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Abstract
In this paper, the right cwculant matrlx RCIRC w(9) € My (R) with
circulant vector g = (a, ar, ar? D, Where a#0andr # 0,1,
was investigated and its inverse RCIRC 1(g) was obtained. The
eigenvalues, determinant, Euclldean norm, and spectral norm of both
RCIRC,(g) and RCIRC,,*(g) were determined. Some examples were
provided to illustrate the obtained results.
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1 Introduction

A matrix C € M,,,(R) is said to be a right circulant matrix if it is of the form

Co G G 2 Cpa
Ch-1 G G Cn-3 Cn-2
C = : :
C; C3 (4 Co 1
i C (3 Ch-1 Co

The matrix C has the following structure:
1. Each row is a right cyclic shift of the row above it. Thus, C is
determined by the first row

(€o» €1, Coy eeer Cpeq)
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2. ¢ = c;j whenever i —j =k (mod n)
Definition 1.1

1. Let ¢ = (cy,¢q4,Cp - ,Cnq) then the right circulant matrix C €
M,,.»(R) is denoted by RCIRC,,(c)

2. The vector ¢ = (¢, €4, €3, ... , €_1) is called the circulant vector
3. RCIRC,(R) = {RCIRC,(¢)|c € R™}

Properties of RCIRC,,(c)

1. The eigenvalues of RCIRC,(c) are just the Discrete Fourier
Transform of the circulant vector c. That is

where w = e2™/™ and m=0,1, ..., n-1

2. The eigenvectors of RCIRC,,(c) are the columns of the Fourier matrix F.
That is

Uy, = i(1, o™, w*™m, ... ,w(”‘l)m)
n

n

3. The Fourier matrix F is a simultaneous, unitary, diagonalizing matrix for
RCIRC,(c). That is, for any RCIRC,,(c)
RCIRC,(¢) = FDF1,
where D = diag(Ag, M\, ..., An_q) @nd FF* = 1.
4. The determinant of RCIRC,,(c) denoted by |RCIRC, (c)| is given by
n—-1 n-1 ,n-1
IRCIRC,@)| = | |4, = 1_[ <Z ckw‘m">
m=0 m=0 \k=0

where w = e2™/m and m=0,1, ..., n-1
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Inversion of RCIRC,,(c)

From the circulant vector we can obtain the eigenvalues of RCIRC,,(c) through
Discrete Fourier Transform (DFT). Furthermore, through the Inverse Discrete
Fourier Transform (IDFT) of the eigenvalues of RCIRC,, (¢) the circulant vector
can be obtained and hence RCIRC,,(c) itself.

Note that if A # 0 is an eigenvalue of an invertible matrix A, then 271 is also an
eigenavlue of the matrix A™. With the help of this concept we can derive the
matrix RCIRC,,*(¢), the inverse of RCIRC,(¢).

The flowchart of finding RCIRC, " (¢) is as given below.

RCIRC_(c)

Apply DFT to the circulant vector

\Z

Eigenvalues

Find the reciprocal of the eigenvalues (all must be non-zero)

\Z

Inverse of eigenvalues

Apply IDFT

\Z

RCIRC, (c)

Given RCIRC, (¢) with eigenvalues A,,, = Y723 ¢, ™k # 0 where m=0,1, ... ,
n-1, then RCIRC,*(¢) is given by

CO C,1 CZ Cn—z Cn—l

R Cn—l CO 61 Cn—3 Cn—z
RCIRC,™(¢) = : :

C;, C3 & G C

Ci G G Cn-1 Co

where G, = lyn—t Ay ™ and (Cy, Cy, ..., Cy—q) is the circulant vector.
n&m=0

As an example, consider the matrix

N OO -
S0k N
R0 R, DN D
NS

Its eigenvalues are 4, = 15,4; = =3 + 6i,4, = —3 — 6i,1; = —5 with inverses

1—15;—51131151_71 respectively. Performing the IDFT to each we will obtain the
following: ¢, = =, C, = % C,=0C3=0.

