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Abstract

In this work two new iterative processes called the “Jungck-Kirk generalized multi-step” and “Jungck-Kirk multi-
step” are introduced and some convergence and stability results are proved for these iterative process. The results
include results of almost stability and summable almost stability. Since these new iterative processes are more
general than other ones extant in literature, some results of this work partially generalize results already proved in
the existing literature.
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1. Introduction and Preliminaries

There are many iterative processes related to fixed point theory, several of them have been obtained as generaliza-
tions of others ones. An iterative process is generally denoted by

20 € X; xpy1 = f(T,x,), forallneN,

where X is an ambient space, xg is an arbitrary initial point, T : X — X is a mapping and f is some function.
For example, if f(T,x,) = Tx,, then we obtain the well-known Picard iteration; zg € X, xp11 = Ty,

Recently, Gursoy, Karakaya and Rhoades [4] introduced a generalization of Kirk-Noor [3] iterative process and
multistep iteration [22]. This iterative process is called Kirk-multistep iteration and is defined as
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T € X
Sk
yrt =Y BT, k>2, forall neN;
i, =0
S T )

yg = noxn + Z ﬂn 1p+1T7'p+1y£+1’ p= 17]@—2’

Zp+1 1
Tn4+1 = Qp 0Tn + Z Qp le“yna

i1=1

where ijzo iy =1, EZ::O ,Bgipﬂ =1lforp=1k—-1; any, ﬁﬁ’iﬁl € [0,1] satisfying a, ;, > 0, apo # 0,
52,1'?“ >0, B g #0forp=1,k—1and s1,5,41 for p =1,k — 1 are fixed integers with s; > 55 > --- > s;.

Other type of iterative processes are those known as Jungck type. They involve maps 5,7 : Y — X, where S
is an injective map, X is a metric space and usually Y is an any set.

Here, we can consider Y as any set, 29 € Y, X endowed with a norm || - || and T(Y) C S(Y).

Olaleru and Akewe [13] introduced an iterative process called Jungck-multistep iterative process. It is defined
as,

Szp = (1= B ") Sz, + By Ty, k>2;

Szt = (1 - p )an—i-B’Tzlfl 1=1,2,...,k—2; (2)
S’an =(1—ay)St, + a, T2}, n=12,..,
where {0471}107 {BZL}ZOZO, i=1,2,...,k—1, are real sequences in [0, 1), such that Z a, = oo and k is a fixed integer.
n=0

Chugh and Kumar [3] defined the following iterative process called Jungck-Kirk-Noor :

t t

Swn = 'Vn,Osxn + Z’Vn,lTlxn7 Z'Yn,l =1

= :

n — /Bn,Osxn + Z/Bn,jTjw’ru Zﬁn,j = 11 (3)
=1 =0
k .
STy 1 = 0,057, + ZamTZzn, Z an; =1, n=0,1,2,..,
=1 ]

where k > s >t, apni >0, @no #0, B >0, Bno#0, Yni >0, Yoo # 0 ani, Bnjs Yt € [0,1] where k,s and ¢
are fixed integers.

Both the Jungck-multistep and the Jungck-Kirk-Noor iterative processes are generalizations of the Jungck-Noor
Tterative process given in [14]. In the particular case when ¥ = X and S is the identity map on X, then we
obtain the multistep iteration scheme [22] and the Kirk-Noor [3] iterative process from (2) and (3) respectively.
Furthermore, in this case, we can see (2) as a generalization of the Mann iterative process [11] and the Ishikawa
iterative process [9], (3) is a generalization of the Mann iterative process [11], the Ishikawa iterative process [9], the
Noor iterative process [10], the Kirk iterative process [10] and the Kirk-Ishikawa iterative process [17].

One of the issues in fixed point theory is the stability of iterative processes. A definition of stability was
established by Harder and Hicks [6].

Ostrowski [21] seems to be the first to discuss the stability of iterative process. In 1964, he proved the stability
of the process x,11 = Tz, where T is a contraction.

