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Abstract

In this work, we propose an adaptation of the algorithm Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
proposed by deb. et al. (2002) to solve multi-objective problems to the resolution of mono-objective problem.
Contrary to the majority of the genetic algorithms, we did not define a probability of crossing.
After having applied our algorithm to functions test, we then used it to identify hydrogeologic parameters where
the boundaries values and the source term are supposed to be unknown besides the permeability.
The direct problem was solved by using the finite elements of Galerkin on freefem++ and the genetic algorithm
was programmed in Matlab. Then we carried out a coupling of the two codes to identify the parameters.
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1. Introduction

For the numerical simulation of flow and transfer related problems of substances into the basement knowing the
boundary values, the source terms and certain physical parameters of geological strata is capital. However,these
factors which are generally experiment-based cause a number of difficulties.
In this work, we adapt the genetic algorithm Non-dominated Sorting Genetic Algorithm-II (NSGA-II) proposed by
Deb and al(2002)[11] for the optimization of a multi-objective problem to the resolution of a mono-objective problem
without constraints. First we tested it on examples before using it to solve an inverse problem of hydrogeology by
basing us on actual data resulting from the studing site of project TRANSPOL II (INERIS 2003)[1].

2. Presentation of the algorithm used

This algorithm makes it possible to maximize a positive function f called fitness or evaluation function of the
individual. The individuals represent the variables.
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2.1. Coding and creation of the initial population

The real-type coding used consists in directly representing the actual values of the variable. We subdivided the
eligible field in several under fields. And the initial population was created in a random way by using the uniform
law in each under field. That makes it possible to have a diversified population from the beginning and convergency-
accelerating. The size of the population is n. We create a table of n variables.

2.2. Operation of selection

We used the selection by caster of Goldberg [19]. The parents are selected according to their performance. In this
method the probability p with which an individual i represented by a variable xi of fitness fi (evaluation of the
function in xi) reintroduced in a new population of size n is:

p =
fi∑n
j=1 fj

2.3. Operation of crossing

The barycentric crossing is used but we did not use a probability of crossing. In this kind of crossing, two genes
P1(i) and P2(i) are selected from each parent to the same position i. They define two new genes C1(i) and C2(i)
by linear combination:
C1(i) = aP1(i) + (1− a)P2(i) ; C2(i) = (1− a)P1(i) + aP2(i) ; a ∈]0, 1[ .
In this document, we crossed the whole mother population to get a child population of size n.

2.4. Operation of mutation

Mutation of a Gaussian type is applied to the population. One selects an individual x under a probability p. If p
is lower than the probability of mutation pm, one adds a Gaussian noise to x i.e. one replaces x by x+ ε, where ε
are a random value obtained according to the law from Gauss. The newly-created individual replaces the former
one if it is better and if it is in the acceptable field.

2.5. New population

After the operations of selection, crossing and change, an intermediate population of size 2n is created by gathering
the parent and child populations. The new parent population is obtained by keeping the N better individuals.
Finally the algorithm used is:

Algorithm 1 Algorithm used

For each iteration t do
To calculate the score of each individual of Pt

To generate a new population of child Qt by applying the operators of selection, crossing and mutation
Rt = Pt ∪Qt (add Qt to Pt)
To classify the individuals of Rt from decreasing order according to the score of each individual
To keep n best individuals of Rt to form a new population of parent Pt+1

t = t+ 1 (To increment the counter of the generation )

2.6. Application to the test functions

Before using our algorithm for the identification of the parameters in hydrogeology, we tested it on classical functions.

2.6.1. Function of Rosenbrock

The function of Rosenbrock is a unimodal function, nonconvex, of n dimensions, used like test for problems of
mathematical optimization. It is defined by:

F1(x) =

n−1∑
i=1

[100(xi+1 − x2
i ) + (xi − 1)2]
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In the literature, this function is regarded as being a difficult problem because of the nonlinear interaction between
the variables [20]. The global minimum is obtained as in point (1, . . . , 1), for which the function is worth 0.

2.6.2. Function of Rastrigin

It is a function of n dimensions, strongly multimodal defined by:

F2(x) =

n∑
i=1

(x2
i − 10 ∗ cos(2πxi) + 10)

The local minima site is distributed regularly. The global minimum is in the beginning and the value of its function
is equal to zero.

