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Abstract 

In this paper, diffraction problem of a floating vertical circular 
cylinder is studied. Detailed analytical solution for the boundary value 
problem to evaluate the wave loads for the cylinder with heave and 
pitch motions in water of finite depth in the presence of an incident 
wave, has been presented. Accordingly, diffraction problem for a 
truncated vertical circular cylinder of radius   in water of finite depth 
  has been considered. Incident wave used in this problem, is assumed 
to be linear with amplitude  . In order to calculate the added mass and 
damping coefficients of the pitch motion of the body, strip theory is 
applied. For the heave motion, the hydrodynamic coefficients are 
found by the submerged disk method. Parametric studies of the effects 
of the wave excitation force on the floating cylinder have been 
performed for two different cases: 1) constant draft of the cylinder 
with varying water depth and 2) varying draft of the cylinder with 
constant water depth. 

Keywords: Diffraction Phenomenon; Floating Circular Cylinder; Dynamic 
Motion; Strip Theory; Submerged Disk Method 

 

1 Introduction 

It is well known that floating structures such as ocean platforms, breakwaters, and 

wave energy devices are often used in ocean engineering. The hydrodynamic 

properties, of which most important are the hydrodynamic coefficients, wave 

mailto:pghadimi@aut.ac.ir
mailto:hpaselar@aut.ac.ir
mailto:rostami115@yahoo.com


 

 

 

612 Ghadimi, Paselar Bandari, Bakhshandeh Rostami 

 

excitation forces, transmission coefficient, and reflection coefficient, are of major 

interest for designers and many researches have been carried out and several 

results have been obtained. 

Accurate prediction of the wave loads exerted by surface waves on rigid structures 

is imperative for designing the offshore structures. To analyze the hydrodynamic 

properties of floating structures, various methods such as Boundary Element 

Method (BEM), Finite Element Method (FEM), and some analytical methods can 

be used [1]. Among all the existing methods, the most efficient is analytical 

method, which is only applicable to some particular problems. For example, 

vertical circular cylinders are among the best marine elements that are utilized in 

the construction of many offshore platforms such as Spars, Semisubmersible, 

TLPs, etc. Numerical methods like BEM and FEM are suitable for general 

problems, but the computational procedure is complex, while the efficiency and 

accuracy of the results are relatively lower than those of the analytical methods. 

Therefore, the most suitable methods for some particular problems still remain to 

be the analytical methods [1]. 

Up to now, many scholars have applied various analytical methods. Among them 

are Miles and Gilbert [2] who studied the diffraction problem of surface waves on 

a circular dock and subsequently Garret [3] presented the results for the horizontal 

and vertical forces and moments on the dock.  Black, Mei and Bray [4] calculated 

the wave forces on a truncated cylinder that either extended to the free surface or 

rested on the seabed. Isaacson [5] extended Garrett’s method to a submerged 

truncated cylinder sitting on the seabed. Yeung [6], Sabuncu and Calisal [7,8,9] 

investigated a set of theoretical added mass and damping coefficients for a 

floating circular cylinder in water of finite depth. Yeung and Sphaier [10] 

determined the radiation and diffraction properties of a floating vertical cylinder 

of finite draft in a channel. Berggren and Johansson [11] and Eidsmoen [12] 

presented the heave radiation problem of a two-body axisymmetric system and 

calculated the heave added masses and damping coefficients. Bhatta and Rahman 

[13, 14] calculated the analytical and numerical results for diffraction loads and 

radiation coefficients for a vertical circular cylinder in a finite water depth. 

Williams et al. [15] studied the radiation and diffraction by a single floating 

circular cylinder and obtained theoretical results of hydrodynamic coefficients and 

the wave forces. Wu et al. [16] explored the diffraction and radiation problem for 

a cylinder over a caisson in water of finite depth and presented the calculated 

results of hydrodynamic coefficients, wave forces and hydrodynamic effect of the 

caisson on the hydrodynamics of the cylinder. In order to achieve findings close to 

the experiment results, a second-order diffraction problem for truncated cylinder 

in finite depth water was investigated by Huang and Eatock Taylor [17] and 

Mavrakos and Chatjigeorgiou [18] and diffraction forces due to second-order 

potential was calculated.  

