due to the isotherms convergence and divergence near the crests and troughs of the wavy wall, respectively.  
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Fig. 14: Variations of the Local Nusselt Number of Wavy Wall with 

Respect to Lx For L = 0.01, m = 2, φ = 0° , and ε = 0.05 for Different 

Rayleigh Numbers 

Fig. 15: Variations of the Local Nusselt Number of Wavy Wall with 

Respect To Lx for L = 0.01, φ = 0°, Ra = 103, and m = 2 for Different 

Amplitudes 

 

The variations of the local Nusselt number of the wavy wall with respect to Lx for L = 0.01, m = 2, Ra = 10
3
, φ = 0°, for 

different values of ε are presented in Fig. 15. It is observed from this figure that the Nusselt number at the crests of the 

wavy wall increases by increasing the wall amplitude due to the isotherms becoming more compact at these points. The 

figure also shows a decrease of the local Nusselt number at the troughs as the amplitude increases.  

6. Conclusions 

The effects of a number of combinations of parameters, particularly, different combinations of the Rayleigh number, 

inclination angle, walls temperature-difference, and amplitude of a wavy-walled channel on the streamlines and 

temperature distributions for the fully developed fluid flow within the channel have been investigated. The laminar 

incompressible fluid flow was assumed to undergo a buoyancy-driven heat transfer due to the differential temperature 

difference between the two side walls of the inclined channel. 

The perturbation technique based on the small amplitude of the undulated wall was utilized to solve the appropriate 

Navier-Stokes and energy governing equations yielding the velocity and temperature distributions for the fully 

developed fluid flow within the channel. Based on the obtained results, the strength of eddies formed intensifies as the 

natural transfer of heat enhances. The eddies, however, show to diminish as the amplitude of the undulation reduces. 

The illustrative results show that the difference between the local maxima and minima of the Nusselt number profiles 

decreases with increasing the inclination angle.  
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As far as the effects of the Rayleigh number on the fluid flow velocity, the results demonstrate that the fluid flow 

velocity along the channel axis increases with increasing the Rayleigh number.  

The performed parametric study reveals that for negative values of the wall temperature ratio, m, the flow in the 

channel, in the region close to the wall having the lower temperature, reverses its direction.  

It should be noted that, although the presence of the wavy wall in this study has made it possible for the regular 

perturbation technique to be applicable, the method, however, shows its superiority over the conventional numerical 

methods, for it does not require complicated grid generation (because of the existing irregular boundaries), consumes 

less computing time, and invites much higher accuracy.  
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