2.6.3. Results of tests

In all the examples, we used the same parameters given by the table below:

pm σ size of the opulation Number of iterations
0.00001 0.5 100 100

We applied our algorithm to these functions in dimension three. Then, we compared our results, with those
obtained by the genetic algorithm provided with by Matlab (the function ga). For each function test, we carry out
five simulations. The tables below, gives the results of optimization. It is noticed that the results got with our code
are better than those obtained with the function ga of Matlab but our code is slower.

Table 1: Minimization of the function of Rosenbrock: our code

x1 x2 x3 Values of the function
0.99994 0.99990 0.99980 1.784× 10−8

1 1 1 0
0.99256 0.98518 0.97107 2.974× 10−4

0.99999 0.99999 0.99999 0
1 1 1 0

Table 2: Minimization of the function of Rosenbrock : function ga

x1 x2 x3 Values of the function
0.93595 0.87593 0.76760 1.950× 10−2

0.83982 0.70461 0.49370 1.137× 10−1

0.83796 0.69925 0.48648 1.181× 10−1

0.81582 0.66530 0.44308 1.459× 10−1

0.88482 0.78141 0.60889 6.156× 10−2

3. Application to the identification of hydrodynamic parameters

3.1. Description of the site

3.1.1. Geometry

The site in question has a length of 500 meters in the direction of groundwater flow (SN) and a width of 300 meters.
The unsaturated zone is 6 meters.
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Table 3: Minimization of the function of Rastrigin: our code

x1 x2 x3 Values of the function
−3.9× 10−10 2.1× 10−10 1.5× 10−9 0

6× 10−11 3.2× 10−11 −3.6× 10−10 0
−1.5× 10−9 2.4× 10−10 5.9× 10−10 0
−1.1× 10−10 −5.1× 10−11 10−9 0
3.2× 10−10 −7.8× 10−10 3.3× 10−10 0

Table 4: Minimization of the function of Rastrigin : fonction ga

x1 x2 x3 Values of function
8.418× 10−4 −4.565× 10−4 −2.163× 10−3 6.385× 10−2

1.002× 10−4 9.949× 10−1 7.115× 10−6 1.110× 10−3

3.598× 10−5 9.95× 10−1 −7.753× 10−6 9.949× 10−1

6.797× 10−6 −4.108× 10−4 −2.730× 10−4 9.949× 10−1

1.827× 10−4 −1.824× 10−5 9.949× 10−1 9.949× 10−1

Figure 1: Site
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3.1.2. Boundary conditions

The map of figure 1 shows the domain to be modeled. The river flows southwest to the northeast. The upstream
boundary condition is equated with the river and has a constant load over time. The downstream boundary
condition corresponds to an imaginary line perpendicular to the stream. A constant charge will be imposed. The
others side boundary and the lower limit corresponding to zero flow conditions.

3.2. Mathematical model of the flow

The fluid is considered incompressible and monophasic and the medium Ω porous and is saturated, and we place
ourselves in permanent mode. The law of conservation of the mass and the law of Darcy [13] applied to our site
gives:

div(u) = f in Ω
u = −K∇p in Ω
p = d on Γ0

u.ν = −K ∂p
∂n = 0 on Γ1

(1)

where:

• u(x): Darcy velocity,

• p(x): hydraulic potential,

• f :source term,

• K: the hydraulic conductivity (constant)

• Ω represent the domain.

• Γ0: limits upstream and downstream where the hydraulic potential are constant.

• Γ1: limits of worthless flows.

• d(x): Dirichlet boundary conditions.

3.3. Direct problem solving

Theorem 1 Under the assumptions of flow, the problem (1) admits one and only solution.

Proof By eliminating u, the problem (1) is equivalent to:

−div(K∇p) = f in Ω
p = d on Γ0

−K ∂p
∂n = 0 on Γ1

(2)

Let V be the space be defined by

V = {v ∈ H1(Ω), v = 0 on Γ0}.