In this paper, we have considered the diffraction problem of a floating vertical 

circular cylinder. Accordingly, we have presented the analytical solution for the 

boundary value problem to evaluate the wave loads for a vertical circular cylinder 
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with heave and pitch motion in water of finite depth in the presence of an incident 

wave. To accomplish this, strip theory has been applied for determination of the 

damping coefficients of the pitch motion of the body, while the submerged disk 

method has been used for calculation of the hydrodynamic coefficients of the 

heave motion of the body.   

 

2 Mathematical Formulation 

In this article, effort has been made to investigate the effects of geometrical 

parameters on the hydrodynamics of a floating cylinder. Diffraction problem for a 

truncated vertical circular cylinder of radius   in water of finite depth   has been 

considered. Incident wave utilized in this problem is linear with amplitude    . 

The geometry and wave characteristics are shown in Fig.1. The  -axis in the 

Cartesian coordinate system      is vertical upward from the seabed,  -axis in 

direction of wave motion and  -axis is perpendicular to it. However, in the 

cylindrical coordinate system     ,  -axis is in the direction of the cylinder 

radius and  -axis is in the counterclockwise angular direction from the positive  -

axis.  

This is a floating cylinder without any mooring system which is freely moving, 

but its motion in direction of wave propagation (i.e. surge) is ignored. Also, in this 

problem it is assumed that the fluid is incompressible, inviscid and the fluid 

motion is irrotational. 

The fluid region under the water surface is divided into two general regions; an 

internal region of radius      and depth of        under the cylinder and an 

external region of radius      extending from the seabed to the water surface 

(i.e.      ) around the cylinder. Furthermore, the external region of      is 

split into two sub-regions: 1) from the seabed to the height h where the continuity 

condition is applied, and 2) from the height h to the water free surface over which 

the impenetrability condition is applied.   

 

2.1   Governing Equations and Boundary Conditions 
 

In the present paper, a vertical circular cylinder of radius a is assumed to be 

located in an incompressible, inviscid, and irrotational fluid with a finite velocity. 

Based on the stated conditions, the governing equation for the flow field is the 

Laplace’s equation. For solving the Laplaces’ equation, it is necessary to identify 

the physical boundary condition. One of these required conditions is the linear 

free surface boundary condition which is given in Eq.2. 

Governing equation with boundary conditions are represented here as 

 

                                                                                                                    (1) 
   

   
  

  

  
                                                                                              (2) 
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In equations 3 to 5, the impenetrability condition on the seabed and on the body 

surface, are presented as 
  

  
                                                                                                               (3) 

  

  
                                                                                                               (4) 

  

  
                                                                                                               (5) 

 

Ultimately, the far-field boundary condition (i.e. Sommerfeld radiation condition) 

is written in Eq.6. as 

         
   

  
                                                                                        (6) 

 

One of the important characteristics of the Laplace’s equation is its linear 

characteristic. This property makes it a perfect candidate for applying the 

principle of superposition in order to find its solution. Potentials for regions 1 and 

2 are denoted by    and   , respectively. Therefore, the total potential, based on 

the principle of superposition, is the sum of these potentials as in 

       .                                       (7) 

 

The problem separates into an interior domain (beneath the cylinder) and an 

exterior domain. Furthermore, the latter is a diffraction problem and consists of 

incident and scattered potentials. Also, boundary condition (Eq.6) is satisfied by 

the scattered potential    and is known as the Sommerfeld radiation condition, 

where    is the wave number. 

          .                                                                               (8) 

 

 
Fig.1. Domain geometry. 
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3 Solutions 

3.1   Interior and Exterior Solutions 

For the incompressible, inviscid and irrotational fluid, the velocity potential 

∅          can be introduced as ∅                            which is the 

real part of complex expression.   is the special potential and   is the angular 

frequency of the wave. 

- Potential in the interior region 

Governing equation for the potential in the interior region is as follows: 

 

                                                          (9) 
   

  
                            (10) 

   

  
                             (11) 

 

Using the method of separation of variables, the procedure of solving problem is 

performed as follows: 

 

                                              (12) 

 

Substituting (12) in Laplace’s equation (Eq.9):  

 

         

 
   

   

 
  

   

 
              

   

 
                (13) 

 

Both sides of Eq.13 must equal the same constant   whereas 
   

 
 is assumed to be 

the arbitrary constant  . Equation (13) yields in three ordinary differential 

equations: 

 
   

   
              

   

   
                 

   

   
  

  

  
                      (14) 

 

Thus, the potential in the interior region that satisfies (9), (10) and (11) is given as 

follows: 

 

