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Abstract

The inverse of invertible standard multi-companion matrices will be derived and introduced as a new technique for
generation of periodic autoregression models to get the desired spectrum and extract the parameters of the model
from it when the information of the standard multi-companion matrices is not enough for the extracting of the
parameters of the model.

We will find explicit expressions for the generalized eigenvectors of the inverse of invertible standard multi-
companion matrices such that each generalized eigenvector depends on the corresponding eigenvalue therefore we
obtain a parameterization of the inverse of invertible standard multi-companion matrix through the eigenvalues and
these additional quantities. The results can be applied to statistical estimation, simulation and theoretical studies
of periodically correlated and multivariate time series in both discrete- and continuous-time series.

Keywords: Standard multi-companion matrix, Inverse of invertible standard multi-companion matrix, Factorization, Jordan decom-
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1. Introduction

Time series arise as recordings of processes which vary over time. A recording can either be a continuous trace or
a set of discrete observations.

Boshnakov (2001) generate the matrix F from the spectral parameters and then reconstruct the parameters
for the required parameterization of the models. The main idea of the multi-companion method for generation of
periodic autoregression models is to generate a multi-companion matrix with the desired spectrum and extract the
parameters of the model from it.
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The backward leading minors of the upper right block of a d-companion matrix F are denoted by δj , j = 1, 2, ..., d
and the corresponding determinants by ∆j(F ). Now we can compute the determinant of the d-companion matrix
F by det(F ) = (−1)(m+1)d∆d(F ).

If we use all of the above notations and symbols we can rewrite F in the new form as blocks to be

F =

[
F1:d,1:m−d δd
Im−d 0m−d,d

]
. (2)

In this paper, we introduce to the class of multi-companion matrices which is the inverse of invertible standard
multi-companion matrices when the information of the standard multi-companion matrices is not enough for the
extracting of the parameters of the model. The results can be applied to statistical estimation, simulation and
theoretical studies of periodically correlated and multivariate time series in both discrete- and continuous-time
series.

Theorem 1.1 The standard multi-companion matrix F is invertible iff F is non singular.

Corollary 1.2 The standard multi-companion matrix F is invertible iff δd is non singular.

Direct calculation shows that the inverse of an invertible standard multi-companion matrix F is

F−1 =

[
0m−d,d Im−d
δ−1d −δ−1d F1:d,1:m−d

]
, (3)

and in the next section we need to study the matrix G = F−1.

2. Inverse of invertible standard multi-companion matrices

Definition 2.1 The m×m invertible matrix G is said to be inverse of invertible standard multi-companion of order
d (or d-companion) if
1. the first m − d rows of G consists of {ei, i = m − d + 1, ...,m} where em = [0, ..., 0, 1, 0, ..., 0] is the standard
basis vector with 1 in the i-th position and 0 elsewhere;
2. the last d rows of G are arbitrary;
3. 1 ≤ d < m.

The new form of the inverse of invertible standard multi-companion can be written as

G =


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
m×m

. (4)

Let M and N in the standard multi-companion matrix F be equal to the left and right upper corner blocks
respectively(i.e. M = F1:d,1:m−d and N = δd). We will rewrite new form of the inverse of invertible standard
multi-companion in Equation (4), to get

G =
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0 I
B A

]
m×m
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
m×m

=


em−d+1

...
em
Gbot


m×m

where 0, I, B = N−1 and A = −N−1M are matrices of size (m−d)×d, (m−d)×(m−d), d×d, d×(m−d) respectively,
for some integer d, 1 ≤ d < m, N is invertible, Gbot is the block matrix [B,A], and ei = [0, ..., 0, 1, 0, ..., 0] is the
standard basis vector with 1 in the i-th position and 0 elsewhere.



International Journal of Applied Mathematical Research 155

The companion matrix C from the matrix G can be written as

CG = [φ1, φ2, ..., φm]CG
=

[
0 I
B A

]
=


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
φ1 φ2 . . . φm


which has the following properties:

Determinant (−1)m+1φm1

Characteristic polynomial λm + φmλ
m−1 + ...+ φ2λ+ φ1

Number of its linearly
independent eigenvectors

The vector {1, λ, ..., λm−1} is an eigenvector
corresponding to the eigenvalue λ

3. Properties of inverse of invertible standard multi-companion ma-
trices

The standard multi-companion matrices have properties which can be as a generalization of the corresponding
properties of companion matrices, multi-companion matrices.

Now we will see in the next subsections some important properties of the inverse of invertible standard multi-
companion matrices that we need for our works, for more see [3], [7] and [8].