In the same sense of Harder and Hicks’s definition, Singh, Bhatnagar and Mishra [23] gave a definition of
stability for Jungck-type iterative processes. Over time, other definitions of stability have appeared such as the
almost stability (see Osilike [20]) and the summable almost stability (see Berinde [1]).

Below we put the definition of stability given by Singh, Bhatnagar and Mishra [23] and also we state the defini-
tions of almost stability and summable almost stability, but in the context of the Jungck-type iterative processes.
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Definition 1.1 Let (X,d) be a metric space and 'Y an arbitrary set. Let S,T : Y — X be two maps such that,
S is an injective map and T(Y) C S(Y). Let z be a coincidence point of T and S, i.e. Tz = Sz = p, for some
p€X. Let g €Y and Sx,11 = f(T,x,) be an iterative process such that the sequence {Sx,} _ converges to p.
Let {Sy,} _, be an arbitrary sequence in S(Y) and €, = d(Syni1, (T, yn)).

n=

n=0

e [f lim ¢, =0 implies that lim Sy, = p, then the iterative process Sxyn11 = f(T,xy) is called (S,T)- stable
n—o0 n—oo
or stable with respect to S and T'.

o0
o If Z €n < 00 implies that lim Sy, = p, then the iterative process Sxn11 = f(T,x,) will be called almost
n— o0
n=0

(S, T)-stable or almost stable with respect to S and T'.

o If Zen < oo implies that Zd(Syn,p) < 00, then the iterative process Sxpy1 = f(T,x,) will be called
n=0 n=
summable almost (S,T)-stable or summable almost stable with respect to S and T.

Any summable almost stable iterative process is also almost stable but the reverse is not always true (see Berinde
[1]). Any T-stable iterative process is also almost stable, but the reverse is generally not true as was shown by
Osilike [20, Example 1].

In the literature there are several fixed point theorems on stability where the following contractive condition
introduced in [7] is employed (see for example [16], [15], [17], [5] and [4]).

d(Tz,Ty) < dd(z,y) + p(d(z,Tx)), where 6 € [0,1), for all z,y € X, (4)

where ¢ : R — R is a monotone increasing mapping with ¢(0) = 0 and (X, d) is a metric space.
Rhoades [2] considered maps T : X — X having a fixed point p and satisfying the condition

d(p,Tx) < dd(p, x), for some 0 <4 < 1 and for each x € X. (5)

If we put ¢(t) = 0 in inequality (4), we can get the definition of contraction used in the Banach fixed point
theorem. If we take ¢(t) = Lt, L > 0, the inequality (4) reduces to the contractive definition due to Osilike [19]. Tt
is easy to verify that any Zamfirescu contraction (see [24]) satisfies (4) with a particular mapping ¢.

However, the mappings satisfying (4) need not have fixed points (see example in [19]), so, in stability results it
has been necessary to assume the existence of the fixed point.

To our opinion it is better to work with the contractive condition defined by (5) than with (4) because if we
suppose that 7" has a fixed point, then (4) implies (5) and using (5), we avoid doing unnecessary calculations.
Furthermore, others contractive conditions such as (II) from [8] and the condition used in Corollary 2.2 from [18]
involve (5), too.

In this work, we introduce the new iterative processes Kirk and Jungck-multi step type such that these ones
generalize to the ones defined by (2) y (3). Also we prove that the new iterative processes are stable, almost stable
and summable almost stable with respect to functions that satisfy a contractive condition like inequality (5) but
in the context of the Jungck-type iterative processes. Furthermore our theorems include results that show that the
new iterative methods can be used to approximate fixed points.

The proof of main result is based on the following lemma.

Lemma 1.2 (Berinde [1, Lemma 1]). Let {un}:lg and {en}io be sequences of nonnegative numbers and § € [0,1),
such that,

Upy1 < OUp +€,, n=0,1,... (6)

Ly) If lim €, =0, then lim wu, =0.
n—oo n—oo

o0 o0
Ly) IfZen < o0, then Zun < 00.
n=0 n=0
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2. Main results

Motivated by the iterative processes defined in the last section we define the following two iterative processes.