∅              
            

                                                                  (15) 
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where    
   

 
  is the modified Bessel function of first kind and order  . The 

Fourier coefficient      is given by: 

 

    
 

 
   

           
   

 
 

 

 
                                                                        (17) 

 

-  Potential in the exterior region 

Governing equation and boundary conditions to obtain the velocity potential in 

the exterior domain are listed as  

 

                                                                                                                       
    

   
  

   

  
                                                                                               

   

  
                                                                                                              

   

  
                                                                                                              

         
    

  
                                                                                       

 

The incident wave potential satisfying Eq.18 and boundary conditions (19) and 

(20) is determined to be 

 

     
  

 

         

         
             

    
                                                      (23) 

 

where         is the Bessel function of first kind and order  . 

The scattered wave potential in the exterior region must satisfy (18), (19), (20), 

(21) and (22). Therefore using the separation of variables method, as before, we 

have:  

 

                                                                                                     (24) 

 

Substituting (24) in Laplace’s equation (18), yields (25): 

 
   

   
              

   

   
                 

   

   
  

  

  
                     (25) 

 

Hence, one can easily derive the expressions for the scattered potential as 

           
                                                        

 
   

 
    

             
                                                                                               

                                                                                                                             (26) 
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where          and         are the second kind Bessel function and second kind 

modified Bessel function of order  , where    and    satisfy the dispersion 

relations                               for           . 

The scattered potential must satisfy the Sommerfeld condition (22) in far field of 

the cylinder.  

 

   
   

                
        

  
     

        

  
 

                
        

  
     

        

  
 

 

   

                                        

                                    

 

   

  

                                                                                                                                          
 

Substituting (26) into (22) and simplifying the expressions by using (A1) to (A6) 

in the Appendix, we have 

 

 
 

   
                   

 

 
 
  

 
            

 
 

   
                  

 

 
 

  

 
                                                     (28) 

If       

                                                                                            (29) 

                                                                                                       (30) 

 

By using (28) and considering (A7), the arbitrary constants are obtained as 

      . Therefore, the scattered potential is generated as 

 

           
  

 
                

                            
 
         

               (31) 

 

where   
         is the first kind Hankel function of order  . The scattered 

potential in the exterior domain consists of two parts; one zone is the potential 

from the seabed to the bottom of the cylinder (region I) and the other is the 
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potential from the bottom of the cylinder to the free surface (region II). For 

convenience, Eq.31 may be defined as follows: 

 

           
  

 
     

             
                (32) 

   
                        

          

              
                           

 
             (33) 

 

The no penetration condition (Eq.21) is introduced into the first part of equation 

(33) and based on Eq.34, one of the unknown coefficient is determined: 
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The exterior potential that consists of incident and scattered wave fields (    
        ), is given by  
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where the unknown coefficient     can be determined by multiplying (37) by 

          and integrating with respect to  , from   to d: 
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Because of the relation                          , the latest term on 

the right hand side of (39) is equal to zero. Moreover,    and    can be defined as 

follows: 
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Therefore,     is found to be 
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On the other hand, the unknown coefficient     can be determined by multiplying 

(37) by         , p=1,2,…  and integrating with respect to  , from   to   : 
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Then,     is determined to be 
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The new form of scattered potential is indicated below: 
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while, the new forms of coefficients are displayed as 
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3.2   Determination of the Unknown Coefficients 
 

Matching conditions should be applied at the interface     to determine the 

coefficients     and    . 

 

The first case that must be investigated is 
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Using (16) and (45) in (47), yields in
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By multiplying (48) by         

 
 , m=0, 1, … and integrating with respect to   

over the region of validity, we get 
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To simplify (49), (A8) is used and at last one of the unknown coefficients is 

obtained as function of the other:  
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The second case that must be satisfied is the gradient condition: 
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and by using the derivatives of    
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Also, for     and m    , (52) can be written as follows: 
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So,     is obtained as in 

                                                                                                                          (56) 

  

The unknown coefficients should be truncated after a finite number of terms and 

obtained numerically. 
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4 Discussion of Results 

4.1   Heave force 

The heave excitation force is determined by integration of the fluid pressure over 

the lower region of the cylinder, while the dynamic pressure of the fluid is 

obtained from the linear Bernoulli equation. By substitution of relations (15) and 

(16) into the pressure equation, we get 

 

    
   

  
            

             
                     (57) 

 