3.1. Multiplication by multi-companion matrices

For instance, a d-companion matrix G is non-singular if and only if its lower left block Bd×d has a non-zero
determinant. Now if d = 1, then G is companion, and the corresponding determinants of Bd×d is equal to gm,d,
which is a scalar.

Theorem 3.1 Let G be a d-companion invertible m×m matrix, and A an arbitrary matrix.
1. The left multiplication of any matrix A by a d-companion matrix G (i.e. GA) moves the last m− d rows of A,
d rows upwards without change.
2. The right multiplication of any matrix A by the transposed of a d-companion matrix G (i.e. AG′) moves the
last m− d columns of A, d columns leftwards without change.
3. The symmetric product of any matrix A with G and its transpose (i.e. GAG′) moves each element of the upper
left (m−d)× (m−d) block of A, d rows upwards and d columns leftwards (i.e., d positions in north-west direction).

Corollary 3.2 Let G = AGd−1 with size m × m , where A is 1-companion, Gd−1 is (d − 1)-companion, and
1 + (d− 1) < m. Then G is d-companion.

Corollary 3.3 The product Ad...A1 of companion matrices Ai = [φi1, ..., φim]CG
, i = 1, ..., d, d < m is multi-

companion of order d. This product is non-singular if and only if φdm...φ1m 6= 0.

Note that for any d-companion matrix it is not always possible of writing it as a product of companion matrices,
so the converse is not true even in the invertible case. Actually, we can find a permutation of the non-trivial rows
which allows for fully factorization. The next theorem shows what we say.

Theorem 3.4 Let G be an invertible multi-companion matrix of order d, then it can be factored as products of d
companion matrices to be as

G = PAdAd−1 · · ·A1

where P is a (row) permutation matrix and Ai, i = 1, ..., d, are companion matrices.

We will use these useful properties of multiplication by multi-companion matrices and certain facts about the
factorization of multi-companion matrix for a generation matrix, for more details see [1] and [8].
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3.2. Factorization of multi-companion matrices

Factoring into companion times multi-companion

We are looking for a companion matrix A for which the following equation holds:

Gd = AGd−1. (5)

Hence, the expanded form of (5) is
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...

. . .
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...
. . .

...
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. . .
...

...
. . .
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g
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(d−1)
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(d−1)
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m,m


m×m

And so, we can write the elements of these matrices in one of the following equations

g
(d)
m,j =

m∑
i=m−d+2

ai g
(d−1)
i,j , j = 1, ..., d− 1, (6)

g
(d)
m,j =

m∑
i=m−d+2

ai g
(d−1)
i,j + aj−d+1, j = d, ...,m, (7)

g
(d)
i−1,j = g

(d−1)
i,j , i = m− d+ 2, ...,m; j = 1, ...,m. (8)

We can solved (7) explicitly for aj−d+1, j = d, ...,m (i.e., ad, ..., am),

aj−d+1 = g
(d)
m,j −

m∑
i=m−d+2

ai g
(d−1)
i,j , j = d, ...,m.

The remaining equations involve operations on parts of the rows of Gd−1. Say, g
(d)
i• be the i-th (1 : d)-row of

Gd−1, and so g
(d)
i• = ( g

(d)
i1 , ..., g

(d)
id ). Now from (6) and (8), we have

g
(d)
m• =

m∑
i=m−d+2

ai g
(d−1)
i• ; g

(d)
i−1• = g

(d−1)
i• , i = m− d+ 2, ...,m.

Factoring into multi-companion times companion

Now the expanded form of Gd = Gd−1A where A a companion matrix is
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
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×


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
a1 a2 . . . am


m×m

So, we can write the elements of these matrices in one of the following equations

g
(d)
m−d+1,j = aj , j = 1, ...,m.

g
(d)
i,1 = g

(d−1)
i,m a1, i = m− d+ 2, ...,m.

g
(d)
i,j = g

(d−1)
i,m aj + g

(d−1)
i,j−1 , j = d− 1, ...,m, i = m− d+ 2, ...,m,

3.3. Eigenvalues and eigenvectors of inverse of invertible standard multi-companion
matrices

The Jordan canonical forms of inverse of invertible standard multi-companion matrices provide a way to generate
eigenvalues and eigenvectors to construct the matrix G and then extract the parameters of the corresponding PAR
model from it.

Consider the equation
Gx = λx,

that relates G to an eigenvalue λ and a corresponding eigenvector x.
The eigenvalues of the m×m matrix G are the roots (zeros) of its characteristic polynomial,

T (λ) = det(λI −G)

where λI −G is the characteristic matrix of G.
If the characteristic polynomial T (λ) has distinct roots, then it can be factorized into a product of m linear

factors
T (λ) = (λ− λ1)(λ− λ2)...(λ− λm).