15
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/_E 15 (2) 0 \
o -+ 0
. o | 5 1S I
Thus the inverse is given by 1 5 |
00 =% %
= 0 0 1
15 15
Furthermore
1 2 0 0
15 15 2
1 —
1 2 4 8 0o -+ 10 10 00
8 1 2 4 15 _[(0 1 0 0
4 8 1 2 0 0 1 2 0 0 1 0
2 4 8 1 3 15 15 0 0 0 1
— 0 1
15 0 —-——
15

2 The Right Circulant Matrix RCIRC,(g)

Let g = (a ar ...ar™ 1) be the circulant vector of a right circulant matrix where
a#0,7r+0,1. Then the right circulant matrix with geometric progression
denoted by RCIRC,(g) is the matrix of the form

a ar ar®  ar™? qrt?
ar™' a ar ar™3 arn"?
RCIRC,(g) = : . :
ar? ar® ar* a ar
ar ar? ar® = ar™! a

Now, for the rest of the paper the following notations will be used:

g = (a ar ...ar™1): circulant vector with geometric sequence whose first term is
a#0 and whose common ratio is 1#0,1

RCIRC,,(g): right cicrulant matrix with geometric sequence with dimension nxn
IRCIRC,(g)|: determinant of RCIRC,,(g)

IIRCIRC,,(g)||g: Euclidean norm of RCIRC, ()
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IIRCIRC, (g)|l,: Spectral norm of RCIRC,,(g)
RCIRC, ' (g): inverse of RCIRC,(g)

3 Main Results

Theorem 3.1
IRCIRC,(9)| = a®(1 —r™)"1
Proof:
/ a ar ar?  ar"? ar"‘l\
ar™' a ar ar™3  qrn?
RCIRC,(g) = | ; ;
ar? ar® ar* a ar
\ ar ar? ar?  ar™! a )
1 T TZ rn—2 rn—l
rn—l 1 r rn—3 rn—z
=Qa : :
r2 r3 rt 1 r
r r¢ r3 rn-1 1
/ 1 r o r2 =2 rn—l\
Tn_l 1 r rn—3 rn—Z
Now let K = | : |
\TZ r3 rt 1 r /
T _r.2 _r.3 rn—l 1

Note that |cA| = c"™|A| so |[RCIRC,(g)| = a™|K]|

1 r r2 rn—z rn—l
rn—l 1 r rn—3 rn—Z
K = : :
r2 r3 rt 1 r
r r¢ r3 I |
1 - 2 =2 Fn-1
0 —(r"—1) —r@"—-1) = —r"3@FEn—1) —"2EFEn—1)
0 0 0 -1 -7
0o 0 0 0 ——1)

by applying the row operation =" ¥R, + R,,; = Rj4+; Where k=1,2.3,...,n-1
From the equivalent lower diagonal matrix we get |[K| = (1 —r™)* 1,
Thus |RCIRC,(g)| = a™(1 — r™)1
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Theorem 3.2

The eigenvalues of RCIRC,(g) are A, =S, and Am=re‘_‘§;’;—,;2_l where
m=1,2,..,n-1

Proof:
Note that Am = 7,:;3 Cke—mek/n

For m=0, we have
-1 n-1

S

_ a(r -1) S
= Ck = ar o 1 =9y
k=0 k=0
For m#0, we have
n-1
1 = z Cke—zmmk/n
m
k=0 1 1
n— n— .
mek . a rne—me -1
Z arke =a Z rke—2mimi/n — T(-e—Zm'm/n — 1)
=0 k=0
a(r™—1)
= re—2mim/n _ 1
Theorem 3.3
. n(l —r2n)
IRCIRC,,(9)|g = |al I,z
—-r
Proof:
n—-1 n—-1 n-—1
IRCIRC,@ls = | Y ay?= | n(ar)z = |azn ) rak
i,j=0 k=0 k=0
~ |4l n(l —r2n)
-4 1—r2
Theorem 3.4

( la(r™ — 1) |
”RCIRCn(E)”Z = max ISnl; 2
\/rz — 2rcos Zlm +1
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Proof:
For m=0, [1,| = |S,,]