In continuation, by integration of the fluid pressure over the wet surface at the 

bottom of the cylinder, the heave excitation force is computed as  
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Substitution of (57) into (58) would yield in  
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By using equation (60), it is observed that only the term n=0 for the given series 

would produce a nonzero answer for the force equation. Therefore, the heave 

excitation force can be obtained as follows: 
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Further simplification of this, along with using (A9), would result in  
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4.2   Surge force 

Surge excitation force is also calculated by integration of the fluid pressure around 

the cylinder in the x-direction. Substitution of equations (35) and (36) into the 

integration formula of fluid pressure, would lead to 
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After simplification of equation (63) and using relation (A8) and equation (64), it 

is determined that the surge excitation force only becomes nonzero, if       : 
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(65) 

 

By integrating (65) and using (A10), the horizontal force acting on the cylinder is 

found to be 
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Where 
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4.3   Pitch Moment 

The pitch excitation moment around the cylinder with respect to the center of 

cylindrical coordinates (O) is also found by integrating the fluid pressure in the 

direction of x. By substituting the equations (35) and (36) in the fluid pressure 

integral around the cylinder, we get 
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Similar as in the case of the horizontal force, the pitch moment is also nonzero 

only for     : 
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Using (A11), equation (69) is simplified and written as follows: 
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Ultimately, by using (A8) and reorganizing, the final form of the pitch moment 

about point O is written as 
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where 
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5 Added Mass and Damping Coefficient 

For determination of the dynamic response of a floating cylinder, its dynamic 

equations must be solved. However, since the cylinder is vertical and symmetric, 

its degrees of freedom reduce to surge, heave, and pitch motions. The dynamic 

equation of a floating object used for calculating its displacement is as follows  

 

                            (73) 

 

where 

  : The excitation force resulting from solution of diffraction problem around the 

cylinder which is found by integration of pressure distribution over its surface. 

   : The hydrostatic restoring force (linearized) depending on the displacement, 

which is expressed as 

 

                      (74) 

 

where   is the stiffness matrix and   is the displacement vector of the floating 

body. Since the floating body is not moored, its stiffness matrix only includes the 

hydrostatic components.  

   : The resulting force from solution of radiation problem which is divided into 

components of force in acceleration and velocity phases. The weight force and the 

damping force are proportional to the acceleration and velocity vectors of the 

floating body, respectively.  

 

                          (75) 
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where   is the added mass matrix,   is the damping matrix, and    and    are the 

velocity and acceleration vectors of the floating body, respectively. Therefore, by 

substitution of equations (74) and (75) into (73), the dynamic equation is found to 

be 

 

                               (76) 
 

For establishing the dynamic equation, it is necessary to determine the added mass, 

damping, and stiffness matrices of the vertical cylinder. Obviously, since the 

floating cylinder is not moored and controlling the surge motion is only possible 

through having the mooring system, the dynamic equation can only be established 

for the heave and pitch motions.  

In this article, in order to calculate the added mass and damping coefficients of the 

pitch motion of the body, the strip theory is applied.    

5.1   Calculation of the Added Mass of the Floating System 

Hydrodynamic coefficients of the heave motion cannot be determined by the strip 

theory and should be found from the submerged disk method [19, 20, 21]. In 

submerged disk method, the bottom of the cylinder must be placed much farther 

from the fluid free surface and the heave motion of the floating cylinder is 

analogized to a two dimensional disk. This is done in a way that the cylinder cuts 

the water surface and that only one of its sides accelerates and its added mass is 

halved as in   

 

    
 

 
 
 

 
                  (77) 

 

where     is the added mass of the cylinder in heave motion,   is the fluid 

density, and   is the cylinder radius. 

Since the floating cylinder is vertical and symmetric, we have 

 

                        (78) 

 

Ultimately, the added mass for pitch motion, by using strip theory [19], becomes 
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where     is the added mass of the pitch motion of the floating cylinder,    is 

the added mass the added mass coefficient of the surge motion of the cylinder,   

is the water depth,   is the distance from the seabed to the bottom of the cylinder, 

and        is the distance from the center of gravity of the cylinder to its bottom.  
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5.2   Calculation of the floating cylinder damping 

The damping coefficient is also found similar to the method of finding the added 

mass [19]. Accordingly, the damping coefficient of the cylinder is first determined 

for a two-dimensional strip and subsequently for a three dimensional body. 
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(82) 

 

where     are the damping coefficients of the floating cylinder. On the other 

hand,     which is the damping coefficient of the surge motion of the cylinder, is 

calculated as in 

 

                           (83) 

 

where the drag force coefficient for the cylinder is equal to        [19]. 