Also, if T (λ) has some s repeated roots, then it can be factorized as follows

T (λ) =

s∏
i=1

(λ− λi)qi

where

s∑
i=1

qi = m.

Remark 3.5 If λi is an eigenvalue of a matrix A, then the dimension of the linearly independent eigenspace
corresponding to λi is called the geometric multiplicity of λi, and is denoted by gm(λi).

On the other hand, the number of times λ− λi that appears as a factor in the characteristic polynomial of A is
called the algebraic multiplicity of A, and is denoted by am(λi). Note that from linear algebra gm(λi) ≤ am(λi),
for more details see [1].

Diagonalizable multi-companion matrices

Clearly that, a square matrix G is called diagonalizable if there is an invertible matrix P such that P−1GP is a
diagonal matrix; the matrix G is said to diagonalize G. The decomposition of G into the form

G = PJP−1

is the Jordan matrix decomposition of G where J is a Jordan canonical form of G and P is a non-singular matrix
and its columns are the corresponding eigenvectors of G.

Clearly, G is diagonalizable if and only if the geometric multiplicities of all eigenvalues are coincide with the
algebraic multiplicities, i.e. gm(λi) = am(λi) for every distinct eigenvalue λi.
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Non-diagonalizable multi-companion matrices

It is important to note that if a matrix has all distinct eigenvalues (whether real or complex), then it is diagonalizable;
in other words, only matrices with repeated eigenvalues might be non-diagonalizable.

However, this happens when the Jordan matrix J is blockdiagonal, as the following structure

J =


J(λ1) 0 . . . 0

0 J(λ2) . . . 0
...

...
. . .

...
0 0 . . . J(λs)


where J(λi), i = 1, ..., s is called a Jordan segment associated with the eigenvalue λ which is made up of gi = gm(λi)
Jordan blocks to get

J(λi) =


J1(λi) 0 . . . 0

0 J2(λi) . . . 0
...

...
. . .

...
0 0 . . . Jgi(λi)


where

Jj(λi) =



λi 1 0 . . . 0

0 λi 1 0
...

...
. . .

. . .
. . . 0

0 . . . 0 λi 1
0 . . . . . . 0 λi

 , j = 1, ..., gi.

Each block is associated with a set of columns of P forming a Jordan chain which is called generalized eigen-
vectors. The sum of dimensions of all Jordan blocks associated with λi is equal to am(λi). The number of Jordan
blocks associated with λi is equal to gm(λi), for more details see [5].

Eigenvector and generalized eigenvector of a d-companion matrix

We can added linearly independent vectors to the eigenvectors in order to complete the basis, when G does not
have m linearly independent eigenvectors to form the columns of the matrix P .

Suppose that the geometric multiplicity of the eigenvalue is less than its algebraic multiplicity. Choose a single
s× s Jordan block Jj(λ), j = 1, ..., g, where g = gm(λ). The block Jj(λ) is associated with a set of columns of P .
Let Pj = [x(1),x(2), ...,x(s)] be the portion of P that correspond to the location of the block Jj(λ) in the Jordan
matrix J .

There exactly one independent eigenvector for each Jordan block which is the first vector in the portion. The
following properties are very important and useful for the eigenvectors of any matrix, for more details see [5] and
[6].

Proposition 3.6 There can be at most d linearly independent eigenvectors of a d-companion matrix corresponding
to a given eigenvalue.

Definition 3.7 The set of vectors {x(1),x(2), ...,x(s)} is called a chain (or a Jordan chain) of generalized eigenvec-
tors associated with the eigenvalue λ.

Theorem 3.8 A chain of generalized eigenvectors C = {x(1),x(2), ...,x(s)} associated with an eigenvalue λ is linearly
independent.

Theorem 3.9 The union of chains of generalized eigenvectors of G belonging to distinct eigenvalues is linearly
independent.

Theorem 3.10 Let λ be an eigenvalue of G, x(1) and y(1) be two independent eigenvectors corresponding to λ. Let
C1 = {x(1),x(2), ...,x(s1)} and C2 = {y(1), y(2), ...,y(s2)} be the two chains of generalized eigenvectors corresponding
to x(1) and y(1) respectively. Then the union C1

⋃
C2 is linearly independent.
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From the above we may be constructed a transition matrix P from the chains of linearly independent generalized
eigenvectors of G, and justifies the invertibility of P .