Since mes(Γ0) > 0, according to [21], we can choose

‖v‖V =

(∫
Ω

|∇v|2
)1/2

as norm on V.
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Let v ∈ V be a test function. On multiplying (2) by v and integrating by parts, the variational formulation
associated to the problem (2) is:{

Find p ∈ H1(Ω) such that p = d on Γ0 and such that∫
Ω
K∇p.∇v =

∫
Ω
fv, ∀v ∈ V (3)

We denote by γ0 the trace operator. Let rd ∈ H1(Ω) such as γ0(rd) = d and we denote p0 = p− rd. The variational
formulation becomes:{

Find p0 ∈ V such as∫
Ω
K∇p0.∇v =

∫
Ω
K∇rd.∇v +

∫
Ω
fv, ∀v ∈ V (4)

f ∈ L2(Ω).
Let the bilinear form α : V × V −→ R be defined by:

α(p0, v) =

∫
Ω

K∇p0.∇v

Let the linear form L : V −→ R be defined by:

L(v) =

∫
Ω

K∇rd.∇v +

∫
Ω

fv

The space V is a Hilbert space for the Hilbertian norm ‖.‖V .
The bilinear form α is continuous, coercive and the linear form L is also continuous. Thus the theorem of Lax-
Milgram [15] ensures the existence and uniqueness of a solution to the variational problem (4) and consequently
the existence and uniqueness of a solution of (2).

Let Th be a triangulation of Ω. Let P1 denote the space of continuous, piewise affine function in Ω i.e the space of
continuous functions which are affine in x, y on each triangle of Th. We pose Vh = P1 ∩ V . Vh is a linear vector
space of finite dimension. We denote N its dimension and φ1, . . . , φN a basis. The approximated problem is:

find ph ∈ Vh, such that α(ph, vh) = L(vh) for all vh ∈ Vh. (5)

Let

ph(x, y) =

N∑
i=1

piφi(x, y)

and take vh = φi for i = 1, . . . , N ; equation (6) is equivalent to

α(

N∑
j=1

pjφj , φi) = L(φi) , i = 1, ..., N (6)

This gives the system Ax = b, where:

Aij =

∫
Ω

K∇φi.∇φj =
∑
T∈Th

∫
T

K∇φi.∇φj

and

bi =

∫
Ω

fφi +

∫
Ω

K∇rd.∇φi

=
∑
T∈Th

∫
T

fφi +
∑
T∈Th

∫
T

K∇rd.∇φi

3.4. Inverse problem

3.4.1. Data

The location of monitoring points are given in figure 1 and observed values are given in the table below.
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Table 5: Observed data

Points X(m) Y(m) Observed values
P33 472782 4646714 125.01
P32 473080 4646920 123.23
P31 472749 4646470 125.51
P30 472802 4646408 125.58
P28 472712 4646570 125.4
P27 472696 4646462 125.52
P26 472700 4646464 125.51
P24 472792 4646520 125.4
P23 472762 4646500 125.47
P22 472745 4646480 125.51
P20 472722 4646475 125.53
P19 472691 4646460 125.54
P18 472750 4646875 124.88
P17 472720 4646618 125.29
P16 472664 4646700 125.08
P14 472716 4646487 125.51

3.4.2. Parametric identification problem

We suppose that the permeability K is constant and unknown. We also assume that the Dirichlet boundary
conditions(three values) values and the value of the source term are unknown. The problem is to find the values of
these constants that minimize J defined by

J =
1

2

nobs∑
i=1

(ps(xi, yi)− pob(xi, yi))2 (7)

with:
ps(xi, yi) is the simulated pressure head at the point (xi, yi),
pob(xi, yi) is the pressure head observed at the point (xi, yi).
nobs number of observations.
We use the genetic algorithm to minimize J .

3.5. Algorithm of calculus of the function cost

Since the points (xi, yi) of measurement do not correspond necessarily to the points of discretization where the
solution is calculated, it is thus necessary to seek the approximation of hi(xi, yi). The points P17 and P30 were not
used in the procedure of identification. They will be used as point tests.

Algorithm 2 Algorithm to calculate the function cost

J←− 0
for i=1 to nobs-2 do
Determine the triangle Ti such as (xi, yi) ∈ Ti
Determine the approximate solution Pi(x, y) so that (x, y) ∈ Ti
J←− J+ 1

2 (Pi(xi, yi)− Pob(xi, yi))
2

endfor

3.6. Inverse problem solving: coupling Freefem++/Matlab

We programmed this algorithm by using Freefem++ and matlab. The function cost which uses the solution of
the direct problem is calculated in FreeFem++. The communication between FreeFem++ and Matlab is made
through two files. With each iteration, a file which contains the new population (population.dat) is created by the
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program Matlab and a file which contains the scores (scores.dat) of the various individuals is created by FreeFem++.
Therefore, with each iteration, the FreeFem++ program calculates the scores of the various individuals, by solving
the direct problem. The data are the values of the various parameters being in the file population.dat. The Matlab
program uses the file scores.dat for the process of optimization by genetic algorithm.