Definition 2.1 Let (X,|| - ||) be a normed space and Y a set such that X C Y. Let m € N\ {1,2} be a fized
number and ki, ko, ....,km € N. We suppose S,Tj; 'Y — X, for j = 1,2,...m and i; = 1,...,k;, are maps
such that S is an injective map and for any finite collection {)\ij}flo C [0,1] and for each x,y € Y we have that
=
k;
AoST + Z ATy ) € S(Y), forj=1,2,..,m. We suppose a(J) € [0,1] for each j € {1,...,m}, i; € {0,.... k;}

ij:1

andn € N and Z a(]) =1 for each j € {1,...,m} and n € N.
i;=0
Let xg € X be an arbitrary point and define the iteration that generates the sequence {S:Un}n 0 by

Sz(m) = ano Sac + Z oz(m) T iy Tns

zm_l

SZSLJ) :aj SJ? + ZanZJ J;IJZ"ZLJ’_l? fOT’j =2,..,m-—1

1]_1

(1) 2
an:a Sx, +Zanle111 ()_

n,0

111

This iterative process will be called the “Jungck-Kirk generalized multi-step iteration” or the “Jungck-Kirk gen-
eralized multi-step iterative process”.

Let T be a map. If in the above definition, T}, = T% (here T, denotes the composition of T" with itself i,
times ), for j = 1,2,...,m and ¢; = 1, ..., k;, then we obtain the following special case:

Definition 2.2 Let (X,|| - ||) be a normed space and Y a set such that X CY. Let m € N\ {1,2} be a fived

number and ki,ko,....kn € N. We suppose S,T :' Y — X are two maps such that, S is an injective map and
K
for any finite collection {/\ij}szo C [0,1] and for each x,y € Y we have that | M\oSz + Z )\ijTijy € S(Y), for

i;=1

ji=12.,m. We suppose a(J) € [0,1] for each j € {1,...,m}, i; € {0,...,k;} and n € N, and Z oz(]) =1, for
i;=0

each j € {1,....,m} andn € N. Let g € X be an arbitrary point and define the iteration that generates the sequence

{Szn} . by

S’z(m) — ol OS.’L‘ + Z am) T‘m

7/77;71

S’Z(J)—a 059Tn —l—Za Tt for j=2,...,m —1;

i;=1

k1
Tpy1 = ag})Swn + Z agile“sz).

i1=1

This iterative process will be called “the Jungck-Kirk multi-step iteration” or the “Jungck-Kirk multi-step iterative
process”.

Remarks: Let us consider the Jungck-Kirk multi-step iterative process:
2.1 If ky = ko = -+ = ky, = 1, then we obtain the Jungck-multistep iterative process (Olaleru and Akewe [13]).
2.2 If m = 3, we obtain the Jungck-Kirk-Noor iterative process (Chugh and Kumar [3]).
2.3 If m =3, k1 = ko = k3 = 1, then we obtain the Jungck-Noor iterative process(Olatinwo [14]).
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24 Y =X, S =1, (I the identity function on X) we obtain the Kirk multistep iteration (Gursoy, Karakaya
and Rhoades [4]).

25 Yy =X,8S=1 m=3and o o = 1, for each n € Z%, gives us the Kirk-Ishikawa iterative process
(Olatinwo [17]).

26 Y =X,5=1,m=3,a)=10a") =1land a!!) =all, i1 =0,1,... k1, for each n € Z*, then we
obtain the Kirk iterative process (Klrk [10])

The remarks 2.1 - 2.6 tell us how from the Jungck-Kirk multi-steps iteration, we get some iterative processes.
Of course, from this iteration we can also obtain the Mann [11], Ishikawa[9], Noor [12] and multistep [13] iterative
processes.

Now we give our main results.