Let GP = PJ , we have

G[x(1),x(2), ...,x(s)] = [x(1),x(2), ...,x(s)]



λ 1 0 . . . 0

0 λ 1 0
...

...
. . .

. . .
. . . 0

0 . . . 0 λ 1
0 . . . . . . 0 λ



=



x(1)λ x(1)1 0 . . . 0

0 x(2)λ x(2) 0
...

...
. . .

. . .
. . . 0

0 . . . 0 x(s−1)λ x(s−1)1
0 . . . . . . 0 x(s)λ


Hence,

Gx(1) = x(1)λ

Gx(i) = x(i)λ+ x(i−1), i = 2, ..., s,

and the two equations can be squeezed into one if we adopt the convention x(0) ≡ 0.
We called x(s) a generalized eigenvector of order s associated with the eigenvalue λ if we find a vector x(s) such

that

(G− λI)sx(s) = 0, and (G− λI)s−1x(s) = x(1) 6= 0.

In particular case, if s = 1, then (G− λI)x(1) = 0 and x(1) 6= 0, which is the definition of an eigenvector.
Since (G − λI)ix(i) = (G − λI)i(G − λI)s−ix(s) = 0 and (G − λI)i−1x(i) = (G − λI)s−1x(s) 6= 0, then one of

these can generate the other generalized eigenvectors as follows, (start from x(s))

x(s−1) = (G− λI)x(s)

x(s−2) = (G− λI)2x(s) = (G− λI)x(s−1)

...
...

...

x(2) = (G− λI)s−2x(s) = (G− λI)x(3)

x(1) = (G− λI)s−1x(s) = (G− λI)x(2)

This means that x(i), i = 1, ..., s, is a generalized eigenvector of order i of G.

4. Applications

Here we outline the periodic autoregressive models where the inverse of invertible standard multi-companion matrices
appear and discuss how the results about such matrices may be useful. Exposition of specific results requires a lot
of background information from time series analysis and will be published elsewhere.

We say that the process {Xt} is a periodically correlated time series, if

∃d ∈ Z+; 3 µt = µt+d, γX(s, t) = γX(s+ d, t+ d) ∀s, t ∈ Z.

where µt = EXt <∞ and γX(s, t) = E[(Xs − EXs)(Xt − EXt)] <∞.
We suppose below for simplicity that µt = 0. A periodic autoregressive process is a periodically correlated

process which satisfies a stochastic difference equation of the form

Xt =

pt∑
i=1

φt,iXt−i + εt (9)
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where {εt} is an uncorrelated periodic white noise process and normally distributed terms with mean zero and
periodic variances σ2

ε (t) and φt,i is the autoregression coefficients.
The usual stationary autoregression model can be obtained from equation (9) by putting d = 1. In that case

the parameters of the model do not depend on t and the polynomial 1 − Σφiz
i or its companion matrix can be

used to study the process, e.g. its spectrum. In the general case, d > 1, the polynomials φt(z) = 1 − Σφt,iz
i

cannot be used with the same success but a natural generalization exists (see [2]). Let m = max(d, p1, ..., pd),
Zt = (Xt, Xt−1, ..., Xt−m+1). Define the companion matrices At = C[φt,1, φt,2, ..., φt,m], t = 1, ..., d, and the
matrices Gt = At · · ·At−d+1. Then AtZt = Zt−1 + Et , GtZt = Zt−d + Ut, where Et and Ut are uncorrelated with
Zt−1 and Zt−d respectively. Without loss of information we can take every d-th element of the sequence Zt, e.g.
Yt = Ztd, t = ...,−1, 0, 1, ... . The process Yt is multivariate stationary AR(1),

GdYt = Yt−1 + Ut. (10)

Equation (10) can be used to give full description of the properties of the periodic autoregressive process {Xt},
for more see [2].

The matrix G is an inverse of invertible standard multi-companion F of order d and its decomposition into a
product of companion matrices is Ad? · · ·?A1 and we use it when the information of F is not enough therefore we
can get it from (10) by multiply both sides by G−1 to get

Yt = FdYt−1 + U ′t . (11)

Some interesting properties of the periodic autoregression model can be derived using the results from Section
3.

Knowledge of the Jordan form of multi-companion matrices provides a way to generate periodic models with
specified properties by constructing the matrix G and then deriving the parameters of the model by factorizing G
into a product of companion matrices then get the inverse for each one of them or directly take the inverse of G then
do the same way. This can be useful for selection of appropriate models in simulation studies and in estimation of
restricted models for the purpose of hypothesis testing (for example, to test periodic integration it is necessary to
estimate a restricted model with the zero-hypothesis roots on the unit circle). Conditions of this kind are difficult
to handle when working with the parameters φt,i themselves, for more see [4] and [5].