Figure 2: Coupling Freefem++/Matlab
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3.7. Results

3.7.1. Configuration of the genitic algorithm

Pm sigma size generations
0.001 0.5 100 30

3.7.2. Identification

We denote:
d1: boundary condition upstream (west),
d2: boundary condition upstream (east),
d3: boundary condition downstream
The identified values are given in table 2.

Table 6: Results of the identification

Interval Identified values
K(m/j) [100, 180] 155.187
f(m3/j) [0.01, 1] 0.108
d1(m) [100, 150] 127.9
d2(m) [100, 150] 124.12
d3(m) [100, 150] 124.3

Value of the function cost J : 0.734

3.7.3. Simulated groundwater level

Groundwater levels simulated with the identified values are given in the table below

Table 7: Simulated values and observed value

Pt X(m) Y(m) Observed Simulated Residue
pt33 472782 4646714 125.01 125.0805 0.0705
pt32 473080 4646920 123.23 124.5968 1.3668
p31 472749 4646470 125.51 125.353 -0.157
p30 472802 4646408 125.58 125.5042 -0.0758
p28 472712 4646570 125.4 125.2194 -0.187
p27 472696 4646462 125.52 125.333 -0.029
p26 472700 4646464 125.51 125.3326 -0.1774
p24 472792 4646520 125.4 125.2979 -0.1021
p23 472762 4646500 125.47 125.3155 -0.1545
p22 472745 4646480 125.51 125.3341 -0.1759
p20 472722 4646475 125.53 125.3265 -0.2035
p19 472691 4646460 125.54 125.3328 -0.2072
p18 472750 4646875 124.88 124.8548 -0.0252
p17 472720 4646618 125.29 125.1826 -0.1074
p16 472664 4646700 125.08 125.1215 0.0415
p14 472716 4646487 125.51 125.3058 -0.2042
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3.7.4. Results of INERIS project

In the project INERIS [1], this is to determine the coefficient of permeability K and the source term f . The upstream
boundary conditions are imposed at 130 m (west) and 127 m (east). The downstream boundary condition is imposed
at 125 m. The method of finite differences of size variable was used for solving the direct problem. The results are
summarized in the table below.

Table 8: Simulated values(Project INERIS)
K = 150m/j and f = 0.1m3/j

Pt X(m) Y(m) Observed Simulated Residue
pt33 472782 4646714 125.01 125.0805 0.0705
pt32 473080 4646920 123.23 124.5968 1.3668
p31 472749 4646470 125.51 125.353 -0.157
p30 472802 4646408 125.58 125.5042 -0.0758
p28 472712 4646570 125.4 125.2194 -0.187
p27 472696 4646462 125.52 125.333 -0.029
p26 472700 4646464 125.51 125.3326 -0.1774
p24 472792 4646520 125.4 125.2979 -0.1021
p23 472762 4646500 125.47 125.3155 -0.1545
p22 472745 4646480 125.51 125.3341 -0.1759
p20 472722 4646475 125.53 125.3265 -0.2035
p19 472691 4646460 125.54 125.3328 -0.2072
p18 472750 4646875 124.88 124.8548 -0.0252
p17 472720 4646618 125.29 125.1826 -0.1074
p16 472664 4646700 125.08 125.1215 0.0415
p14 472716 4646487 125.51 125.3058 -0.2042

Figure 3: Curve of observed and simulated level to measurement points
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Figure 4: Curve of observed and simulated level to measurement points(Project INERIS)

Figure 5: Mesh and Simulated levels on the all domain

Figure 6: Simulated levels on the all domain
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4. Conclusion

In this work, we adapted a genetic algorithm allowing to optimize positive functions effectively. Tests carried out
on certain functions made it possible to prove the effectiveness of the algorithm to find the optimum total.
We applied this algorithm to identify hydrodynamic parameters in which the boundary conditions were part of
the unknown factors to be identified. This was made by using a coupling of codes carried out on FreeFem++ and
Matlab.
By comparing the measured and calculated levels, we see that the method used in this work is much more precise.
The levels calculated and measured at points 17 and 30 which were not used in the process of identification as well
as the curves of figure 2 confirm that.
But the algorithm that we used remains slow. A parallelization of the code is thus necessary to make it faster.
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