Theorem 2.3 Let (X, || -||) be a normed space and Y a set such that X CY. Let m € N\ {1,2} be a fized

number and ki, ks, ....,kyn € N. We suppose S,Tj;, : Y — X, for j = 1,2,...,m and i; = 1,....,k; are maps

such that S is an injective map and for any finite collection {)‘ij}i;:o C [0,1] and for each x,y € Y we have that
k;

AoST + Z ATy | € S(Y), for j = 1,2,..,m. We suppose also that there evists ¢ € Y, with Sq = p, such

;=1

that
a) ||Ty i,z —pl| < 6||Sx — p||, for some § € [0,1), for each z €Y and iy =1,....k1;
b) ||Tjs,x —pll <||[Sz —pl|, for eachx €Y, ij =1,....k; and j = 1,2,....,m

Let {Smn}io be the sequence generated by the Jungck-Kirk generalized multi-step iteration, with additional condition
that there exists a < 1, such that 0 < a(l) +d <a, for alln € N.
Let {Syn} , be an arbztmry sequence in S(Y) and

Sw(m = a,,(,LnB)Syn + Z .E:nl’?)n Myim Yns

Im=1

k;
Swl) = aifyz)Syn + Z al?) ijhwj*l, forj=2,....m-—1;

n ZJ
i;=1
1
en = ||Syns1 — alSyn — Z o) Ty w®
Zl 1
Then

i) q is a coincidence point of Tj;,q = Sq = p for eachij € {1,....k;} and j € {1,2,...,m};
ii) the sequence {an}io converges to the point p;
iii) lim e, =0 if and only if lim Sy, = p;
n—oo n—oo

oo
i) if E:Oen < 00 then lim Sy, = p;
n—

v) ifZen < 0o then Zd(Syn,p) < 00
n=0 n=0

Proof. By hypothesis b), we can see directly that ¢ is a point of coincidence of all maps that are being
considered. We omit the proof of part (ii), since it is similar to the test (iiz).
To prove (#ii) we must show two implications.
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(Necessity). We suppose that lim €, = 0.

n—oo

k1
SynJrl - Oéfll,z)Syn - Z a')(’bl,leLilw’l(’LQ)

i1=1

[[SYnt1 — pl| <

(1)5yn+ Z anuTl nw® —p

111

k1
Sy + Z ol T w® —altp =3 ol p
11=1

111

:6n

k1
1 1
< en+all1Syn —pll + Y al) 1Ty w® — pl]

i1=1

by hypothesis a) we have,

1Syn+1 = DIl < €n +allollSyn — pll + (Z ay, ) o[ Sw® — pl].

111

()

Let us now consider ||Swy’ — p||, for j =2,...,m — 1,

kj
1w = pll = <J>Syn+za<” et =3l p

ij=1 i;=0

< all}|1Syn —p||+Zoe£31] L wi T — ]

ij=1
by hypothesis b) we have,
1w — pl| < @b [|Sys - pl| + Za 1Swy* = p|.
ij=1

Similarly with ||Sw§Lm) —pl|, we get

1Sw(™ —pl| < al)|[Syn — p|+<2a51"21l>|5ynp||||Synp||.

m=1

By (8) and (9), ||Swi™ ™" — p|| < ||Syn — p||, for 1 =0,1,....,m — 2, so

15w = pll < 11Syn — pll,
and by (7)

HSZ/n-i-l pH <eén+ a |Syn p|| + (Z a,, ) (5‘|Syn _pH

’Lll

< en+ (allh +3) 1Sy 3l
< e+ al|Sy, — |

Since ( not 5)

[[Syn+1 — pll < €n + al[Syn — p|.

95

(10)
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By Lemma 1.2, lim Sy, =p
n— oo

(Sufficiency). Now, we suppose that lim ||Sy, — p|| = 0.
n—oo

k1
SynJrl - CVS,?)Syn - Z asleLilwg)

i1=1

k?l kl
1 1
< Synrr —pll+ || D all p—alhSyn = > all) 11w
11=0 11=1

1
< St 51 + @IS — ol + 3 a8, 1 Tusyf? =

211

< [[Syns1 — pll + alyl[Syn — p||+<zan“>5|5w — ||

i1=1

From this and inequality (10), we get that

en < |1Syns1 — ol + albl1Syn — pl| + (Z aile> 8 Syn — pll

111

<|[SYn+1 — pll + ||Syn — 1.