 

5.3   Calculation of the stiffness of the floating cylinder 

Since the floating cylinder is not moored, the restoring force is only due to the 

hydrostatic components of the cylinder which is only nonzero for the two 

following components: 
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where   is the submerged volume of the cylinder, and        is the distance from the 

bottom to the center of buoyancy of the cylinder. 

By determining the values of the added mass and damping of the body, equation 

(76) can be solved and eventually the dynamic response for the two motions of 

heave and pitch of the floating cylinder may be found. 
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6 Numerical Results 

Parametric studies of the effects of the wave excitation force on the floating 

cylinder have been performed for two different cases and plots of the wave 

excitation forces and moments have been sketched in terms of     . 

Case 1: 

Variations of the water depth and the distance of the cylinder bottom from the 

seabed are studied, assuming that the draft of the cylinder is kept constant. The 

aim of this study is to investigate the influence of water depth on the forces 

exerted by the wave on the floating cylinder. Accordingly, the excitation forces 

and moments are calculated for three different water depths. Assuming that 

            , the heave and surge forces as well as the pitch moment for 

this case are plotted in Figs.2, 3, and 4.  

Case 2: 

In this section, the water depth is kept constant and the effect of change in the 

draft of the floating cylinder on the forces exerted by the wave is studied. 

Accordingly, the excitation forces and moment of the wave are calculated and 

analyzed for three different distances from the seabed to the bottom of the 

cylinder. Once again, by assuming             , the plots of  heave and 

surge forces as well as the pitch moment are presented in Figs.5, 6, and 7.   

 
Fig.2. Non-dimensional heave force – Effect of different water depths at constant 

draft of the cylinder. 



 

 

 

 629 

 

 

 

  
Fig.3. Non-dimensional surge force – Effect of different water depths at constant 

draft of the cylinder. 

 
Fig.4. Non-dimensional pitch moment – Effect of different water depths at 

constant draft of the cylinder. 
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Fig.5. Non-dimensional heave force – Effect of different drafts of the cylinder at 

constant water depth. 

 
Fig.6. Non-dimensional surge force – Effect of different drafts of the cylinder at 

constant water depth. 
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Fig.7. Non-dimensional pitch moment – Effect of different drafts of the cylinder 

at constantwater depth. 

 

7 Conclusion 

In this article, effort has been made to use the analytical solution of the diffraction 

problem for a cylinder of particular radius ( ) floating in a channel of specific 

depth ( ) and investigate the effects of geometrical parameters on the dynamics of 

this cylinder. To accomplish this task, Laplace’s equation has been analytically 

solved under certain boundary conditions for the cylinder, which has gone under 

the water by the amount of        , with   being the distance from the bottom 

of the channel to the bottom of the cylinder.  

In these computations, a regular wave with the amplitude H intersects the floating 

cylinder and results in diffraction phenomenon. After determining the diffraction 

potential, the heave and surge, forces along with pitch moments for the cylinder 

were calculated. Having found the forces, the dynamic equation of the floating 

cylinder has been solved. In this article, two important dynamic motions (i.e. 

heave and pitch) of the cylinder have been analyzed. Since there is no mooring 

system considered in the surge motion, the dynamic investigation of this motion is 

ignored.  

In order to study the effects of different parameters on the dynamics of the 

cylinder, two parameters of water depth and draft of the cylinder have been 

considered, albeit the values of these parameters were non-dimensionalized with 

respect to the cylinder radius. Based on the studies performed in this paper, the 

obtained results can be summarized as follows: 
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1. By considering the draft as constant and increasing the water depth, the 

pitch moment as well as the heave and surge forces do not change 

significantly. 

2. By keeping the water depth constant and increasing the draft, the heave 

force reduces while the pitch moment and the surge force increase.  

3. Based on the obtained plots, it is observed that the heave and pitch 

motions of the cylinder do not vary much at the constant draft. As such, it 

can be stated that the effects of changes of water depth on the dynamics of 

the cylinder diminish, when the draft is considered constant. 

4. As the cylinder descends more in the water, the range of heave and pitch 

motions reduce with an increase in the wave frequency. Based on the plots 

generated, the range of pitch angle at constant draft and low frequency is 

approximately 6% of the wave slope. 
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