For m#0, we have

P a(r-1)| la(r™ — 1)|
Al = 2mim - 2mim . . 2mim
re n —1 |r(cos o + isin o )—1|
_ la(r™ — 1)|
- . 2 .
\/(rcos 2mim _ 1) + r2sin2 2
n n
B la(r™ — 1)|
\/rz — 2rcos 2mm +1
Corollary 3.5
-1 — _
|IRCIRC,, ™ (g)| = Ty
Corollary 3.6
N _ _ —2mim/n_
The eigenvalues of RCIRC, *(g) are 1, ' = Si and A, ' = rea(rn—_l)l where
m=1,2,...,n-1
Corollary 3.7
|RCIRC, ™ (9)||,. = !
" E_| | n(l —r?n)
a 1—1r2
Theorem 3.8
For n>3,
/Co &G 0 00 \
0 ¢ € 0 0
RCIRC, ' (g) = | : S
000 G G
¢, 0 0 0 G,

1

(v A o)
_a(r"—l)\ 000 -1 r)
r 0 0
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r

where CO a(T—l)

Py 1) ——and C; =

Proof:
Note that the first row entries of a circulant matrix which determines the matrix is
just the Inverse Discrete Fourier Transform (IDFT) of its eigenvalues. From

Corollary 3.6, the eigenvalues of RCIRC, *(g)are 1, ' = Si and A, ' =
re—Zm'm/n_l
a(rn-1)
entries of RCIRC,, 1 (g).

where m=1,2,...,n-1. By performing IDFT to them, we will get the

15 o™ —1 2ni
Cy =—Z—9km where § = e n

~ a(r™—1)
For k=0
n-1 n—1
c_lzre‘m—l_ 1 2(9‘”‘ D
7 n Oa(r"—l)_na(rn—l) r
m=
[r(l - 9") ] _ -1
na(r" -1) a@m-1)
For k=1
n-—1
e _12 re-m—19m
7 n a(r®—1)
m=0
¥ r-om =t (-5
na(r" 1) " na(r" -1) -
a(r" -1)

Fork=2,3,...,n-1

n-1

¢ _1zr9‘m—19km
“Tn a(rt —1)
m=0

1 n-1
- na(r™ —1) Z (rem(k_l) B Hkm)
m=0

B 1 r(1—g%k-bmy 1—gkn]
C na@rm -1 1-6k1 1— 6k

which is as desired.



Remarks: For n=1, 2

(a) has inverse (1/a)

(;r Czl)hasmverse2(—211)(_1 —Tl)

Theorem 3.9
1 Jyn(r?+1)
IReire, @I, = oo
Proof:

n-1

||RCIRCn_1(§)”E — Z ne,* = \/n (a(r" — 1)) <a(‘r" _ 1)>2

k=0

n(rz+1) Jyn(@*+1)

[a(r = D]2 ~ |a@™ - 1)

Corollary 3.10

( \/2_ 2mm
1 r 2rcos m +1

|RCIRC, @), = maxi

4 Examples

|Snl” la(r™ — 1|
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Consider the right circulant matrix with the circulant vector g = (4, 12,36,108)

4 12 36 108 1
Hence RCIRC,(g) = %28 1048 1421 3162 =4 37 2
12 36 108 4 3

IRCIRC,(9)| = 4*(1 — 4*)3 = —4244832000

Eigenvalues of RCIRC,(g):

Ao = 160
A = —32 + 96i
Ay = —32 — 96i

13 = —80
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IRCIRC, (Pl = 14| /4(1 —39 _ /4( 6369) _ 41830 = 16v205

IRCIRC, (9|, = max{1,,} = 1, = 160

. -1 3 0 0
DU 0 -1 3 0
RCIRC,™(g) = iG5| 0 0 -1 3
30 0 -1
-1 3
— > 0 0
320 320 3
_1 -
—— 320
_ 0 3%
~1 3
0 _—
3 320 320
320 0 o 2
320
IRCIRC, ™ (9)] -t
4 4244832000
Eigenvalues of RCIRC, 1 (g)
1
0 160
L L -3 9% -1 3.
1 T 324960 10240 " 10240° 320 T 320"
a1 32 9% -1 3
2 T 3296/ 10240 10240 320 320"
P
3780
_ J4332+1) 10
RCIRC, ! = —
| @l = 3G D) ~ Te0

. 1
IRCIRC, ™ (@], = max{12511} = 145} = o

80
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