then,
lim ¢, < Tim ([[Syn1 = pl| + [[Syn = pll) =

n—roo

The statement (v) is true also by inequality (11) and Lemma 1.2 and (iv) is a consequence of (iii) and (v).
O

Corollary 2.4 Let (X,||-||) be a normed space and Y a set such that X C Y. Let S,T : Y — X be maps
such that S is an injective map and for any finite collection {)\Z}ZO C [0,1] and for each z,y € Y we have

kj
AoSx + Z NTy | € S(Y), for each j € {1,...,m}. Also, we suppose there exists ¢ € Y, with Sq = p such that
i=1
¢) ||Tx —p|| < d||Sx — p||, for some § € [0,1) and for each x € Y;
d) 1S(T()) - pll < IT(S()) = pll, for each z € Y
e) ||S?z —p|| < ||Sz —p||, for each x €Y.
Let {an}io be a sequence genemted by the Jungck-Kirk multi-step iteration, with additional condition that there

exists o < 1, such that0<an0+5<a for all n € N.
Let {Syn} ., bean arbztmry sequence in S(Y') and

Sw(m) =« m)Sy + Z o™ Timy,

Nyim
szl

Sw(]) = a(j)Sy + Z am T”u}]'|r1 for j=2,...,m-1

Zj_l
En:‘

SYnt1 — oc,(f,%Syn Z o, Tl1
Then

7,11

i) q is a coincidence point of S and T; even, ¢ = p, i.e. p is a fixed point of T and S. Furthermore this fized
point 1S unique.

ii) the sequence {an}:c:o converges to the point p;
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iii) lim e, =0 if and only if lim Sy, = p;
n—oo n—oo

o0
i) if Y en < o0 then lim Sy, =p;

n=0
v) ifZen < oo then Zd(Syn,p) < 0.
n=0 n=0

Proof. First, to prove (i) note that (e) implies that Sp = p. Since S is an injective map, then ¢ = p. Now, by
(¢) we have Tp = p and from (c¢) we obtain that if there exists another fixed point p’, then p’ = p.

The proofs of (i), (iii), (iv) and (v) follow from Theorem 2.3. If we put Tj,;, = T%, for i; = 1,...,k; and
j=1,...,m, in Theorem 2.3, we only need to observe that the assumptions a) and b) are satisfied. For this purpose
let us fix j € {1,...,m} and we consider i; > 2,

|75z —pl| = |TT" 2 — pll.

By hypothesis ¢), ||T%x — p|| < 6||ST% 1z — p||.
By hypothesis d), ||[T%x — p|| < §||T% 1Sz — p|.
Repeating these steps ¢; times, we get.

IT% 2 —p|| < 6|55z — pl|
< 6||528% 2w — p||.

By hypothesis e), ||T%x — p|| < 6]|S% 1z — p|].
Repeating these steps ¢; times, we get

17" % — pl| < 6]|Sz = pll.

So, a) and b) are satisfied.
O

In the particular case Y = X and S the identity mapping in X in Corollary 2.4, we partially obtain the theorem 6
and 7 from [4]. But in this case we use the condition defined by the inequality (5) instead of the condition defined
by (4).

Theorem 2.3 and Corollary 2.4 partially generalize theorems 3.1 and 3.2 of Chugh and Kumar [3]. This can be seen
if we choose m = 3 in Corollary 2.4.

Unlike [4] and [3] in this work we include results of almost stability and summable almost stability in our theorems.
But we say that our results partially generalize to others because we put the additional assumption 0 < a}L’O +4 < a,
for some a < 1.

We conclude with the following question: Does the Theorem 2.3 and the Corollary 2.4 remain true if we remove
the restriction 0 < a,llyo +6<a<1?

3. Conclusion

In this work, we have introduced a general iterative method from which we can get others from the existing literature.
Furthermore, we have given two results that partially generalize to the theorem 6 and 7 from [4] and the theorems
3.1 and 3.2 from [3].
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