Here is an example. Suppose that we wish to generate a 6 × 6 diagonalizable 4-companion matrix G with the
following spectral parameters, maybe with the intention of simulating quarterly time series using the generated
model.

1 2 3 4 5 6
eigenvalue 0.643 0.542 0.208− 1.981i 0.208 + 1.981i −0.521− 0.671i −0.521 + 0.671i

c1 −0.881 −0.83 0.253− 0.085i 0.253 + 0.085i −0.264 + 0.486i −0.264− 0.486i
c2 0.382 0.375 −0.472− 0.04i −0.472 + 0.04i 0.279− 0.014i 0.279 + 0.014i
c3 −0.228 −0.156 −0.608 −0.608 −0.293− 0.377i −0.293 + 0.377i
c4 −0.074 −0.12 0.314− 0.307i 0.314 + 0.307i 0.069 + 0.16i 0.069− 0.16i

There are four c-parameters for each eigenvalue since the matrix is 4-companion, i.e. d = 4. Here is the generated
4-companion matrix, 

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0.5 0.7
0 1 0 0 −0.749 −2.561
0 0 1 0 −1.541 −4.199
0 0 0 1 1.2 2.1


And here are the periodic autoregression coefficients of the corresponding PAR model,

1 2 3 4 5 6
φ1 1 0 0 0 −0.5 −0.7
φ2 1 0 0 0.749 2.561 0
φ3 1 0 1.541 4.199 0 0
φ4 1 1.2 2.1 0 0 0
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As expected, the companion matrices formed from the parameters for each season provide the companion
factorization of our 4-companion matrix,[

1 1.2 2.1 0 0 0
]
CA1

[
1 0 1.541 4.199 0 0

]
CA2

[
1 0 0 0.749 2.561 0

]
CA3

×
[

1 0 0 0 −0.5 −0.7
]
CA4

=


0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0.5 0.7
0 1 0 0 −0.749 −2.561
0 0 1 0 −1.541 −4.199
0 0 0 1 1.2 2.1


Periodic auroregression moving average models may be generated by applying the above procedure separately

to the generation of the autoregression and moving average parts.

Figure 1: Plot of observed of simulated PAR model for n = 1000 with φ1,i, φ2,i, φ3,i and φ4,i which generation of reversed
synthetic river flow data that is important in planning, design and operation of water resources systems.

5. Conclusion

We found explicit expressions for the generalized eigenvectors of the inverse of invertible standard multi-companion
matrices such that each generalized eigenvector depends on the corresponding eigenvalue. We will discussed some
properties such the other matrices, as the factorization of matrices.

Moreover, we obtained a parametrization of the inverse of invertible standard multi-companion matrix through
the eigenvalues and these additional quantities. The number of parameters in this parametrization is equal to the
number of non-trivial elements of the inverse of invertible standard multi-companion matrix. The results can be
applied to statistical estimation, simulation and theoretical studies of periodically correlated and multivariate time
series in both discrete- and continuous-time series.

Acknowledgements

The researchers would like to thank the referee for carefully reading the paper and for helpful suggestions which
greatly improved the paper.

References

[1] B. Iqelan, ”Periodically Correlated Time Series : Models and Example”, LAP Lambert Academic Publishing, (2011).

[2] G. Boshnakov, ”Linear Algebra and its Applications”, (2002).

[3] G. Boshnakov, ”Periodically correlated solutions to a class of stochastic difference equations”, Stochastic differential
and difference equations, (1997), 1-9.

[4] I. Gohberg, P. Lancaster, L. Rodman, ”Matrix polynomials”, Computer Science and Applied Mathematics, (1982).



162 International Journal of Applied Mathematical Research

[5] K. Hipel, A. McLeod, ”Time series modelling of water resources and environmental systems”, Developments in water
science, (1994).

[6] U. Kuechler, M. Soerensen, ”A note on limit theorems for multivariate martingales”, Bernoulli, 5, 3, (1999), 483-493.

[7] P. Lancaster, L. Rodman, ”Algebraic Riccati Equations”, Oxford University Press, (1995).

[8] P. Lancaster, M. Tismenetsky, ”The Theory of Matrices”, Academic Press, New York, (1985).


	Introduction
	Inverse of invertible standard multi-companion matrices
	Properties of inverse of invertible standard multi-companion matrices
	Multiplication by multi-companion matrices
	Factorization of multi-companion matrices
	Eigenvalues and eigenvectors of inverse of invertible standard multi-companion matrices

	Applications
	Conclusion

